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exchange in the columnar phase and its application to iron pnictides
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Recent neutron scattering studies revealed the three-dimensional character of the magnetism in the iron
pnictides and a strong anisotropy between the exchange perpendicular and parallel to the spin stripes. We extend
studies of the J1-J2-Jc Heisenberg model with S = 1 using self-consistent spin-wave theory. A discussion of two
scenarios for the instability of the columnar phase is provided. The relevance of a biquadratic exchange term
between in-plane nearest neighbors is discussed. We introduce mean-field decouplings for biquadratic terms using
the Dyson-Maleev and the Schwinger boson representation. Remarkably their respective mean-field theories do
not lead to the same results, even at zero temperature. They are gauged in the Néel phase in comparison to exact
diagonalization and series expansion. The J1-J2-Jc model is analyzed under the influence of the biquadratic
exchange Jbq and a detailed description of the staggered magnetization and of the magnetic excitations is given.
The biquadratic exchange increases the renormalization of the in-plane exchange constants which enhances the
anisotropy between the exchange parallel and perpendicular to the spin stripes. Applying the model to iron
pnictides, it is possible to reproduce the spin-wave dispersion for CaFe2As2 in the direction perpendicular to the
spin stripes and perpendicular to the planes. Discrepancies remain in the direction parallel to the spin stripes
which can be resolved by passing from S = 1 to S = 3/2 or S = 2. In addition, results for the dynamical structure
factor within the self-consistent spin-wave theory are provided.
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I. INTRODUCTION

A. General context

Frustrated quantum antiferromagnetism has been a very
active field of research over the last 15 years which influences
many related fields as well.1 The frustration enhances the
importance of quantum effects because classical order is
suppressed. Hence new and unexpected phases may occur and
govern the physics at low energies. Among the models studied
intensely is the J1-J2 model on a square lattice2–10 and its
generalization to three dimensions by stacking planes.11–15

Theoretically, two key issues are (i) for which parameters
classically ordered phases occur and (ii) whether there exists
a quantum disordered phase between the classically ordered
phases. The two long-range ordering patterns are either
the alternating order with staggered, Néel type sublattice
magnetization or a columnar antiferromagnetic ordering where
the adjacent spins in one spatial direction (direction a in
one plane of Fig. 1) are aligned antiparallel while they are
aligned parallel in the other spatial direction (direction b in
Fig. 1).

The J1-J2 Heisenberg model

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj (1)

for S = 1/2 and its ground states are of broad interest in
solid-state physics. The ground state of the simple Heisen-
berg model with J2 = 0 on the square lattice is the Néel
order with staggered magnetization reduced by quantum
fluctuations.16–18 For J2 �= 0, the ground state depends on the
ratio J2/J1 of the couplings. On increasing J2/J1 a value is
hit where the Néel phase becomes unstable toward a quantum
disordered state. The intermediate phase is stable in the range

of 0.4 � J2/J1 � 0.6 and is dominated by short-range singlet
(dimer) formation.4,6 For J2/J1 > 0.6, the spins arrange in a
columnar pattern. In the classical limit S → ∞, the transition
between the Néel and columnar order occurs at J2/J1 = 0.5;
see Ref. 19.

Singh et al.7 studied the excitation spectra of the columnar
phase with series expansion and self-consistent spin-wave
theory. They calculated the spin-wave velocities which depend
strongly on the coupling ratio J2/J1. Gapless excitations are
only found at k = (0,0) and k = (1,0), while the modes at k =
(0,1) and k = (1,1) are gapped because of the order by disorder
effect. We stress that the columnar phase is very well described
by self-consistent spin-wave theory7,9 even in two dimensions
and for S = 1/2. The stability of the Néel phase, however, is
overestimated by self-consistent spin-wave theory2,3 so that
the intermediate disordered phase is missed. This intermediate
phase is seen by a direct second-order perturbative approach10

in 1/S but only for spatially anisotropic models with J1a �= J1b

where J1x is the nearest-neighbor exchange in the x direction
with x ∈ {a,b}. The intermediate phase is not the issue of the
present paper and we point out that it is to be expected that it
is hardly relevant in three dimensions and for S � 1.8,11,13

Note that we here and henceforth give all wave vectors in
units of π/a where a is the corresponding lattice constant. This
model was applied to the magnetic excitations of undoped iron
pnictides.9,12–14,20–23

It was advocated by Chandra et al.24 that stripe order can
occur at finite temperatures in isotropic frustrated Heisenberg
models because the stripe order breaks a discrete symmetry,
namely rotation of the lattice by 90◦, which is not protected
by the Mermin-Wagner theorem.25 Indeed the transition is
of Ising type. This result was corroborated by classical26 and
semiclassical27 numerics. Its significance for the structural and

064505-11098-0121/2011/84(6)/064505(16) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.064505
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FIG. 1. (Color online) Three-dimensional collinear phase with
antiferromagnetic interlayer exchange Jc and biquadratic exchange
Jbq between in-plane nearest-neighbor sites.

the magnetic phase transitions in the pnictides was noted in
Refs. 28 and 9.

For completeness, we also mention the additional instability
for ferromagnetic couplings at J1 ≈ −2J2, where the system
undergoes a phase transition from the collinear ordered state
to a ferromagnetic state.29

Since the discovery of superconductivity upon doping of
the iron-based compound LaOFeAs,30 the J1-J2 Heisenberg
model has been used to study the magnetism in the parent
compounds of the iron pnictides9,12,15,20,21 although it does not
take the remaining itineracy of the charges into account. The
magnetic long-range order is indeed a columnar phase where
the spins at the iron sites show antiferromagnetic order in the a

direction and a ferromagnetic order in the b direction (see
Fig. 1). Between the layers (c direction), the spins are also
aligned antiparallel.31–33 The columnar order of the spins is
also supported by the results of band structure calculations.34,35

A related question still under debate is the reduced size of
the local magnetic moment. Neutron scattering studies find
a reduced staggered magnetic moment of (0.31–0.41)μB for
LaOFeAs,31 (0.8–0.9)μB for the 122 pnictide BaFe2As2,36

(0.90–0.98)μB for SrFe2As2,37 and 0.8μB for CaFe2As2.33,38

In contrast, theoretical band structure calculations determined
much higher values, e.g., up to 2.3μB for LaOFeAs.35

One conceivable explanation is that the reduction of the
local moment is due to a strong frustration within a localized
model.9,12,15,20,39,40 This requires the system to be in the
immediate vicinity of a quantum phase transition. But it must
be kept in mind that the local magnetic moment depends on
matrix elements which are well known only in the limit of
localized electrons. Thus, it is possible that the significant
reduction of the staggered magnetization is due to electronic
effects such as hybridization, spin-orbit coupling, and the
itineracy of the charges.41–44 The bottom line of this argument
is that the value of the staggered magnetization is not a
stringent constraint for the applicable model for iron pnictides.

B. Spatial anisotropy of exchange couplings

Recently, it was shown that a frustrated Heisenberg model
in the three-dimensional columnar phase15 can explain the
spin-wave dispersion of CaFe2As2

32,33,38 in the direction

perpendicular to the spin stripes and between the layers.
However, discrepancies at high energies are present in the
direction parallel to the stripes. These discrepancies can
be fitted by a Heisenberg model which assumes that the
nearest-neighbor (NN) coupling J1 depends on the spatial
direction of the two coupled spins; i.e., one introduces J1a 

J1b.32,33,45,46 This is very remarkable since the difference of the
orthorhombic distortion between the lattice constants a and b

of the columnarly ordered layers is less than 1%,32,36 which
by far does not give reasons for the large spatial anisotropy of
the magnetic exchange. This argument is further supported by
the observation that density functional calculations achieve a
good description of the pnictides if magnetic columnar order
is accounted for. But the consideration of the orthorhombic
distortions is only a minor point.46

Another possible explanation of the spatial anisotropy is
the possibility of orbital ordering.47 But orbital ordering is
usually related to higher energies and should lead to clear
experimental signatures or theoretical signatures in density-
functional calculations which are so far not found.

So it appears that the magnetism itself generates the
spatial anisotropy although the original magnetic model is
not anisotropic. Indeed, the anisotropic order generates some
anisotropic velocities in self-consistent spin-wave theory.9,15

But this effect is not sufficient15 to account for J1a ≈ 40 meV
and J1b ≈ 0 meV.33,46

In order to identify a magnetic process which is able to
generate the observed spatial anisotropy one has to go beyond
bilinear exchange. This is possible in view of the larger
spin value S � 1. Indeed, significant higher spin exchange
processes are inevitable.48,49 To be specific, we will consider
the biquadratic exchange

Hbq = −Jbq

∑
〈i,j〉

(Si · Sj )2 (2)

with Jbq > 0. How does a term such as Hbq influence the
magnetic excitations? To obtain a rule of thumb we adopt a
simple view and approximate

−Jbq

∑
〈i,j〉

(Si · Sj )2 ≈ −2Jbq

∑
〈i,j〉

Si · Sj 〈Si · Sj 〉

+Jbq

∑
〈i,j〉

〈Si · Sj 〉2. (3)

In the above formula we do not list terms of the types
S

(γ )
i S

(δ)
i 〈S(γ )

j S
(δ)
j 〉 or 〈S(γ )

i S
(δ)
i 〉〈S(γ )

j S
(δ)
j 〉 because both would

only contribute for γ = δ ∈ {x,y,z} and then their sum over
all spin components would merely yield trivial constants. In the
direction of alternating spin orientation one has 〈Si · Sj 〉 < 0
so that the biquadratic term effectively strengthens the bilinear
antiferromagnetic exchange: J eff

1a > J1. In contrast, in the
direction of parallel spin orientation one has 〈Si · Sj 〉 > 0 so
that the biquadratic term effectively weakens the bilinear an-
tiferromagnetic exchange: J eff

1b < J1. Hence a NN biquadratic
exchange appears to generate a spatial anisotropy purely from
the magnetic order. One of the two main goals of the present
paper is to substantiate this argument phenomenologically.

If derived from extended standard Hubbard models the
biquadratic terms are of higher order in the intersite hoppings
than the bilinear exchange coupling which implies that it
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is actually small relative to the bilinear exchange.49 The
exception is a situation where the bilinear terms are subject
to near cancellation of antiferromagnetic and ferromagnetic
contributions.

In the pnictides, even the undoped systems are conducting
bad metals. It is known that close to the transition from
localized to conducting systems higher order processes start
playing a significant role. For instance, the cyclic exchange in
one-band Hubbard models becomes as large as 20% of the NN
exchange; see for instance Ref. 50 and references therein.

In addition, evidence for biquadratic exchange has already
appeared in calculations based on the self-consistent local spin-
density approximation (LSDA) by Yaresko et al.51 Results for
the dependence of the ground-state energy of two intercalated
Néel ordered sublattices on the angle ϕ between their sublattice
magnetizations are displayed in Fig. 2. With bilinear exchanges
no dependence is expected at all. The results for BaFe2As2

and LaOFeAs are are reproduced in Fig. 2. The dependence of
E(ϕ) = A sin2 ϕ on ϕ is compelling evidence for a biquadratic
NN exchange because a dependence ∝ sin2 ϕ does not occur in
the frustrated J1-J2 Heisenberg model. Appropriate values for
the biquadratic exchange are determined from the maximum
E(ϕ = 90◦) in Fig. 2 for S = 1. The obtained values are

Jbq = 21.5 meV for LaOFeAs, (4a)

Jbq = 10.1 meV for BaFe2As2, (4b)

which are indeed sizable in view of J1 of the order of 40 meV.
In general, the electronic situation in the iron pnictides is

very complex;42 up to five bands are important.35,41 The appro-
priate electronic description has not yet been identified42,52,53

and thus it is presently not possible to discuss the relative
size of a biquadratic exchange reliably. Hence we adopt
here the phenomenological approach to take the microscopic
arguments as evidence for the existence of such a biquadratic
exchange. Next, the aim will be to derive the size of Jbq from
fits to experiment.
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FIG. 2. (Color online) Dependence of the ground-state energy on
the relative angle ϕ between the two sublattice magnetizations on the
two intercalated Néel lattices, after Ref. 51.

C. Methods

Based on our previous work,9,15 we study the J1-J2-Jc

model in the three-dimensional phase with columnar spin
order. First, we discuss the “critical” value of x = J1/J2 where
the columnar phase ceases to exist and the corresponding
two scenarios for this instability. Furthermore, we extend the
J1-J2-Jc model by the biquadratic exchange discussed above.
To this end, an appropriate mean-field decoupling has to be
introduced which is able to tackle biquadratic exchange as
well.

To establish a reliable mean-field approach we employ the
Dyson-Maleev as well as the Schwinger bosons represen-
tation. To gauge the resulting decoupling schemes both are
applied to the two-dimensional Néel phase of a NN bilinear
Heisenberg model plus biquadratic exchange for S = 1. Then,
the successful decoupling is applied to the three-dimensional
columnar phase with biquadratic exchange for 1 � S � 2.
General results are discussed before we apply the model to
CaFe2As2.

II. SCENARIOS FOR THE J1- J2- Jc MODEL

Here we discuss two fundamental scenarios for the insta-
bility of spatially anisotropic phases of magnetic long-range
order. We do not consider first-order transitions to other
phases; in particular we do not aim to discuss the existence
of possible intermediate disordered phases between Néel and
columnar phase. Instead we focus on how the columnar phase
can become unstable toward fluctuations. We stress that the
self-consistent spin-wave theory is expected to yield reliable
results for S � 1 > 1/2 and dimension d = 3 > 2 since its
results are already very good7,9 for S = 1/2 and d = 2.

It is generally agreed that the staggered magnetization
in the columnar phase of two-dimensional J1-J2 model can
take any possible value provided an adequate fine-tuning
of the coupling ratio x = J1/J2 is performed.9,23 Here we
point out that this is no longer true in the presence of an
interlayer coupling Jc. The quantitative aspects, though not
the qualitative ones, depend strongly on the spin S.

Passing from two to three dimensions the additional
coupling between the columnarly ordered planes cuts off the
logarithmic divergence of the Goldstone modes.23 Thus, in
three dimensions the staggered magnetization may no longer
adopt any arbitrary value �0 even if the ratio x = J1/J2 is
increased toward 2. Instead, there can be a finite minimum
value of the staggered magnetization whose value depends on
the relative interlayer coupling μ = Jc/J1.

There are two possible outcomes upon x → 2. If
the value of μ is not too large, it is still possible to drive
the magnetization to zero while all three different spin-wave
velocities remain finite. But for larger values of μ the mag-
netization remains finite while the smallest of the spin-wave
velocities vanishes.15 Thus, we face two qualitatively different
scenarios. They can easily be distinguished in plotting the ratio
vb/va versus the staggered magnetization mst. The results for
S = 1/2 and S = 1 are shown in Fig. 3.

In the first scenario (solid lines), the ratio vb/va always
stays positive and the instability of the phase is marked by
the staggered magnetization mst going to zero. Thus, we call
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FIG. 3. (Color online) Ratio vb/va as a function of mst for
S = 1/2 (upper panel) and S = 1 (lower panel). The curves either
end on the ordinate, i.e, for zero staggered magnetization, or on
the abscissa, i.e., for zero spin-wave velocity vb < vc < va . Thus,
two qualitatively different instabilities emerge naturally. The solid
lines correspond to the magnetization-driven scenario (vanishing
magnetization) while the dashed lines correspond to the velocity-
driven scenario (vanishing spin-wave velocity). The dotted lines are
extrapolations in the magnetization-driven scenario.

this scenario the magnetization-driven scenario because the
breakdown of the columnar phase is driven by the vanishing
magnetic long-range order. The numerical evaluation of the
three-dimensional integrals becomes very difficult close to
mst = 0 so that the solid curves in Fig. 3 can only be
computed down to some small finite value of the staggered
magnetization. Beyond this point they are extrapolated as
depicted by the dotted curves. In this way the phase diagrams
of the J1-J2-Jc Heisenberg model in Ref. 15 were determined.

The dashed lines in Fig. 3 correspond to the second scenario.
We call it the velocity-driven scenario because the vanishing of
the spin-wave velocity vb marks the instability of the columnar
phase. If x were taken infinitesimally higher, v2

b would become
negative so that no physically meaningful mean-field model
would be found. The staggered magnetization mst stops at this
point at a finite positive value. This finite positive value of
the staggered magnetization may appear surprising because
it signifies that the magnetic long-range order still persists

even though the columnar phase ceases to exist because its
excitations become unstable.

In the case of S = 1/2, the transition from the
magnetization- to the velocity-driven scenario occurs for
μmv ≈ 0.134. Thus, the magnetization-driven scenario applies
in the range 0 � μ � 0.134. The precise value of μ where the
magnetization-driven scenario switches over to the velocity-
driven scenario corresponds to the curve in the vb/va-mst plane
which ends at the origin. If the interlayer coupling is increased
beyond μmv, the velocity-driven scenario applies.

For S = 1, the change from one scenario to the other
occurs roughly at μmv ≈ 0.01; see lower panel of Fig. 3.
Thus, the magnetization-driven scenario for S = 1 persists
in the range of 0 � μ � 0.01, which is a much smaller
region compared to the case for S = 1/2. We stress, however,
that there is no qualitative difference between S = 1/2 and
S = 1. For even larger spin values the magnetization-driven
scenario will only apply for a quickly decreasing range of
interplane couplings μ = Jc/J1. This is due to the fact that
the instability of the columnar phase shifts for increasing
spin very quickly to where it occurs classically,19 i.e., for
x = 2. Since larger and larger spins correspond to a more and
more classical behavior it is not astounding that one has to
draw nearer and nearer to the logarithmic divergence of the
quantum fluctuations in order for them to become important.
Hence S → ∞ implies an exponential convergence x → 2 and
μmv → 0.

We emphasize that the full discussion of the instability of
the columnar phase requires the consideration of first-order
transitions as well. This is beyond the scope of the present
paper because we do not know the phase into which the
columnar phase becomes unstable. It may be a disordered
phase, but in view of the larger spin S � 1 and the dimension
d = 3 we expect that an intermediate phase exists only for a
very small parameter region.

From the knowledge for S = 1/2 and S = 1 in two and
three dimensions4–8,10,11,13 we presume that the magnetization-
driven scenarios eventually becomes a weak first-order tran-
sition to an intermediate phase existing only within a small
parameter region. Further, we expect that the velocity-driven
scenario becomes a strong first-order transition to the Néel
phase.

III. BIQUADRATIC EXCHANGE IN THE 2D
NÉEL PHASE

In this section, we study the effects of a biquadratic
exchange (2) on the simple NN Heisenberg model (J2 = 0)
with S = 1 on the square lattice. The aim is to establish a
reliable mean-field description.

We apply the Schwinger bosons as well as the Dyson-
Maleev representation to the model and introduce the corre-
sponding mean-field approximation. Our aim is to study the
influence of the biquadratic exchange on the dispersion of the
spin-waves. The findings are checked against results obtained
by exact diagonalization and series expansion.

The Hamiltonian under study reads

H = J
∑
〈i,j〉

Si · Sj − Jbq

∑
〈i,j〉

(Si · Sj )2, (5)

064505-4



SELF-CONSISTENT SPIN-WAVE THEORY FOR A . . . PHYSICAL REVIEW B 84, 064505 (2011)

where J,Jbq > 0. The brackets 〈i,j 〉 indicate the summation
over NN sites.

A. Dyson-Maleev representation

First, we apply the Dyson-Maleev transformation54–56 to
the Hamiltonian (5). On sublattice A, the expression of the
spin operators in terms of bosonic operators reads

S+
i = b

†
i (2S − n̂i ), (6a)

S−
i = bi , (6b)

Sz
i = −S + n̂i . (6c)

After a π rotation of the spins around the x axis, the
transformation on sublattice B is given by

S+
i = b

†
i , (7a)

S−
i = (2S − n̂i )bi , (7b)

Sz
i = −S + n̂i . (7c)

The complete Hamiltonian in the Dyson-Maleev repre-
sentation is given in the Appendix. In preparation of the
decoupling we introduce the expectation values

n := 〈b†i bi 〉 = 〈b†j bj 〉, (8a)

a := 〈b†i b†j 〉 = 〈bi bj 〉, (8b)

where i,j are NN sites with i ∈ A and j ∈ B. All other
expectation values vanish because of the conservation of
the total Sz component

∑
i S

z
i . For simplicity, we assume

that the expectation values are real. The high-order terms
are decoupled according to Wick’s theorem.57 Neglecting all
constant terms the mean-field Hamiltonian is given by

H MF = J̃DM(α)(S − α)
∑
〈i,j〉

(n̂i + n̂j + b
†
i b

†
j + bi bj ), (9)

where the subscript DM stands for Dyson-Maleev and should
not be confused with Dzyaloshinskii-Moriya. We define

J̃DM(α) := J + Jbq

S − α
[2S3 − 2S2(1 + 5α)

+ S(18α2 + 8α + 1) − 12α3 − 9α2 − 2α], (10)

where the new parameter

α := n + a (11)

has been introduced for convenience. The parameter α has to
be determined self-consistently; see below. The mean-field
Hamiltonian (9) can easily be transformed into momen-
tum space where it can be diagonalized using a standard
Bogoliubov transformation. The diagonalized Hamiltonian
reads

H MF =
∑
k∈BZ

ωkβ
†
kβk + EMF. (12)

We stress that the full Brillouin zone (BZ), i.e., −π < kγ � π

for each component γ ∈ {a,b}, is used here and hereafter.
This is done for simplicity because full translational invariance
holds and there is only one mode per k point; but it does not

have a definite value of its total Sz component. The dispersion
is given by

ωk = 2J̃DM(α)(S − α)ω̃k, (13a)

ω̃2
k = 4 − (cos ka + cos kb)2, (13b)

and the ground-state energy by

EMF = J̃DM(α)(S − α)ẼMF, (14a)

ẼMF =
∑
k∈BZ

(ω̃k − 2). (14b)

The gapless excitations at k = (1,1) which is the magnetic
ordering vector of the Néel phase and at k = (0,0) are the
expected Goldstone modes, because the ground state of the
system has broken symmetry.58 The existence of these gapless
excitations is guaranteed by the systematic expansion in 1/S.
We draw the reader’s attention to the fact that this argument
ensures massless modes only for the systematic expansion, i.e.,
for a particular value of α. But it turns out that the vanishing
of the energy of the Goldstone modes does not depend on the
precise numbers of the expectation values so that it does not
matter whether the expansion is performed systematically or
self-consistently.

The self-consistent equation for the parameter α is found
by comparing (9) with the mean-field ground-state energy (14)
per site yielding α = (1/2)ẼMF/N if N is the number of sites.
Hence we have in the thermodynamic limit N → ∞

α = 1

4

1

(2π )2

∫ ∫
BZ

d2k (ω̃k − 2), (15a)

= −0.078 973 7105. (15b)

One integration in (15b) can be done analytically, the
second one with any computer algebra system. Note that due
to the simplicity of the system no real self-consistency needs
to be determined; α can be computed directly.

B. Schwinger boson representation

Here we apply the Schwinger boson representation18 to the
Hamiltonian (5). The spin operators are expressed as

S+
i = a

†
i bi , (16a)

S−
i = b

†
i ai , (16b)

Sz
i = 1

2 (a†
i ai + b

†
i bi ). (16c)

The constraint

a
†
i ai + b

†
i bi = 2S (17)

restricts the infinite bosonic Hilbert space to the relevant
physical subspace of the spin S. In this way, the Hamiltonian
(5) is rewritten as

H = −J

2

∑
〈i,j〉

(A†
ijAij − 2S2)

− Jbq

4

∑
〈i,j〉

(4S4 − 4S2A
†
ijAij + (A†

ijAij )2), (18)
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where the bond operators

A
†
ij = a

†
i a

†
j + b

†
i b

†
j , (19a)

Aij = ai aj + bi bj (19b)

are used. They connect adjacent sites on the different sublat-
tices with i ∈ A and j ∈ B.

The mean-field approximation in terms of the bond op-
erators is based on an expansion in the inverse number of
boson flavors 1/N .18,59,60 Thus, we intermediately extend to
N Schwinger boson flavors to justify the approximation. For
N flavors, the bilinear term reads

Si · Sj = − 1

N A
†
ijAij + S2 (20)

with the generalized bond operators

A
†
ij =

N∑
m=1

a
†
i,ma

†
j,m, (21a)

Aij =
N∑

m=1

ai,maj,m (21b)

and the constraint

N∑
m=1

a
†
i,mai,m = NS. (22)

We define the expectation value

A := 〈Aij 〉 = 〈A†
ij 〉 � 0, (23)

which is proportional to N according to the generalized con-
straint (22). Hence, the bilinear term is decoupled according
to

Si · Sj |MF ≈ − 1

N (AA
†
ij + H.c.), (24)

where we only keep the leading order O((1/N )0) omitting
constants.

In complete analogy, the quartic term of bond operators is
decoupled in leading order by

1

N 2
(A†

ijAij ) · (A†
ijAij ) ≈ 2A2

N 2
(A†

ijA + AAij ). (25)

The factor 2 is a consequence of Wicks’s theorem, as there are
two possibilities to contract the operators A

†
ij or Aij . Thus, the

mean-field decoupling of the entire biquadratic term reads

(Si · Sj )2|MF ≈ −2S2

N A

(
1 − A2

NS2

)
(A†

ij + Aij ). (26)

Since A ∝ NS, A2 > NS2 holds so that the biquadratic term
yields a positive contribution in total. Due to the prefactor
−Jbq, cf. Eq. (18), the biquadratic term enhances the bilinear
one (24).

Returning to N = 2, the mean-field Hamiltonian is finally
given by

H MF = −B
∑
〈i,j〉

(A†
ij + H.c.) + λ

∑
i

(a†
i ai + b

†
i bi ), (27)

where

B := AJ̃SB(A)/2, (28)

J̃SB(A) := J − 2JbqS
2[1 − A2/(2S2)]. (29)

The Lagrange multiplier λ is introduced to enforce the
constraint (17) on average. In the symmetry broken phase at
zero temperature, λ is fixed to the value

λ = 4B = 2J̃SB (A) A (30)

in order to retrieve massless Goldstone bosons. In momentum
space, the mean-field Hamiltonian (27) is diagonalized by a
standard Bogoliubov transformation leading to the dispersion
and the ground-state energy

ωk =
√

λ2 − [4B(cos ka + cos kb)]2, (31a)

EMF =
∑
k∈BZ

(ωk − λ). (31b)

The self-consistency equations for the parameters A and λ

are given by

2S = 1

N

∂EMF

∂λ
, (32a)

−4A = 1

N

∂EMF

∂B
. (32b)

These two equations can be combined to yield A in the
symmetry broken phase

A = 2S + 1 − 1

2

∫ ∫
BZ

d2k

(2π )2

√
4 − (cos ka + cos kb)2

(33)

in the thermodynamic limit. Note that the massless Goldstone
modes are again guaranteed by the systematic expansion which
is here done in the inverse number of flavors 1/N . As for the
Dyson-Maleev mean-field approach the expansion can also be
done self-consistently without spoiling the Goldstone theorem
because the precise number of the expectation value A does
not matter for this qualitative aspect. For S = 1, the calculated
value is

A = 2.157 947 4210, (34)

which corresponds to 2(1 − α) from the Dyson-Maleev cal-
culation. Thus the obtained dispersions are identical for zero
biquadratic exchange because then J̃SB = J̃DM holds.

C. Results

We are interested in the influence of the biquadratic
exchange on the excitation energies. Thus the ratios of the
dispersions with and without biquadratic exchange is an
appropriate quantity. Since the shape of the dispersions is
the same for the Dyson-Maleev and the Schwinger boson
representation, no more quantities need to be compared. This
ratio depends linearly on the coupling ratio ν := Jbq/J ; see
Eqs. (10) and (29). This behavior is depicted in Fig. 4 and the
corresponding slopes are given in Table I.

The mean-field results for the 2D Néel phase with bi-
quadratic exchange are checked to the results obtained by other
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TABLE I. Slopes for the influence of the biquadratic exchange on
the maximum excitation energy relative to the one without biquadratic
exchange; see Fig. 4 for the data from which the slopes are fitted for
exact diagonalization and series expansion.

Method Slopes

Schwinger bosons 2.656 74
Dyson-Maleev 1.277 08
Exact diagonalization (4 × 4) 1.245 05
Series expansion 1.134 23

methods. In detail, the excitation energies can be calculated by
an exact diagonalization of the Hamiltonian (5) on a finite
4 × 4 lattice61 and by series expansion.62,63 For both methods,
the slope is determined by a linear fit; see Table I. All results
are compared in Table I and displayed in Fig. 4. The data
points are the maximum excitation energies normalized to the
maximum without biquadratic exchange.

The Schwinger bosons result immediately catches one’s
eye because the slope is far too large by a factor greater
than two. In contrast, the Dyson-Maleev result matches
very well with the exact diagonalization. Of course, the
exact diagonalization data is hampered by finite-size effects
even though they are only moderate because we consider
the ratio of the maximum of the dispersion. The slope of
the series expansion, which is essentially exact, is slightly
smaller. The deviation of the Dyson-Maleev slope from the
series expansion is in the range of 10%–15%, which is well
acceptable for a mean-field approach applied to complicated
terms made from eight bosonic operators. Extending the
model to three dimensions, we expect the result to improve
because mean-field approximations generally become more
accurate the higher the number of dimensions. Therefore,
we choose to employ the Dyson-Maleev representation and
the corresponding mean-field approximation in the study of
the columnar phase.
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FIG. 4. (Color online) Influence of the biquadratic exchange on
the excitation energies in the 2D Néel phase (S = 1). The dashed
lines are fits to the corresponding data points. Note the almost
perfect straight lines obtained in exact diagonalization and in series
expansion.

Discrepancies of the Schwinger boson mean-field theory
with other treatments appeared already without biquadratic
exchange when the theory was introduced by Auerbach and
Arovas.59,60 In their calculations, the mean-field free energy
exceeded previous results by a factor of 2 and the sum rule
of the dynamic structure factor exceeded its exact value by a
factor of 3/2.

In the mean-field approximation for Schwinger bosons, we
treat both Schwinger bosons on a site as independent. Thus, the
constraint (17) is violated because a change in the occupation
of the a boson should always be connected to a change of
the occupation of the b boson on the same lattice site. Hence,
we suggest that the additional factors appear because of the
missed suppression of fluctuations of the boson number due to
the constraint. Since the biquadratic exchange can be roughly
viewed as a bilinear exchange multiplied by a NN expectation
value, see Eq. (3), it is comprehensible that the slope of the
Schwinger boson mean-field result is too large by about a
factor of 2 because the NN expectation value is overestimated
by this factor.59

IV. 3D COLUMNAR PHASE WITH
BIQUADRATIC EXCHANGE

As explained in the Introduction we advocate that a
localized spin model for the pnictides has to comprise a
biquadratic term in order to account for the spatial anisotropy
of the spin-wave velocities measured by inelastic neutron
scattering (INS) and computed by density functional theory.
Thus, we set out to investigate the Hamiltonian

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj

+ Jc

∑
[i,j ]

Si · Sj − Jbq

∑
〈i,j〉

(Si · Sj )2, (35)

where a NN in-plane biquadratic exchange (Jbq > 0) is intro-
duced. The brackets 〈i,j 〉 and 〈〈i,j 〉〉 correspond to in-plane
nearest and next-nearest neighbor sites, while the bracket [i,j ]
indicates the exchange between interplane nearest-neighbor
sites. The very small orthorhombic distortion in the columnarly
ordered layers is neglected. Justified by the checks in the
previous section, we employ the Dyson-Maleev representation
and the ensuing mean-field approximation. In order to establish
our notation we provide a brief derivation of the spin-wave
dispersion and the self-consistency equations. For further
details the reader is referred to Ref. 64.

For the mean-field decoupling, the following parameters
are needed:

(1) average occupation number per lattice site

n := 〈b†i bi 〉 = 〈b†j bj 〉, (36a)

(2) in-plane NN antiparallel spin orientation perpendicular
to the spin stripes (a direction)

a1 := 〈b†i b†j 〉 = 〈bi bj 〉, (36b)

(3) interlayer NN antiparallel spin orientation (c direction)

ac := 〈b†i b†j 〉 = 〈bi bj 〉, (36c)

064505-7
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(4) in-plane next-nearest neighbor (NNN) antiparallel spin
orientation

a2 := 〈b†i b†j 〉 = 〈bi bj 〉, (36d)

(5) in-plane NN parallel spin orientation parallel to the spin
stripes (b direction)

f := 〈b†i bj 〉 = 〈b†j bi 〉. (36e)

It turns out to be advantageous to introduce the combined
parameters α1, α2, αc, and β according to

α1 := n + a1, (37a)

αc := n + ac, (37b)

α2 := n + a2, (37c)

β := n − f. (37d)

The values of these parameters are determined by the self-
consistency equations given below.

Thereby, the mean-field decoupling of the Hamiltonian (35)
reads

H = H⊥ + H‖ + Hc + HNNN, (38a)

H⊥ = J2x1a(S − α1)
∑
〈i,j〉

(n̂i + n̂j + b
†
i b

†
j + bi bj ), (38b)

H‖ = −J2x1b(S − β)
∑
〈i,j〉

(n̂i + n̂j − b
†
i bj − b

†
j bi ), (38c)

Hc = J2xμ(S − αc)
∑
[i,j ]

(n̂i + n̂j + b
†
i b

†
j + bi bj ), (38d)

HNNN = J2(S − α2)
∑
〈〈i,j〉〉

(n̂i + n̂j + b
†
i b

†
j + bi bj ), (38e)

with x := J1/J2, μ := Jc/J1, ν := Jbq/J1 and

x1a := x + xν

S − α1

[
2S3 − 2S2(1 + 5α1)

+ S
(
18α2

1 + 8α1 + 1
) − 12α3

1 − 9α2
1 − 2α1

]
, (39a)

x1b := x − xν

S − β
[2S3 − 2S2(1 + 5β)

+ S(18β2 + 8β) − 12β3 − 9β2 − β]. (39b)

The mean-field Hamiltonian (38) is easily transformed into
momentum space and diagonalized by a standard Bogoliubov
transformation. Thereby, the spin-wave dispersion

ωk := 2
√

A2
k − B2

k (40)

is obtained with

Ak := J2[2(S − α2) + x1a(S − α1)

+ xμ(S − αc) + x1b(S − β)(cos kb − 1)], (41a)

Bk := J2[x1a(S − α1) cos ka + xμ(S − αc) cos kc

+ 2(S − α2) cos ka cos kb]. (41b)

The components ka , kb, and kc of the momentum vector
k are directed along the crystal axes as shown in Fig. 1.
The dispersion is gapless at k = (0,0,0) and k = (1,0,1)
corresponding to the required Goldstone modes.9,15 Note that
this feature is again guaranteed by the systematic expansion in
the inverse spin 1/S. As for the Néel phase the expansion can

also be done self-consistently without spoiling the Goldstone
theorem because the precise numbers of the expectation values
do not matter for this qualitative aspect. But we consider this a
highly nontrivial aspect in view of the four different quantum
corrections occurring here.

For small momenta, the dispersion (40) can be expanded,

ωk ≈
√

v2
ak

2
a + v2

bk
2
b + v2

c k
2
c , (42)

and one obtains the spin-wave velocities

v2
a = (2J2)2[2(S − α2) + x1a(S − α1) + xμ(S − αc)]

×[2(S − α2) + x1a(S − α1)], (43a)

v2
b = (2J2)2[2(S − α2) + x1a(S − α1) + xμ(S − αc)]

×[2(S − α2) − x1b(S − β)], (43b)

v2
c = (2J2)2[2(S − α2) + x1a(S − α1) + xμ(S − αc)]

×xμ(S − αc). (43c)

The parameters of the quantum corrections are determined
from the self-consistency equations in the thermodynamic
limit:

α1 = 1

2

1

(2π )3

∫ ∫ ∫
BZ

d3k
Ak − Bk cos ka√

A2
k − B2

k

− 1

2
, (44a)

αc = 1

2

1

(2π )3

∫ ∫ ∫
BZ

d3k
Ak − Bk cos kc√

A2
k − B2

k

− 1

2
, (44b)

α2 = 1

2

1

(2π )3

∫ ∫ ∫
BZ

d3k
Ak − Bk cos ka cos kb√

A2
k − B2

k

− 1

2
,

(44c)

β = −1

2

1

(2π )3

∫ ∫ ∫
BZ

d3k
Ak(cos kb − 1)√

A2
k − B2

k

− 1

2
, (44d)

where the integrations run over the full Brillouin zone (BZ)
as before. The above set of equations is solved by numerical
integration and by four-dimensional root finding.

The staggered magnetization mst is defined as mst :=
〈Sz

i 〉(−1)σ where σ = 0 for i ∈ A and σ = 1 for i ∈ B. In
the thermodynamic limit, it reads

mst = S + 1

2
− 1

2

1

(2π )3

∫ ∫ ∫
BZ

d3k
Ak√

A2
k − B2

k

. (45)

A. General results for S = 1

We discuss the qualitative aspects for S = 1 and μ = 0.25,
which is a generic value for the relative interlayer coupling.
The values of the relative biquadratic exchange ν are chosen in
the range of 0.1 to 0.7 as motivated in Sec. I B. For comparison,
we also show the results without biquadratic exchange.

From the staggered magnetization in Fig. 5, we conclude
that the biquadratic exchange destabilizes the columnar phase
and drives the critical point toward lower values of x = J1/J2.
There is only a negligible influence on the maximum value of
mst, which is also shifted further left.

Important is the effect of the biquadratic exchange on the
renormalization of the quantum correction parameters [for

064505-8



SELF-CONSISTENT SPIN-WAVE THEORY FOR A . . . PHYSICAL REVIEW B 84, 064505 (2011)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

st
ag

ge
re

d 
m

ag
ne

tiz
at

io
n 

m
st

x=J1/J2

ν=0
ν=0.3
ν=0.4
ν=0.5
ν=0.6
ν=0.7

FIG. 5. (Color online) Staggered magnetization as a function of x

for S = 1 and μ = 0.25. All curves are in the velocity-driven scenario
which we presume to signal a strong first-order transition to the Néel
phase. The magnetization remains finite at the end point where the
columnar phase ceases to exist; for details see Sec. II.

definitions see Eqs. (37)–(39)] shown in Fig. 6. The effective
exchange perpendicular to the spin stripes is significantly
strengthened by factors up to 2; see upper left panel of Fig. 6. In
contrast, the effective exchange parallel to the spin stripes stays

almost constant except for small frustrations and in the vicinity
of the end point; see upper right panel of Fig. 6. Because the
biquadratic exchange in the Hamiltonian (35) is restricted to
in-plane NN sites, the only effect on the renormalization of
the interlayer and NNN exchange is the shift of the critical
point to smaller values of x; see lower panels of Fig. 6. Hence,
we indeed find the expected effect that an NN biquadratic
exchange enhances the spatial anisotropy. This validates our
qualitative considerations in Sec. I B.

The ratios of the spin-wave velocities depicted in Fig. 7
are weakened by increasing biquadratic exchange because the
strengthening of the effective exchange perpendicular to the
stripes leads to a greater spin-wave velocity va and thus to
a smaller ratio vb/va . In general, the qualitative behavior of
the ratios is similar to the one observed without biquadratic
exchange.

All in all, a biquadratic exchange acting on in-plane NN
sites increases the anisotropy of the exchange parallel and
perpendicular to the spin stripes. The growing anisotropy
with increasing biquadratic exchange ν = Jbq/J1 is caused
by the strong renormalization of the exchange perpendicular
to the spin stripes. The exchange parallel to the spin stripes
experiences a marginal strengthening and is weakened only in
proximity to the critical point. Hence, even a large biquadratic
exchange does not induce an effective ferromagnetic exchange
J eff

1b � 0 in the b direction.
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FIG. 6. (Color online) Renormalization of the effective exchange parameters by quantum fluctuations as function of x for S = 1 and
μ = 0.25. All curves are in the velocity-driven scenario.
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three-dimensional integrals.

To render this point quantitatively we define the effective
exchange couplings

J eff
1a := J2x1a(1 − α1/S), (46a)

J eff
1b := J2x1b(1 − β/S), (46b)

J eff
c := Jc(1 − αc/S), (46c)

J eff
2 := J2(1 − α2/S) (46d)

according to the mean-field Hamiltonians (38b)–(38e).
These definitions enable a direct comparison of the effective
spatial anisotropy to the ones determined in fits based on linear
spin-wave theory as they are used in experiment,32,33 for the
analysis of density-functional theory,46 and in other theoretical
analyses.12,22 The relative anisotropy is shown in Fig. 8 for the
two-dimensional model, i.e., for Jc = 0. The results for finite
three-dimensional coupling are qualitatively the same.

Strikingly, the size of the spin really matters due to the
different relative importance of quantum fluctuations. For
S = 1 the self-consistency procedure prevents the occurrence
of negative effective couplings in the b direction—even for
very large biquadratic exchange. This can be understood by
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FIG. 8. (Color online) Relative anisotropy, cf. definitions (46),
as a function of the relative biquadratic exchange ν in the two-
dimensional model for μ = 0, x = 1, and S = 1, 3/2, and 2.

inspecting Eq. (39b). For large ν the expectation value β goes
to zero. Hence the influence of the square bracket multiplying
ν decreases more and more because the terms independent of
β, i.e., 2S3 − 2S2, cancel for S = 1. Hence no zero or negative
effective coupling along the spin stripes occurs. Only for S > 1
a zero or even negative effective coupling along the direction
of parallel spins is possible. We will come back to this point
when comparing with experimental data.

V. APPLICATION TO THE IRON PNICTIDES

Here we discuss the applicability of our model to iron
pnictides. We consider S = 1, S = 3/2, and S = 2. The former
value is suggested by the relatively low values for the staggered
magnetizations measured;31,33,36–38 see also list in Ref. 22. Fur-
ther support for this value comes from the successful studies of
two-band models.65–67 Another interesting support is provided
by advanced Gutzwiller calculations of the distribution of local
charges in five-band models which are consistent with S = 1.53

On the other hand, simple chemical electron count implies
that the iron is doubly positive charged so that the d shell
contains four holes and Hund’s rule implies S = 2. Indeed,
recent findings for closely related iron compounds showed
that static local moments up to (2.2–3.3)μB can occur,68–70 or
even larger (4.7μB).71 Furthermore, we stress that the value
of the staggered static magnetization per site represents only a
lower bound for the local moment. Moreover, the observable
static moment also depends on electronic matrix elements9

influenced by the complicated electronic situation. In view of
these ambiguities, it is certainly worthwhile to consider also
S = 3/2 and S = 2.

Experimentally, the magnetic dispersion is best known
for the 122 compound CaFe2As2.32,33,38 Hence we fit the
dispersion obtained by self-consistent mean-field theory of
the three-dimensional model (35) with biquadratic exchange
to the measured spin-wave dispersion. Then we are able to
draw conclusions regarding the quality of the agreement and
the plausibility of the exchange values obtained.

The results of fits to Zhao’s data are given in Table II for
plausible values of Jbq. In order to fix Jbq independently

064505-10



SELF-CONSISTENT SPIN-WAVE THEORY FOR A . . . PHYSICAL REVIEW B 84, 064505 (2011)

TABLE II. Fit parameters of the model (35) in the three-
dimensional columnar phase for given values of the relative bi-
quadratic exchange ν = Jbq/J1. The parameters are determined by
fits to the experimental spin-wave velocities in CaFe2As2 (Ref. 33).
The exchange constants J eff

i are the exchange constants which would
provide the same results for a model without biquadratic exchange in
linear spin-wave theory; see the definitions (46).

ν 0.3 0.4 0.5 0.6 3.0

x 0.645 0.616 0.589 0.565 0.284
μ 0.297 0.314 0.332 0.349 0.793
J1 18.9 17.9 16.9 16.0 7.1
Jc 5.6 5.6 5.6 5.6 5.6
J2 29.4 29.0 28.7 28.4 24.9
Jbq 5.7 7.1 8.5 9.6 21.2
J eff

1a 25.4 26.3 27.1 27.9 36.2
J eff

1b 18.8 17.9 17.0 16.3 8.0
J eff

c 5.3 5.3 5.3 5.3 5.3
J eff

2 31.1 30.7 30.3 29.9 25.8

an additional fourth piece of information is required from
experiment, for instance the energy at k = (0,1,0). This energy
was only determined by Zhao et al.33 The curves shown in
Fig. 9 illustrate that perfect agreement is possible for small
energies and perpendicular to the spin stripes, i.e., the direction
of parallel spins. We refrain from showing the results for
Diallo’s experimental data. The results are very similar, despite
the smaller interlayer coupling derived from Diallo’s INS data.
The interested reader is referred to Ref. 64.

But even for an artificially large biquadratic exchange ν = 3
the qualitative behavior of the dispersion along the spin stripes
is not described satisfactorily; see right panel of Fig. 9. At first
glance, this comes as a surprise since naively a sufficiently
large biquadratic exchange should induce an arbitrary spatial
anisotropy. But the self-consistency prevents this; see Fig. 8
and Eq. (39b) and the discussion of them.

TABLE III. Fit parameters of the model (35) in the three-
dimensional columnar phase for S = 3/2 and S = 2. The parameters
are determined by fits to the experimental dispersions in CaFe2As2

(Ref. 33). Exchange couplings in meV. For comparison, the exchange
constants J eff

i obtained in linear spin-wave theory by Zhao et al.
(Ref. 33) are given.

S x μ ν J2 J eff
1a J eff

1b J eff
c J eff

2

3/2 0.52 0.56 1.20 12.4 50.4 −5.7 5.2 18.8
2 0.78 0.37 0.37 9.3 50.4 −5.7 5.2 18.8
Zhao et al. 49.9 −5.7 5.3 18.9

The understanding of the quantitative effect of the bi-
quadratic term tells us that only a larger spin value may
lead to the experimentally observed anisotropy. Indeed, for
S = 2 and for S = 3/2 we achieve a perfect fit; see Table III.
For S = 3/2 the required value of Jbq appears fairly large
relative to J1. The resulting dispersion is shown in Fig. 10 for
S = 2. The dispersion obtained for S = 3/2 (not shown) looks
essentially the same. Note the excellent agreement obtained
without assuming any spatial anisotropy in the model itself.
It is the magnetic long-range directional Ising-type order
which induces the strong spatial anisotropy. We judge the fit
parameters necessary for S = 2 to be perfectly reasonable, in
particular the moderate value of the biquadratic exchange of
37%.

The above finding provides an interesting piece of infor-
mation for the description of the magnetic excitations in the
pnictides by a model of localized spins. But it leaves open
the issue of why the observed staggered moments are much
lower than 4μB which is the value one would expect for
S = 2. Here we can only speculate that the complicated local
electronic levels and the remaining itinerant character of the
charges are the physical reasons for this. Also, the issue of
line broadening due to Landau damping is not included in the
present model.32,72,73
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FIG. 9. (Color online) Spin-wave dispersion (40) resulting from the self-consistent mean-field theory of the model (35) for S = 1 in the
three-dimensional columnar phase with biquadratic exchange for various values of ν = Jbq/J1. The dispersions (lines) are plotted for the
parameters given in Table II. The red dots are experimental data extracted from INS for CaFe2As2 from Ref. 33. Wave vectors are given in
units of π over lattice constants assuming an orthorhombic crystal. Note that along the path in the BZ shown in the left panel all fits collapse
in one curve. Significant differences occur only along the path shown in the right panel.
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FIG. 10. (Color online) Same as in Fig. 9 but for S = 3/2 and S = 2; the parameters are given in Table III.

All in all, the additional biquadratic exchange influences
the dispersion parallel to the spin stripes and strengthens the
anisotropy of the effective in-plane NN exchange constants.
However, for S = 1 it is not possible to reproduce the whole
experimental dispersion measured by Zhao et al. This is
possible for S = 3/2 and for S = 2. The question why the
observed magnetic moments are much smaller than one
would expect for S > 1 remains unresolved at present. The
local electronic situation and the residual itineracy are likely
candidates to reduce the magnetic moment.

VI. DYNAMIC STRUCTURE FACTOR

Besides the dispersion it is the dynamic structure factor
S(k,ω) which matters for the understanding of experimental
observations. In addition to the information about the energies
of the collective excitations, S(k,ω) contains information
about the relevant matrix elements. In the Dyson-Maleev
representation, the inelastic part of the dynamical structure
factor for N spins at T = 0 reads

Sxx
0 (k,ω) = Nπ (S − n)

Ak − Bk

2
√

A2
k − B2

k

δ(ω − ωk), (47)

where n, Ak and Bk are defined in Sec. IV. Because of the rota-
tional symmetry about Sz, Syy

T (k,ω) is identical to Sxx
T (k,ω). In

the limit of k → (0,0,0), the dynamical structure factor (47)
vanishes because Ak = Bk. In the limit of k → (1,0,1), the
dynamical structure factor (47) diverges because Ak = −Bk.
Note that in both cases we have ωk → 0. Similar results have
been derived within linear spin-wave theory in Ref. 12.

Constant-energy cuts are computed from (47) for equally
weighted twinned domains. This means that the spatially
anisotropic result from (47) is superposed for one choice of
the crystallographic a and b directions and for the swapped
choice a ↔ b so that the resulting superposition is spatially
isotropic in the sense that there is no difference between the a

and the b direction. The results for S = 1 are shown in Fig. 11;
those for S = 2 in Fig. 12. They are to be compared with the
experimental findings in Ref. 33.

For low energies, concentric rings emerge from the mag-
netic ordering vector Q = (1,0,3). They display a certain
ellipticity which is not surprising in view of the spatial

anisotropy of the spin order. The rings increase in size for
higher energies. For S = 1 (Fig. 11), less intensive spots
(1,1,kc) appear additionally for E = 100 meV and E =
115 meV which merge with the concentric spin-wave rings for
higher energies. For S = 2 (Fig. 12) or S = 3/2, the circular
signatures of the dispersion cones persist up to 144meV; only
for even higher energies significant additional features occur.
In general, one observes the trend of decreasing intensity for
increasing energy because S(k,ω) ∝ 1/ωk; see Eq. (47).

The comparison to the experimental data33 shows that the
S = 2 or S = 3/2 results match better which is not surprising
since they reproduce the dispersion everywhere; see Fig. 10.
The experimental data display also rings of high scattering
intensities which increase very much like the theoretical results
do. But the experimental results are broader indicating a finite
lifetime of the magnetic excitations. This effect is lacking in
our model for two reasons: (i) The spin-only model does not
include any Landau damping due to the decay of magnons into
electronic particle-hole pairs. The consideration of this effect
would require to pass to a doped t-J type of model or to switch
completely to an itinerant approach; see for instance Ref. 72.
(ii) Even in the framework of a spin-only model the scattering
of magnons from other magnons will lead to lifetime effects
which are not taken into account by a mean-field approach.

Hence, the agreement of Fig. 12 to the experimental data is
encouraging, in particular in view of the neglect of damping
effects. We conclude that the description of the magnetic
excitations of undoped pnictides within a model of localized
spins is possible if a significant biquadratic exchange is
included and S > 1 is chosen.

VII. CONCLUSIONS

In this paper, we obtained the following results:
First, we pointed out that the instability of the columnar

phase, i.e., the phase with spin stripes, can become unstable
in two qualitatively different ways in three dimensions. Either
the sublattice magnetization vanishes so that the long-range
order parameter vanishes (magnetization-driven scenario),
or the smallest spin-wave velocity vanishes (velocity-driven
scenario). The latter scenario is not possible in two dimen-
sions because a vanishing velocity implies a logarithmically
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(a)E = 48 ± 6 meV, kc = 3 (b)E = 65 ± 4 meV, kc = 3 (c)E = 100 ± 10 meV, kc = 3.5 (d)E = 115 ± 10 meV, kc = 4

(e)E = 137 ± 15 meV, kc = 4 (f)E = 135 ± 10 meV, kc = 4.5 (g)E = 144 ± 15 meV, kc = 5 (h)E = 175 ± 15 meV, kc = 5.2

FIG. 11. (Color online) Constant-energy cuts of the dynamical structure factor per spin (47) integrated over the given energy interval for
a twinned sample for S = 1 and the relative biquadratic exchange ν = 0.5. Other parameters are given in Table II. The range of ka,b and the
values of kc and E have been chosen to match the rendering of the experimental data (Ref. 33). The reciprocal lattice vectors are given in units
π /lattice constant. Note that the weights in the given energy intervals are dimensionless according to formula (47).

diverging correction of the quantum corrections of the
magnetization so that the magnetization will always vanish
before the velocity becomes zero. But the subtlety of a
logarithmic divergence makes it numerically difficult to detect
the vanishing magnetization, in particular for large values of
the spin. We presume that the magnetization-driven scenario
leads to a weak first-order transition to a possible intermediate
phase and that the velocity-driven scenario indicates a strong
first-order transition to the Néel phase.

Second, we discussed the importance of a biquadratic
exchange. The motivation is the very distinctive spatial
anisotropy of the dispersion in the pnictides which cannot be
induced by the small distortive anisotropy. In order to be able
to treat biquadratic exchange on the same footing as we treated
nearest-neighbor Heisenberg Hamiltonians before, we studied
two mean-field approaches to biquadratic exchange. One is
based on the Dyson-Maleev representation, the other on the
Schwinger boson representation. Surprisingly, even at zero
temperature these mean-field theories provide distinctively
different results. We tested both approaches for the Néel
phase of the nearest-neighbor Heisenberg on the square lattice

against series expansion data and exact diagonalization. We
established that the Dyson-Maleev mean-field theory provides
reliable results within about 10% of the contribution of the
biquadratic exchange.

Third, we applied the developed mean-field approach to
the columnar phase of the J1-Jbq-J2-Jc Heisenberg model
in three dimensions. The aim was to explain the magnetic
dispersions observed in the undoped iron pnictides, parent
compounds of a novel class of superconductors. It turned
out that a biquadratic exchange indeed enhances the spatial
anisotropy of the spin-wave velocities. Such an effect was
also found in linear spin wave theory very recently.74 But the
effect is reduced by quantum corrections so that it is not large
enough for S = 1 to match the experimental situation. Only
for larger values of S an almost vanishing effective coupling in
b direction along the stripes of parallel spins is possible. But
for S = 3/2 or S = 2 perfect agreement of the dispersion is
obtained without invoking any spatial anisotropy of the model
itself. Note that S = 2 corresponds to the chemical valence
Fe2+ which follows from an ionic balance of charge in the
pnictides. This valence implies four holes in the d shell so
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(a)E = 48 ± 6 meV, kc = 3 (b)E = 65 ± 4 meV, kc = 3 (c)E = 100 ± 10 meV, kc = 3.5 (d)E = 115 ± 10 meV, kc = 4

(e)E = 137 ± 15 meV, kc = 4 (f)E = 135 ± 10 meV, kc = 4.5 (g)E = 144 ± 15 meV, kc = 5 (h)E = 175 ± 15 meV, kc = 5.2

FIG. 12. (Color online) Same as Fig. 11, but for S = 2. The parameters are given in Table III. The plots for S = 3/2 would look essentially
the same.

that the maximum spin according to Hund’s rule is S = 2. We
provided also results for the dynamic structure factor for the
matching model at S = 2 and for S = 1 for comparison.

Of course, there are open points which are beyond the
scope of the present article. First, there is the relatively
small staggered moments seen in experiment which indicate
smaller rather than larger spin values. Classical Monte Carlo
simulations74 also indicate that only for a strongly reduced
moment the transition temperatures are consistent with ex-
periment. The complicated local electronic situation and the
residual itineracy of the charges are likely candidates to cause
the discrepancy. But we mention that recent experiments also
found large moments in related substances which are also
superconducting. Second, the spin-only model considered here
does not include the important charge degrees of freedom
which generate Landau damping and the bad metallic behavior
of the externally undoped parent pnictides. So lifetime effects
are not treated.

Further research is called for: On the level of localized
spin models the investigation of the recently found high-spin
substances appears to be interesting but may require more
challenging treatment of canted magnetic order. On the level
of itinerant charges the influence of doped charges has to be

studied. These charges can be externally doped or internally
self-doped between the bands. Furthermore, it would be
interesting to learn more about the values for biquadratic
exchanges from density-functional calculations.
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APPENDIX: DYSON-MALEEV REPRESENTATION

1. Antiferromagnetic exchange

For antiparallel orientation of coupled spins, the
Hamiltonian (5) is given in Dyson-Maleev representation by

H afm = H afm
bl + H afm

bq , (A1)
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with

H afm
bl = J

∑
〈i,j〉

{
−S2 + S(n̂i + n̂j + b

†
i b

†
j + bi bj ) − n̂i n̂j − 1

2
(b†i n̂ib

†
j + bi n̂j bj )

}
, (A2a)

H afm
bq = −Jbq

∑
〈i,j〉

{
S4 − 2S3(n̂i + n̂j + Î0) + S2

[
n̂2

i + n̂2
j + 4n̂i n̂j + Î 2

0 + (n̂i + n̂j )Î0 + Î0(n̂i + n̂j ) + Î ′
0

]

− S
[
2
(
n̂i n̂

2
j + n̂2

i n̂j

) + n̂i n̂j Î0 + Î0n̂i n̂j + 1

2
(Î0 Î ′

0 + Î ′
0Î0 + (n̂i + n̂j )Î ′

0 + Î ′
0(n̂i + n̂j ))

]
+ n̂2

i n̂
2
j + 1

4
Î ′2

0 + 1

2
(n̂i n̂j Î

′
0 + Î ′

0n̂i n̂j )

}
, (A2b)

where

Î0 := b
†
i b

†
j + bi bj , (A3a)

Î ′
0 := b

†
i n̂i b

†
j + bi n̂j bj , (A3b)

with i,j being the two coupled sites. For the mean-field decoupling the reader is referred to Eq. (38).

2. Ferromagnetic exchange

For parallel orientation of coupled spins, the Hamiltonian (5) in Dyson-Maleev representation reads

H fm = H fm
bl + H fm

bq , (A4)

where

H fm
bl = J

∑
〈i,j〉

{
S2 − S(n̂i + n̂j − b

†
i bj − b

†
j bi ) + n̂i n̂j − 1

2
(b†i n̂i bj + b

†
j n̂j bi )

}
, (A5a)

H fm
bq = −Jbq

∑
〈i,j〉

{
S4 − 2S3(n̂i + n̂j − F̂0) + S2[n̂2

i + n̂2
j + 4n̂i n̂j + F̂ 2

0 − (n̂i + n̂j )F̂0 − F̂0(n̂i + n̂j ) − F̂ ′
0

]

+ S

[
−2

(
n̂i n̂

2
j + n̂2

i n̂j

) + n̂i n̂j F̂0 + F̂0n̂i n̂j + 1

2
(−F̂0 F̂ ′

0 − F̂ ′
0F̂0 + (n̂i + n̂j )F̂ ′

0 + F̂ ′
0(n̂i + n̂j ))

]

+ n̂2
i n̂

2
j + 1

4
F̂ ′2

0 − 1

2
(n̂i n̂j F̂

′
0 + F̂ ′

0n̂i n̂j )

}
, (A5b)

with

F̂0 := b
†
i bj + b

†
j bi , (A6a)

F̂ ′
0 := b

†
i n̂i bj + b

†
j n̂j bi . (A6b)

For the mean-field decoupling the reader is referred to Eq. (38).
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35Z. P. Yin, S. Lebègue, M. J. Han, B. P. Neal, S. Y. Savrasov, and
W. E. Pickett, Phys. Rev. Lett. 101, 047001 (2008).

36R. A. Ewings, T. G. Perring, R. I. Bewley, T. Guidi, M. J. Pitcher,
D. R. Parker, S. J. Clarke, and A. T. Boothroyd, Phys. Rev. B 78,
220501 (2008).

37J. Zhao, W. Ratcliff II, J. W. Lynn, G. F. Chen, J. L. Luo, N. L.
Wang, J. Hu, and P. Dai, Phys. Rev. B 78, 140504 (2008).

38R. J. McQueeney, S. O. Diallo, V. P. Antropov, G. D. Samolyuk,
C. Broholm, N. Ni, S. Nandi, M. Yethiraj, J. L. Zarestky, J. J.
Pulikkotil et al., Phys. Rev. Lett. 101, 227205 (2008).

39Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008).
40A. Ong, G. S. Uhrig, and O. P. Sushkov, Phys. Rev. B 80, 014514

(2009).
41T. Yildirim, Phys. Rev. Lett. 101, 057010 (2008).
42J. Wu, P. Phillips, and A. H. Castro Neto, Phys. Rev. Lett. 101,

126401 (2008).
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