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We study proximity effects in clean nanoscale superconductor–normal-metal–superconductor (S|N|S)
graphene heterostructures using a self-consistent numerical solution to the continuum Dirac Bogoliubov–de
Gennes (DBdG) equations. We obtain results for the pair amplitude and the local density of states (DOS) as a
function of doping and of the geometrical parameters determining the width of the structures. The superconducting
correlations are found to penetrate the normal graphene layers even when there is extreme mismatch in the normal
and superconducting doping levels, where specular Andreev reflection dominates. The local DOS exhibits peculiar
features, which we discuss, arising from the Dirac cone dispersion relation and from the interplay between the
superconducting and Thouless energy scales. The corresponding characteristic energies emerge in the form of
resonant peaks in the local DOS, which depend strongly on the doping level, as does the energy gap, which
declines sharply as the relative difference in doping between the S and N regions is reduced. We also linearize
the DBdG equations and develop an essentially analytical method that determines the critical temperature Tc of a
S|N|S nanostructure self-consistently. We find that for S regions that occupy a fraction of the coherence length, Tc

can undergo substantial variations as a function of the relative doping. At finite temperatures and by manipulating
the doping levels, the self-consistent pair amplitudes reveal dramatic transitions between a superconducting and
resistive normal state of the structure. Such behavior suggests the possibility of using the proposed system as a
carbon-based superconducting switch, turning superconductivity on or off by tuning the relative doping levels.
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I. INTRODUCTION

The successful development of methods to create large
samples of graphene,1,2 has been followed by recent efforts
to exploit its high electron mobility3,4 and the peculiar band
structure5 associated with its two dimensionality. A number
of graphene-based devices have been subsequently proposed,6

including field-effect transistors, quantum information storage
systems, optoelectronic devices, and nanoscale superconduct-
ing systems. In particular, the observation of superconductivity
in graphene,7–11 either through doping or by means of super-
conducting contacts, has fueled research activity involving
proximity effects in normal (N) and superconductor (S)
graphene regions that are in close electrical contact.12 Indeed,
the presence of superconducting correlations in graphene is
remarkable considering that undoped graphene in isolation
is inherently nonsuperconducting even at low temperatures.
Striking evidence of the peculiarities of superconductivity in
graphene was the observation of a Josephson supercurrent
induced by two superconducting electrodes in close contact
with the graphene.8 The tunneling conductance of a junc-
tion consisting of an insulating barrier between graphene
and a superconductor should exhibit oscillations13 as a
function of barrier strength, surprisingly peaking at finite
values. These unexpected effects arise in large part from
the hexagonal symmetry of graphene, which generates a
relativisticlike band structure5 near six points on the Fermi
surface: the so-called Dirac points. The low-energy dispersion
near these points is linear, and subsequently, the quasiparti-
cles are governed by a two-dimensional massless Dirac-like
equation.

Superconducting proximity effects in conventional het-
erostructures consisting of a normal metal and superconductor
have been known for a very long time.14 If the superconductor
is coupled to a graphene sheet, where “Dirac quasiparticles”
are confined to a two-dimensional plane, the leakage of
superconductivity into graphene should exhibit novel behavior.
Thus, studying superconducting proximity effects in graphene
requires a careful and accurate determination of the pair
correlations throughout the entire system. These are charac-
terized by the pair potential �(r), and the pair amplitude,
F (r). A proper delineation of the associated proximity effects
can only be achieved through a self-consistent calculation of
�(r), ensuring that the system’s lowest free-energy state is
found. The resultant self-consistent state generally possesses
nontrivial spatial inhomogeneity that can have important
consequences for quasiparticle bound states, interface bound
states,15 and potential supercurrent flow. It is not surprising
then that the frequently used step-function model for �(r),
while satisfactory for length scales much longer than the
superconducting coherence length, ξ0, can lead to erroneous
results for small graphene structures where quantum scale
oscillations play a role. For example, superconductor widths
that are on the same order as ξ0 give rise to self-consistent
pair potentials that can vary over a significant fraction of the
total sample width. Moreover, self-consistency is crucial at
finite temperatures, where the superconducting correlations
can have substantial decay near the interfaces.

The usual superconducting proximity effect is governed
by the mechanism of Andreev reflection. This is the pro-
cess where at the interface, an electron with energy below
the superconducting energy gap is retroreflected as a hole,
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transmitting a Cooper pair into the superconductor. In
graphene, the effectiveness of the Andreev process depends
in part on the relative doping in the S and N regions. For
electron doping the Fermi level is shifted upward, while for
hole doping, it is shifted downward relative to the Dirac point.
If the normal graphene layer is weakly doped, so that its Fermi
level, μN , is in absolute value much smaller than that in the S
region (|μN/μS | � 1), specular Andreev reflection becomes
important. In this process, the electron and hole belong
to different bands.16 Thus, despite large Fermi wave-vector
mismatch, superconducting correlations can penetrate into the
normal graphene region. If, on the other hand, μN/μS � 1,
both the conventional and specular Andreev reflection pro-
cesses are suppressed and normal scattering drives the
quasiparticle trajectories. The doping level clearly then has
important consequences for any thermodynamic and transport
properties involving superconducting graphene nanojunctions.

Besides doping effects, there are geometrical issues to con-
tend with in finite S|N nanojunctions: The electronic structure
of confined graphene can lead to a strong size dependence.17

Depending on the widths of the normal graphene and super-
conducting regions, there are various energy scales that can be
difficult to disentangle. If a S|N|S heterostructure has a thin
middle channel of width dN much smaller than ξ0 (the super-
conducting coherence length), the relevant low-energy scale is
the usual energy gap, �0. This holds then for superconducting
graphene,18 which behaves, in this case and in this respect, the
same way as conventional three-dimensional materials.19,20

Short structures also result in critical currents that can deviate
from the simple harmonic form.21 For wide middle layers,
with dN � ξ0, the Thouless energy, ET ≡ vf /dN , (vf is the
Fermi velocity) emerges as an important energy scale.22 The
Thouless energy in clean systems gives rise to geometry-
dependent quantum phenomena that arise from the cumulative
phase coherent effect of propagation and reflections from the
structure boundaries. This energy scale interacts then with the
�0 scale: For large normal graphene widths, ET can be smaller
than �0, and the energy spectrum possesses a Thouless gap for
quasiparticles with energies less than a characteristic energy of
order ET . When ET is of the same order as �0, identifying the
origin of spectral anomalies can be difficult. For long S|N|S
heterostructures, the resultant peaks in quasiparticle spectra
would be [assuming a non-self-consistent step function form
for �(r)] located at energies proportional to integer multiples
of ET .22 Self-consistency can modify this result, however, as
the pair potential deviates substantially from a simple step
function model. Moreover, when the doping amount changes,
this picture becomes complicated by changes in quasiparticle
bound states and density of states (DOS) due to the shifting of
the Fermi level.

In this paper we use a fully self-consistent framework to
calculate the energy spectrum and pair amplitude in S|N|S
graphene heterostructures. In addition to the self-consistent
pair amplitude, our accurate numerical diagonalization method
allows us to investigate two important quantities that can be
measured experimentally and further clarify proximity effects
in graphene. The first is the local DOS, which can be measured
directly with a scanning tunneling microscope. The vanishing
of the DOS at the Fermi energy in undoped graphene results in
varying subgap bound states and minigaps23 associated with

the interplay between ET and �0. To effectively characterize
the local electronic properties, we examine the DOS, in
both the S and the N regions. The energy spectra reveal
conditions for fully gapped and gapless states in graphene
S|N|S junctions. For a given doping level, the gap width and
magnitude are shown to diminish as dN increases. The greatest
variations are found to occur when ET < �0.

The second experimentally observable quantity of interest
is the critical temperature, Tc. We study how Tc varies as a
function of doping levels and of the geometrical parameters.
Our self-consistent calculations find a nontrivial variation
in Tc as a function of the relative doping levels, μN/μS .
The sensitivity of Tc on the Fermi shifts depends strongly
on the width of the outer S regions: Thin superconductors
with dS < ξ0 reveal the most drastic changes in Tc for small
increments in doping. We show that, for particular ranges of
dS , dN , and temperature, a S|N|S nanostructure can act as a
type of switch that transitions between a superconducting and
resistive normal state as the ratio μN/μS is varied, something
that might be done by using a modulated in-plane external
electric field.1,24

Despite the importance of self-consistency, the only pre-
vious self-consistent works addressing proximity effects in
S|N|S structures are Josephson junction studies based on
an attractive Hubbard model with the superconductivity
arising from both external contacts and doping25 or external
contacts alone.26,27 We use here instead the usual graphene
Hamiltonian in wave vector space. The two approaches each
have advantages and disadvantages that may be said to make
them complementary. Tight-binding methods of the Hubbard
type are a more powerful way to study transport phenomena
such as Josephson currents, as done in the above-cited papers,
while our framework provides a more convenient method
to study quasiparticle spectra with the needed resolution to
characterize the different energy scales. By doing this, we
are able to easily study large-scale systems as well as narrow
channels and larger coherence lengths. Also, our framework
provides a way to study quasiparticle spectra with the needed
resolution to sort out the various energy scales involved. For
these purposes the real-space tight-binding set of equations
are perhaps more computationally demanding than their wave
vector counterparts. Our method also permits a straightforward
analytical development of a linearized set of equations that
allow efficient investigation of the critical temperature. The
calculation of Tc has not yet been attempted by tight-binding
methods. Thus, there is hardly any overlap between our self-
consistent results and previous ones. The methods we use, then,
provide a suitable way to calculate the critical temperature and
are applicable for a wide range of geometrical and coherence
lengths. We implement our method by numerically solving the
microscopic Dirac Bogoliubov–de Gennes (DBdG) equations
self-consistently in the continuum regime. By this procedure
we can accurately represent the important geometrical effects
inherent to finite-sized junctions. The DBdG equations are
ideal for inhomogeneous S|N|S heterostructures since they
give directly the quasiparticle amplitudes and energies that
characterize proximity effects. They are also appropriate for
clean systems such as graphene which has high electron
mobility. To investigate the potential of our S|N|S system as
a superconducting graphene switch, we determine the critical
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temperature self-consistently. This is accomplished by taking
the full DBdG equations and linearizing them via standard
perturbative techniques. We then arrive at an essentially
analytical method that determines the critical temperature as a
function of geometrical parameters and doping levels.

This paper is organized as follows. In Sec. II, we intro-
duce the continuum DBdG equations and the self-consistent
theoretical methods we use to calculate the pair amplitude
and local DOS. We then present our linearization method for
calculating Tc. Section III contains our results and is divided
into four subsections. In Sec. III A we discuss the proximity
effect associated with the leakage of pairing correlations
into the normal region, as well as the pair amplitude decay
in the S regions, sometimes called the inverse proximity
effect. In Sec. III B, the relevant energy scales are revealed
in the local DOS. The energy gap in the quasiparticle spectra
and its relation to doping levels is presented in Sec. III C.
We discuss thermal effects in Sec. III D, where the critical
temperature for our S|N|S structures is shown as well as
the switching mechanism. Finally, Sec. IV contains some
concluding remarks.

II. METHOD

The geometry we study consists of a graphene sheet infinite
in one direction (that of the y axis) and composed of two doped
strips of superconducting material, each of width dS , separated
by a normal region of width dN (see Fig. 1). We consider
the pairing in the S regions to be conventional s-wave. The
methods we use to self-consistently diagonalize the mean-field
single-band Hamiltonian are extensions of those previously
employed28–31 to study proximity effects in ordinary three-
dimensional materials, but important changes have to be
made to take into account the reduced dimensionality and
the peculiar band structure of graphene. These changes are the
focus of the discussion below.

Our starting point in this case is the DBdG equations which
govern the quasiparticle spectrum of graphene. In the absence
of magnetic effects, the DBdG equations for the two valleys
K(+) and K ′(−) are16(

H± − μÎ �Î

�∗Î −(H± − μÎ )

) (
�±

u,n

�∓
v,n

)
= εn

(
�±

u,n

�∓
v,n

)
. (1)

FIG. 1. (Color online) Schematic of the S|N|S graphene nanos-
tructure studied. The sample is in the x-y plane. The widths of the
superconducting and normal segments are dS and dN , respectively.
The electrostatic potential in the normal region might be controlled
via a gate voltage.

We consider low-energy excitations so that lattice effects are
unimportant and the energy dispersion of the Dirac Hamilto-
nian, H±, is linear:4,5,12 H± = vf (σxpx ± σypy). Here the σi

are the 2 × 2 Pauli matrices acting in sublattice space, Î is
the identity matrix, and vf is the (energy independent) Fermi
velocity in graphene. The chemical potential μ vanishes in
the undoped case but not in the presence of doping. Here we
take μ(x) to be a piecewise constant: a fixed positive number
μS in the S region and a variable value μN in the N regions.
The electrostatic potential UN (and consequently μN ) in the N
region may be controlled via an external gate voltage, as shown
in Fig. 1. We consider the case of relatively large doping in
the S regions, so that we can assume smooth interfaces.16,26

We take these interfaces in the direction of constant x. We
have defined �+

u,n ≡ (un
A,K,un

B,K )T , �−
u,n ≡ (un

A,K ′ ,u
n
B,K ′ )T ,

�+
v,n ≡ (vn

A,K,vn
B,K )T , and �−

v,n ≡ (vn
A,K ′ ,v

n
B,K ′ )T . The A,B

labels denote the two sublattices that arise from the honeycomb
lattice structure.

The notation in the Hamiltonian implies that the Pauli
matrices act on the pseudospin of the quasiparticles, mapping
the usual spin into the projection of the wave function onto
sublattice A or B. Since the valleys are degenerate (K and
−K ′ are equivalent), we need only solve for either H+ or
H−. Assuming the first choice, we define the four component
vector �n ≡ (�+

u,n,�
−
v,n).

The pair potential � couples electrons in a given valley with
the hole excitations in the other valley. In terms of the wave
functions and energies obtained from Eq. (1), this coupling
leads to the self-consistency condition,

�(x) = g

2

∑
n

[
un

A,Kvn∗
A,K ′ + un

B,Kvn∗
B,K ′

]
tanh

( εn

2T

)
, (2)

where the superconducting coupling parameter, g, is a positive
constant in the intrinsically superconducting regions and zero
elsewhere. The sum is over all energy eigenstates within the
Brillouin zone whose energy, referred to μS , is smaller than
or equal to a characteristic energy cutoff, ωc. (The overall
spectrum is obtained over a range of energies several times
larger.) It is to be interpreted as

∑
n → 1/(2π )

∫
dky

∑
q ,

where ky is the transverse momentum and q a longitudinal
index. The singlet pairing only occurs from opposite valleys,
to maintain time-reversal symmetry.12,16

The experimentally important local DOS, N (x,ε), is
given by

N (x,ε) = −
∑
n,α,β

[∣∣un
α,β

∣∣2
f ′(ε − εn) + ∣∣vn

α,β

∣∣2
f ′(ε + εn)

]
,

(3)

where α equals A or B, β can be either K or K ′, and f ′ is
the derivative of the Fermi function. One can integrate N (x,ε)
over any suitable range of x to obtain the average DOS in a
certain region.

We now take advantage of the translational invariance along
y by writing �n(x,y) ≡ eikyy�n(x). Introducing the notation
�T

n (x) ≡ (sn(x),tn(x),wn(x),zn(x))T where the functions in
the parenthesis correspond to valley and sublattice indices in
the same order as for the previously defined �n, we can rewrite
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the DBdG equation Eq. (1) as⎛⎜⎜⎜⎜⎝
−μ π

†
+ � 0

π
†
− −μ 0 �

�∗ 0 μ π+
0 �∗ π− μ

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

sn

tn

wn

zn

⎞⎟⎟⎟⎠ = εn

⎛⎜⎜⎜⎝
sn

tn

wn

zn

⎞⎟⎟⎟⎠ , (4)

where we define π± ≡ ivf (∂x ± ky) (we use h̄ = 1 and kB = 1
throughout this paper).

Next we expand the quasiparticle wave functions via

�n(x) =
N∑

q=1

cn,qφq(x), (5)

where the cn,q ≡ (sn,q,tn,q ,wn,q,zn,q)T are the expansion co-
efficients and the φq(x) is a set of N basis functions, where
N must be sufficiently large.28,29 We take, consistent with
the boundary conditions, φq(x) ≡ √

2/d sin(kqx) in which
d = 2dS + dN , and kq = qπ/d is the quantized wave number.
These basis functions are not eigenstates of the normal
Hamiltonian. Therefore, there are π± off-diagonal terms.
These introduce some computational challenges that result in a
larger value of N being required than in the three-dimensional
cases. Considering then each row of Eq. (4), we perform
the following somewhat lengthy but elementary steps. First,
we insert the expansion Eq. (5) into Eq. (4). Next, we
multiply each term by φq ′ and integrate the variable x over the
range 0 � x � d, taking into account properly the stepwise x

dependence of μ. Finally, we choose μS as our unit of energy
(recall that we are dealing with a strongly doped system, so
this quantity does not vanish) and divide through by μS .

Taking the same steps for the rest of the matrix, we end up
with the following 4N × 4N matrix equation:

Man = ε̃nan, (6)

where

M =

⎛⎜⎜⎜⎜⎝
A B− ik̃yI D O

B+ ik̃yI A O D
D∗ O −A −(B− ik̃yI)

O D∗ −(B+ ik̃yI) −A

⎞⎟⎟⎟⎟⎠ ,

(7)

and the vector, an, contains the expansion coefficients,

an ≡ (sn,1, . . . ,sn,N ,tn,1, . . . ,tn,N ,
(8)

wn,1, . . . ,wn,N ,zn,1, . . . ,zn,N )T .

Here I andO are unit and zero matrices of rank N , respectively.
Consistent with our choice of energy units, we now define
tilded dimensionless energies μ̃N ≡ μN/μS and ε̃n ≡ εn/μS .
We choose also to measure our wave vectors in units of kFS

defined by the relation kFS ≡ μS/vf , thus, for example, k̃y ≡
ky/kFS and then we have for the remaining elements in Eq. (7):

Aq,q ′ = Kq+q ′ (dS) − Kq−q ′ (dS) − μ̃N [Kq−q ′ (dS + dN )

−Kq+q ′ (dS + dN ) − Kq−q ′ (dS) + Kq+q ′ (dS)]

+Kq−q ′ (dS + dN ) − Kq+q ′ (dS + dN ), q 
= q ′,
(9)

Aq,q = K2q(dS) − dS

d
− μ̃N

[
dN

d
+ K2q(dS)

−K2q (dS + dN )

]
− dS

d
− K2q(dS + dN ), (10)

Bq,q ′ = 2iq ′q
kFSd

(
−1 + (−1)q+q ′

q2 − q ′2

)
, q 
= q ′, (11)

and Bq,q = 0. Here Kn(x) ≡ sin(nπx/d)/(nπ ). Finally,

Dq,q ′ = 2

d

�0

μS

∫ d

0
dx sin(kqx)(�(x)/�0) sin(kq ′x), (12)

where �0 is the order parameter in bulk S material at T = 0.
The self-consistency relation Eq. (2) can now be written as

�(x)/�0 = 4λ

(
ξ0

d

)∫ kc

0
dk̃y

∑
n

∑
q,q ′

(sn,qw
∗
n,q ′ + tn,qz

∗
n,q ′ )

× sin(kqx) sin(kq ′x) tanh

(
εn

2T

)
, (13)

where32 ξ0 = vf /�0, kc is the k̃y cutoff corresponding to those
states specified below Eq. (2), and λ is the dimensionless
coupling constant which we define as λ ≡ gμS/2πv2

f . Since
the DOS for bulk S material in its normal state is N0(ε) =
2ε/(πv2

f ), we have λ = gN0(μs)/4π .
To perform our calculations, we must solve Eq. (6) together

with the self-consistency condition Eq. (13). When ω̃c ≡
ωc/μS satisfies ω̃c � 1, we find for the bulk case

λ−1 = arcsinh(ωc/�0), (14)

while if ω̃c � 1, then32

λ−1 =
√

�̃2
0 + ω̃2

c −
√

�̃2
0 + 1 + arcsinh(1/�̃0), (15)

where �̃0 ≡ �0/μS . To achieve self-consistence, we start with
an initial guess for �(x) and once all of the eigenfunctions
and eigenenergies have been determined, we calculate a new
�(x) from Eq. (13) and iterate this process until the relative
difference between successive �(x) is less than 10−4.

We also determine the critical temperature, Tc, semianalyt-
ically as a function of the geometrical and doping parameters.
To find Tc, the self-consistency equation can be linearized31

near the transition, leading to the form

�i =
∑

q

Jiq�q, (16)

where the �i are expansion coefficients of the pair potential
[Eqs. (2) and (13)] in our basis and the Jiq are the appropriate
matrix elements with respect to the same basis, as obtained
from the linearization procedure. These matrix elements can
be written as Jiq ≡ (J u

iq + J v
iq)/2, where

J u
iq = γ

∫
dk̃y

ND∑
n

[
tanh

(
ε̃u,0
n

2T

) N∑
m

FqnmFinm

ε̃
u,0
n − ε̃

v,0
m

]
, (17)

J v
iq = γ

∫
dk̃y

ND∑
n

[
tanh

(
ε̃v,0
n

2T

) N∑
m

FqmnFimn

ε̃
v,0
n − ε̃

u,0
m

]
. (18)

064509-4



CHARACTERISTIC ENERGIES, TRANSITION . . . PHYSICAL REVIEW B 84, 064509 (2011)

Here γ = λ/(2π2kFSd), with λ the dimensionless supercon-
ducting coupling constant introduced above. The eigenener-
gies, εu(v),0

n , are the unperturbed particle (hole) energies [found
by setting � = 0 in Eq. (4)], and ND denotes that the sum is
cut off at energies beyond the ωc frequency. We also have

Fqnm ≡ π
√

2d

N∑
p,r

Kqpr (snrw
∗
mp + tnrz

∗
mp), (19)

where the correlation factor, Kqpr , is written,

Kqpr ≡ (2/d)3/2
∫ d

0
dz�(z) sin(kqz) sin(kpz) sin(krz). (20)

Here we define �(z) to be unity in the superconducting
regions and vanish in the normal ones. The determination
of Tc involves calculating the eigenvalues of matrix Jiq for
each temperature value in the range of interest, and the highest
temperature for which the largest eigenvalue of the matrix Jiq

is unity33,34 corresponds to Tc. This linearization route is much
more efficient at calculating Tc than solving the full DBdG
equations near Tc, which can often be very difficult due to
the large number of iterations involved in the self-consistency
process.

III. RESULTS AND DISCUSSION

In this section, we present our self-consistent results for the
pair amplitude, local DOS, and critical temperature, for a broad
range of widths and relative doping levels. We consider the S
regions to be electron doped, corresponding to μS > 0, while

the normal graphene can be electron doped (μN > 0), hole
doped (μN < 0), or undoped (μN = 0). All lengths are scaled
in units of the Fermi wave vector kFS , and we define the relative
dimensionless coordinate X ≡ kFS(x − d/2), so that X = 0 is
at the center of the structure. When considering thermal effects,
all quantities involving the temperature, T , are scaled by T0, the
transition temperature for the bulk superconducting material.
Our input parameters are, besides the geometrical lengths,
which are given in dimensionless form as DS ≡ kFSdS and
DN ≡ kFSdN , the value of μ̃N and that of the dimensionless
coherence length �0 ≡ kFSξ0 = 100. From the latter, and
using a fixed value of ω̃c = 0.04 (for ωc < 1, results are only
weakly sensitive to ωc) we obtain λ via Eq. (14).

A. Proximity effects: The pair amplitude

We first consider our results for the self-consistent nor-
malized Cooper pair amplitudeF (x) ≡ (1/λ)�(x)/�0, which
reveals the superconducting correlations throughout the entire
S|N|S system. Some of our results for F (X) as a function
of dimensionless distance X are shown in Figs. 2 and 3. In
Fig. 2, F (X) is shown, in each panel, for a different value of
DN , all at the same DS = 150. Several (all positive) values of
the relative doping parameter μ̃N , corresponding to electron
doping, are shown in this figure: The undoped N case is
also shown for comparison. We see that the proximity effect
depends strongly on the relative doping μ̃N via the mismatch
it reflects (when this quantity is unity, there is no mismatch).
Moderate doping in the N region exemplifies the proximity
effect where appreciable pairing correlations exist in the
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FIG. 2. (Color online) Normalized pair amplitude vs X (see text) at T = 0 for an S|N|S heterostructure. The S portions have a dimensionless
width (see text) of DS = 150 each. For clarity, the outermost parts of the sample are not shown. Each panel corresponds to a different normalized
normal graphene width of (a) DN = 20, (b) DN = 50, (c) DN = 100, and (d) DN = 300. For each case, four curves representing different
doping levels are shown. From top to bottom in the central N region (green, blue, black, red), these curves correspond to μ̃N = 0.5,0.2,0,
and 10.
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FIG. 3. (Color online) Normalized pair amplitude versus X, as in Fig. 2. The dimensionless geometrical quantities DN and DS are now
DN = 300 and DS = 300, so that the S|N boundaries are at |X| = 150. The top set of panels depicts most of the S|N|S structure and the bottom
set of panels shows a magnified part of the N region near the interface for the panel above it. Panels (a) and (c) are for electron-doped N with
curves shown, from top to bottom at X = 0, for μ̃N = 0.5, 0.2, and 0.1 (red, green, and blue), while panels (b) and (d) are for hole-doped
N with μ̃N = −0.1, − 0.2, and −0.5 with a similar scheme. In both cases results for μ̃N = 0, (black) lowest curve at X = 0, are shown for
reference.

normal graphene, even when DN > �0 (right bottom panel),
as one can see, for example, in the μ̃N = 0.5 [(green) highest
curves at X = 0] results shown. Correspondingly, depletion
of F (X) in the S regions extends in this case to distances
longer than the correlation length (strong inverse proximity
effect). On the other hand, when the mismatch in the Fermi
shifts is extreme as in the μ̃N = 0 (black solid curve, third
from top at X = 0) and μ̃N = 10 (red dashed curves) cases
shown, we see that the proximity effect is much weaker. The
blue solid curves, second highest at X = 0, corresponding to
μ̃N = 0.2, show intermediate behavior. Further examination
of the results in this figure for large mismatch (μ̃N = 0)
reveals that the presence of evanescent modes in this case can
allow more readily for the penetration of correlations in the
normal graphene than large mismatch in the opposite direction:
Comparing the μ̃N = 0 to the μ̃N = 10 results, the self-
consistent state in the later case shows less superconducting
correlations in the normal graphene than in the former case
and a correspondingly smaller depletion in the S layers. We
also examined the case of small mismatch (μN/�0 = 0.5
equivalent to μ̃N = 0.005), where specular Andreev reflection
can arise, and found no discernible differences in the pair
amplitude compared with the μ̃N = 0 case above (not shown).
The sequence of panels, moreover, illustrates that increasing
the N graphene widths always results (at the same value of
μ̃N ) in greater superconductivity depletion in the S regions
near the interfaces due to leakage into the N layer. The
smaller the Fermi level mismatch, the greater this effect. For
more confining N regions (smaller DN ), the pair correlations

decay in the normal layer over a smaller width and thus
the two superconductor portions of the sample are more
strongly coupled. Some of the results in Fig. 2 bear qualitative
resemblances to Fig. 3 of Ref. 25, where a tight-binding model
was used. However, we find that the proximity effects and
associated superconductor coupling appear more pronounced
in the regime considered here. In particular even for μ̃N = 0,
the smaller N widths allow significant Cooper pair penetration,
possibly related to the nonvanishing supercurrent flow reported
in short Josephson junctions at the Dirac point.18

To better illustrate the proximity effect, the slow decay of
the amplitude F (X) in the normal graphene region, we display
in Fig. 3, results for this normalized quantity obtained for a
much larger system with DN,DS > ξ0. We show there also
results for a broader range of doping levels in N. The top
set of panels shows a global view of the correlations in the
S|N|S structure, similar to that shown in Fig. 2, while in the
bottom set of panels are closeups of the normal graphene region
near the interface. The electron-doped (left panels) cases are
nearly identical to the hole-doped (right panels) ones, except at
smaller mismatch. The bottom panels allow for a more detailed
examination of the behavior near the interface. We note that,
if the mismatch is not large, penetration of the Cooper pairs
over a distance clearly much larger than the correlation length
occurs and that depletion in the S regions occurs also in the
same scale. On the other hand, one can see in both this and
the previous figure that the transition between the depleted S
region and the weakly proximity-influenced N region is very
abrupt: There are, in effect, two length scales, one related
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to the depletion and penetration, which can be rather longer
than ξ0, and another, very short scale, over which the small
values of F (X) in N transition sharply to the depleted, but
much larger, values in S. This is in contrast to what occurs
in the standard proximity effect in ordinary three-dimensional
bilayer materials, which is characterized by a single length
scale.35

B. Local density of states

Before discussing the local DOS for S|N|S structures, it
is illuminating to first investigate the DOS and characteristic
energies for pure graphene nanolayers, which we do by setting
Ds = 0. In the absence of other materials, and hence also
of proximity effects, the DOS in this case is essentially
independent of position, and thus it is appropriate to spatially
average Eq. (3) over the entire sample, which (after using
the normalization condition for the quasiparticle amplitudes)
yields a simplified normalized DOS,

N (ε)

N0(μS)
= vf

2T d

∑
n

∫ kc

0
dk̃y

[
cosh−2

(ε − εn

2T

)
+ cosh−2

(
ε + εn

2T

)]
, (21)

where T is the temperature and N0(ε) is introduced below
Eq. (13). In this case, with only normal material present,
it must be understood that N0(μs) is just an arbitrary, but
convenient, normalization. Note that after setting DS = 0 and
hence � ≡ 0, no iteration for self-consistency is needed and
only the eigenvalue spectra needs to be determined when

performing the diagonalization of the matrix in Eq. (4).
To achieve the required energy resolution for the results
to follow, integrals over ky are numerically evaluated by
transforming them into a sum over 5000 transverse modes.
Also, in order to better discern the relevant DOS features,
we consider the low-temperature limit (see below). For finite-
width graphene sheets, the coherent superposition of standing
waves determines the Thouless energy scale,22

ET = vf

dN

. (22)

The Thouless energy scale reveals itself in the form of peaks
in the quasiparticle spectra that, in this simple geometry
repeat at odd integer multiples of Ec = πET . We have then
Ec/μS = π/DN . The μS and kFS act here as convenient
arbitrary normalizations. These peaks are superimposed on the
straight lines that would represent the DOS in the DN → ∞
limit. If one normalizes, as we do, the energies in terms
of μS , and the DOS as explained above, then the slope of
these straight lines would be ±1. Our results are shown in
Fig. 4. The top panels [(a) and (c)] show the DOS [calculated
from and normalized as in Eq. (21)] over a broad energy
range. Panel (a) is for undoped graphene (μ̃N = 0) and panel
(c) corresponds to a relative doping of μ̃N = 0.2. For these
two cases, there are four curves shown that correspond to
four different graphene widths (see caption). The Thouless
peaks are at their predicted positions. Their magnitude tends
to decrease as the width increases, with the results for
largest width, DN = 600, approaching the signature linear
dispersion for bulk graphene. With the introduction of doping
[panel (c)] the results are shifted, in normalized energy units,
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FIG. 4. (Color online) Local DOS for a normal, finite width, graphene layer that has (a) zero doping (μ̃N = 0), and (c) moderate doping
(μ̃N = 0.2). The normalizations of DOS and energies are chosen (see text) so that for an infinite width layer the plots would be straight lines of
slope ±1. Four different widths are illustrated, in order of decreasing height of the main peaks: DN = 20 (black), DN = 100 (blue), DN = 300
(red), and DN = 600 (cyan). Each bottom panel is a magnification of the results above it, over a narrower energy range. The main peaks are
related to the Thouless scale; see Eq. (22) and discussion below it.
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by −μ̃N from the Dirac point, resulting in the shifting of the
gap away from zero energy for all widths shown. To more
clearly discern the Thouless peaks, the bottom panels, which
correspond to the same parameter values as the top ones,
illustrate the DOS over a smaller energy range. In Figs. 4(b)
and 4(d), the Thouless peaks in the DOS are clearly seen to
occur at energies that coincide with the expression discussed
below Eq. (22): For DN = 300, the first peaks arise at energies
corresponding to |Ec/μS | = π/300 ≈ 0.01, while for DN =
600, we have, |Ec/μS | = π/600 ≈ 0.005. In Fig. 4(b), the
curves representing the smaller widths, and correspondingly
larger ET , are absent since [as panel (a) shows] they emerge
beyond the given energy window. These results illustrate also
the precision and reliability of our methods.

We now return to the S|N|S system and investigate the roles
that both the Thouless and the superconducting energy scales
play by considering the local DOS of a S|N|S nanostructure in
both the S and the N regions. After inserting the quasiparticle
expansions found in Eq. (5), the general expression for the
DOS in Eq. (3) can be rewritten as

N (x,ε)

N0(μs)
= μS

T kFSd

∫ kc

0
dk̃y

[(∣∣∣∣∣∑
n,q

sn,q sin(kqx)

∣∣∣∣∣
2

+
∣∣∣∣∣∑

n,q

tn,q sin(kqx)

∣∣∣∣∣
2)

cosh−2

(
ε − εn

2T

)

+
(∣∣∣∣∣∑

n,q

wn,q sin(kqx)

∣∣∣∣∣
2

+
∣∣∣∣∣∑

n,q

zn,q sin(kqx)

∣∣∣∣∣
2)

× cosh−2

(
ε + εn

2T

)]
. (23)

In calculating the DOS for the S|N|S cases, we take the
eigenvectors and eigenenergies, self-consistently calculated as
explained above, and insert them into Eq. (23). When ω̃c < 1,
the case considered here, the relationship between the bulk
transition temperature T0 and �0 is found using Eq. (14),
together with36

λ−1 =
∫ ωc

0

dξ

ξ
tanh[ξ/(2T0)], (24)

which results in the weak coupling limit in the BCS relation32

�0 = (π/γE)T0, with γE being the Euler constant. We take
the low-temperature limit T/T0 ≈ 0.016. This is the same
temperature as in the previous plots. The energy-resolved DOS
is then determined at two locations: one at the middle of one
of the superconducting regions and the other at the center
of the sample (normal region). In these plots, we normalize
the energy (measured, as usual, from the chemical potential)
by �0, and the plotted DOS (as before) by N0(μS). Thus, if
our plots were performed for an infinite normal sample, they
would, of course, still be straight lines but the slope would
now be ±�0/μS , which is the same as 1/�0 via the relations
mentioned in Sec. II.

There are now two energy scales to consider. One is,
as ordinarily in all superconductors, the bulk gap �0. In
addition, because our system is two dimensional, has a linear,
massless dispersion relation and is finite in the x direction,

the DOS is also, as we have seen, drastically affected by
the Thouless energy.37 The quasiparticles in the previously
discussed graphene nanostrip were confined solely by the two
outer boundaries. Now due to the intrinsically superconducting
regions, there is also possible partial confinement by the
self-consistent pair potential �(x), which, due to Andreev
scattering events (normal or specular), leads to a modification
of the relevant energy scales associated with the peaks in the
quasiparticle spectra. Thus, the two scales interact. For large N
graphene widths (dN � ξ0), the normalized energy spectrum
has the gap set primarily (not exclusively) by the Thouless
characteristic energy, and a peak structure22 at multiples
of ET . In the S|N|S geometry the relevant scale is now38

Ec = (π/2)ET . It follows then that Ec/�0 = (π�0)/(2DN ).
The interplay between this ratio and that of �0 to μS can for a
given energy range result in many additional resonance peaks.
In the non-self-consistent treatment, and for energies larger
than �0, these peaks occur at integer multiples of ET ,22 and
the energy gap is governed by ET (for dN � ξ0). The energy
spectrum is more complicated in the subgap regime (ε < �0),
where additional peaks can arise depending on the relative
energy scales: for energies less than �0, Andreev scattering at
the S|N interfaces that is specular (μN < �0) or retroreflective
(μN > �0) can strongly affect the local DOS in the N region40

(for μN nonzero). As is seen below, however, self-consistently
accounting for proximity effects in our finite-sized system will
in some cases modify this picture. Hence, as a consequence of
the existence of the Thouless scale, the behavior of the local
DOS in a S|N|S heterostructure is strongly dependent on the
size of each region. If, however, the normal graphene channel
is much narrower than ξ0, the lowest energy scale is �0.

To illustrate these issues, results for DS = 150 = 1.5�0

and various values of DN are exhibited in Fig. 5. The results
in this figure correspond to very low doping in the N region,
and include cases where dN < ξ0 and cases where it is larger,
thus demonstrating the relative relevance of both the �0 and
ET energy scales in different situations. Thus, consider first the
local DOS in the N region that is undoped (μ̃N = 0) and shown
in the middle panels (c) and (d). In panel (d) we have dN = 3ξ0

(red solid curve) and dN = 6ξ0 (green dashed curve) so that the
influence of the S portions of the sample is, while as we have
seen not negligible, weak. One clearly sees that the results can
still be described by a straight line of slope 1/�0 = 0.01 on
which there are superimposed peaks and oscillations related
to both the �0 and the ET scales. For the parameter values in
this panel we have (see discussion above) that when ε/Ec = 1
then the normalized energy ε/�0 is about 1/2 for dN = 3ξ0

and half that for the other case shown. One sees indeed this
behavior in this panel (d). On the other hand, in panel (c), where
results for smaller values of DN/�0 are shown, the influence
of the Thouless scale is very weak for dN = ξ0 (blue dashed
curve) when the two energy scales roughly coincide and nearly
nonexistent when dN < ξ0 (black solid curve). Panels (e) and
(f) display the local DOS in the N region for a nonzero but small
μN (μN < �0), corresponding to μN/�0 = 0.5, and with all
other system parameters the same as used for (c) and (d),
respectively. In this regime, specular Andreev reflection arises
and has been found to also play a major role in the transport
characteristics of graphene based junctions.16 This accounts

064509-8



CHARACTERISTIC ENERGIES, TRANSITION . . . PHYSICAL REVIEW B 84, 064509 (2011)

3 2 1 0 1 2 3
0

1

2

3

4

0

L
oc

al
D

O
S a

3 2 1 0 1 2 3
0

1

2

3

4

0

L
oc

al
D

O
S b

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

0

L
oc

al
D

O
S c

3 2 1 0 1 2 3
0.00

0.02

0.04

0.06

0.08

0.10

0
L

oc
al

D
O

S

d

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

0

L
oc

al
D

O
S e

3 2 1 0 1 2 3
0.00

0.02

0.04

0.06

0.08

0.10

0

L
oc

al
D

O
S

f

FIG. 5. (Color online) Local DOS (normalized as explained in the text) for S|N|S systems with both vanishing and very low doping in the
N layers. Panels (a)–(d) correspond to μ̃N = 0, while panels (e) and (f) correspond to μ̃N = 0.005 (or equivalently μN/�0 = 0.5). Results
are shown for the S region [panels (a) and (b)] and in the N region [(c)–(f)]. In (a), (c), and (e) we have DN = �0/5 (solid black curves) and
DN = �0 (blue dashed curves), while in (b), (d), and (f), the N layers are larger: DN = 3�0 (solid red curves) and DN = 6�0 (dashed green
curves).

for the striking difference between the results in these panels
and those in panels (c) and (d).

The results in Fig. 5 for the local DOS in the S region
are very different. These are shown in panels (a) and (b) for
the same values of DN and the same plotting conventions
as for panels (c) and (d), respectively. We show only the
cases corresponding to an undoped N region (μ̃N = 0), as
the differences with the undoped and the slightly doped case
(μ̃N = 0.005) are now insignificant. We now see a very clear
energy gap close to the bulk value. The influence of the
Thouless energy is reduced now to some weak additional peaks
at higher energy. We can see that at the energy scales shown
the effect of the bulk normal state linear DOS is not visible,
although of course this is an artifact arising from the energy
range plotted and the increasing behavior reappears eventually
at larger values of ε � �0. Even though μ̃N = 0, particle-hole
symmetry breaks down in the N region.

The local DOS can be strongly or weakly dependent on the
doping level, depending on the location within the structure.
To show this we display in Fig. 6 results for the DOS at

μ̃N = 0.2. In this case, the DOS for bulk (DN → ∞) normal
graphene (zero Thouless energy and zero pair potential) is
still (see Fig. 4) a straight line but with the origin shifted.
For our parameter values, and indeed for any reasonable
parameter values in our context, this origin is shifted out of
the horizontal scale in the energy ranges of order �0 shown
in this figure. The four panels in the figure are arranged
exactly as the top four in Fig. 5 and correspond [both the
panel arrangement and the (color or) structure of the curves]
to exactly the same cases. One can see that when the doping
amount changes, this DOS becomes more complicated because
of changes in the quasiparticle bound states shifting with the
Fermi level. Thus, the results for large DN in the N region
[panel (d)] show now only a faint trace of any gap, either
superconducting or Thouless: The DOS is nearly linear at small
energies, possessing a V shape at the Dirac point. This subgap
structure may be related to the traditional Andreev bound
states39 that arise also in conventional, three-dimensional
materials. They were recently studied (for μN � �0) in the
context of non-self-consistent graphene-based billiards.40 The
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FIG. 6. (Color online) Local DOS (plotted and normalized as in Fig. 5) for an S|N|S system with moderately doped S layers (μ̃N = 0.2).
The panel arrangement, curve (color and) structure, and all other parameters are the same as that in Fig. 5. See text for discussion and
comparison

suppression of the DOS in the N region may also be linked
to billiard systems with integrable classical dynamics.41 In
panel (c), when the dN is comparable to the correlation length,
the “V” behavior still persists (dashed blue curve), but it is
completely gone, and replaced by a gap, when the thickness
is below ξ0 (solid black curve). The panels (a) and (b),
corresponding to the S region, are less strikingly different from
the corresponding ones in Fig. 5. This relatively weak doping
dependence in the local DOS in S agrees qualitatively with
tight-binding results for an S|N junction;25 however, in our
structure we find an intriguing additional structure in the gap
region.

C. Energy gap

In view of the strong effect, as evidenced in the comparison
of Figs. 5 and 6, of μ̃N on the gap structure in the DOS it
is interesting to further examine in a more direct way the
induced gap in the quasiparticle spectrum. This we do by
extracting from our numerical results the eigenvalue from the
self-consistent spectra obtained from Eq. (6) for which εn as
measured from the chemical potential is minimum. We call
this quantity the excitation gap and denote it by Egap, which
is generally determined by longitudinally directed (along x)
trajectories corresponding to small ky . The results are shown
in Fig. 7, where we show the evolution of Egap normalized
by �0 (so that the quantity plotted is non-negative and less
than unity) as a function of μ̃N . Results for four different
values of DN are shown, encompassing values both above and
below �0: DN = 20 = 0.2�0 (circles), DN = 50, (squares),
DN = 100 (diamonds), and DN = 300 (triangles). In all cases
DS = 150. The range of μ̃N and values of DN that result in

a gap are, of course, consistent with the DOS results above.
The results shown illustrate that structures including narrower
normal graphene layers possess energy gaps that are much
more robust to changes in N layer doping. The contraction of
the gap with increasing DN is qualitatively similar to what is
observed in conventional three-dimensional systems,42 but, as
mentioned above, the structure of the gap amplitude and of the
DOS is very different.

D. Critical temperature and switching effects

Up to this point, we have considered the low-temperature
limit. It is of interest both experimentally and theoretically
to now turn our attention to the calculation of the critical
temperature Tc of the S|N|S structures and its dependence
on doping levels and geometrical parameters. This quantity
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FIG. 7. (Color online) The excitation gap, Egap as defined in
the text, as a function of the relative doping parameter, μ̃N . Four
different normal graphene widths are considered: DN = 20, 50, 100,
and 300 (red circles, blue squares, green diamonds, and cyan triangles
respectively). Lines are straight segments joining points.
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FIG. 8. (Color online) The critical temperature Tc (normalized
by T0) for a S|N|S system as a function of (a) μ̃N , and (b) the S
width, DS . In (a) the doping dependence is shown for two values of
DS = 50 (red circles) and 100 (blue squares). In (b), results are shown
as a function of DS for three doping levels: μ̃N = 0 (red circles),
0.2 (blue squares), and 0.4 (green diamonds). The doping level in
these cases has a dramatic effect on Tc for small DS , but is less
detrimental for larger DS , where the curves tend to coalesce in the
limit of bulk S widths. In both (a) and (b), the normal graphene layer
has DN = 100.

is calculated using the efficient eigenvalue method described
by Eq. (16) and the discussion below it. Results are presented
in terms of the ratio Tc/T0 and displayed in Fig. 8. In the
left panel, results are given as a function of relative doping
level μ̃N for two values of DS : DS = �0 = 100 (blue squares)
and DS = �0/2 (red circles). We keep DN = �0 constant
in this figure. We see than increasing |μ̃N | to moderate
values, that is, decreasing the Fermi level mismatch, leads
to [Fig. 8(a)] a reduction in Tc via the corresponding increase
in the interlayer coupling. This effect is more pronounced
for thin S layers, where Tc can vary with μ̃N in a nontrivial
fashion. It is remarkable, however, that Tc remains rather high
even when DS is smaller than the correlation length. This is
in stark contrast to ordinary three-dimensional S|N|S systems,
where42 Tc drops much more rapidly for small thicknesses
satisfying dS � ξ0. There is also a clear asymmetry in the
critical temperature as a function of doping, where for a given
magnitude |μ̃N |, electron doping more strongly reduces Tc. In
the right panel [Fig. 8(b)] we illustrate that varying the width of
the superconductors has a considerably greater impact on Tc for
moderate values of μ̃N than when the mismatch is large. In the
latter case the DS dependence remains weak as long as DS is
still comparable to �0, however [and consistent with panel (a)]
the superconducting regions that have widths a fraction of the
coherence length reveal the richest behavior. Continuing to
reduce DS beyond some critical value, of course, results in the
graphene system eventually becoming nonsuperconducting, as
Cooper pair formation is inhibited.

Results such as those shown in Fig. 8(a) imply that at a fixed
temperature, variations in the doping parameter, μ̃N , can lead
to a S|N|S system transitioning from a superconducting state
to normal one and vice versa. Since graphene doping can be
effectively tuned via application of an external electric field,1,24

this may offer possibilities as a carbon-based S|N|S switch
for supercurrent flow. This question is, therefore, worthy of
further discussion. We thus expand on this point by showing
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FIG. 9. (Color online) The normalized pair amplitude as a
function of position. In (a), the temperature is set at T = 0.87T0, and
the normal and superconductor widths are DN = 100 and DS = 50,
respectively. In (b), we have T = 0.92T0, while DN = 100 and
DS = 100. In both cases, the doping parameter, μ̃N , is varied from
0 to 0.4 in increments of 0.1. The arrow depicts the direction of
increasing μ̃N , which eventually leads to the vanishing of the pairing
correlations.

in Fig. 9 the normalized pair amplitude F (X) plotted as a
function of X for several positive values of μ̃N . Each panel is
at a different fixed temperature and the geometrical parameters,
DS = �0/2 and DS = �0 are chosen to correlate respectively
with the (red) circled and (blue) squared data of Fig. 8(a).
The two representative temperatures that we investigate are
T = 0.87T0 [panel (a)] and T = 0.92T0 [panel (b)]. The
graphene region that is intrinsically nonsuperconducting has
a width in both cases corresponding to DN = �0. One
can see in Fig. 8(a) that for the smaller DS = �0/2, the
temperature T = 0.87T0 corresponds to Tc near μ̃N ≈ 0.35,
and for DS = �0, the temperature T = 0.92T0 results in Tc

near μ̃N ≈ 0.4. The regions for which positive μ̃N is smaller
being superconducting (the corresponding negative μ̃N differ
slightly due to the electron-hole doping asymmetry). This is
more clearly seen in Fig. 9, where as μ̃N is increased, the pair
amplitude is seen to decrease before plummeting abruptly to
zero as μ̃N reaches its critical value: near μ̃N → 0.35 in panel
(a) or near μ̃N → 0.4 for panel (b). Thus, if this transition
can be manipulated via electric fields, abrupt switching will
result.

IV. CONCLUSIONS

We have studied in this paper the proximity effects that
occur in clean, doped, and undoped, graphene-based S|N|S
heterostructures. We have created and implemented a fully
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self-consistent procedure to calculate the electron and hole
wave functions and energy spectrum of the system, from which
we have extracted the pair amplitude and the local DOS. We
also developed a semianalytical and computationally efficient
linearized method that can calculate the transition temperature,
Tc, of the system.

We have found that the behavior of the pair amplitude
near the interfaces (the directly observed proximity effect)
depends strongly on the relative doping levels of the S and
the N portions, and that the pair amplitude is described by
two different length scales. One length scale is related to
penetration of the superconducting correlations and is long
ranged (relative to ξ0) and the other scale is short ranged
and correlates to Cooper pair leakage from the S regions
near the interfaces. We illustrated that if the normal graphene
layer is weakly doped, specular Andreev reflection can lead
to superconducting correlations penetrating into the normal
graphene region. The local DOS exhibits a number of striking
features, arising from the interplay between the superconduct-
ing and the Thouless energy scales. This interplay depends,
of course, on geometry, where the two energy scales overlap
when the graphene layer widths are on the same order as ξ0.
For our larger structures (with widths exceeding ξ0), undoped
normal regions revealed resonant peaks and energy gaps at
characteristic energies proportional to the Thouless energy
scale ET . By moderately doping the N region, there was
an emergence of Andreev bound states in the N regions
and a destruction of the energy gap. For N widths smaller
than ξ0, the S|N|S structures revealed energy gaps that are
linked mainly to the �0 scale, and are more robust to
doping.

We also developed a general microscopic method for
calculating Tc for S|N|S nanostructures, by linearizing the
DBdG equations and the self-consistency condition. We found
that for small S layer widths, decreasing the Fermi level
mismatch leads to a nontrivial reduction in Tc. The critical
temperature also exhibited a clear asymmetry as a function of
doping, and typically electron doping had a greater impact on
reducing Tc. Thus, if doping is to be modified by an electric
field,1,24 the polarity43 of the field can have an important effect
on the critical temperature. The study of Tc revealed reentrant
behavior as a function of doping. These behaviors may lead
to switching phenomena as a function of applied electric
field, and thus, depending on the bias, superconductivity
can be turned on or off. The effectiveness of graphene as a
low-temperature-field effect device therefore depends in large
part by the proximity effects, which can only be accounted
for within a self-consistent framework. This work represents
the first step, a proof of principle, as to the use of our
self-consistent methods in graphene. Other issues, such as
those related to ferromagnetically doped graphene in contact
with a superconductor region,44 can also be examined using
the same techniques. We expect that many aspects of the
ever-intriguing behavior of graphene-based heterostructures
will be illuminated via application of these methods.
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