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Mean-field solution of the Potts glass near the transition temperature to the ordered phase
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We expand asymptotically mean-field solutions of the p < 4 Potts glass with various levels of replica-symmetry
breaking below the transition temperature to the glassy phase. We find that the ordered phase is degenerate and
solutions with one hierarchy of spin replicas and with the full continuous replica-symmetry breaking coexist for
p > p∗ ≈ 2.82. The latter emerges immediately with an instability of the replica-symmetric one. Apart from
these two solutions there also exists a succession of unstable states converging to the solution with the continuous
replica-symmetry breaking that is marginally stable and has the highest free energy.
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I. INTRODUCTION

Models of spin glasses have been attracting considerable
attention of condensed matter theorists for more than three
decades. The original motivation for constructing microscopic
models of spin glasses came from experimental observation of
an unusual low-temperature behavior of magnetic impurities
randomly diluted in a nonmagnetic metal.1 It soon became
clear that a new type of long-range order of magnetic impurities
emerges in spin glasses, the qualitative understanding of which
demands theoretical modeling. Rather soon, Edwards and
Anderson proposed a generic model of Ising spins with a
randomly distributed exchange interaction.2 A naive mean-
field solution,3 now known as the Sherrington-Kirkpatrick
(SK) model, started a wave of intense investigation of Ising
and Heisenberg spin glasses. The reason for the extended
interest in spin-glass theories was insufficient understanding
of the inconsistency of the SK mean-field approximation.
A fully physically consistent solution was then proposed by
Parisi via the replica trick used to handle quenched averaging
over random configurations of the spin exchange.4 A rigorous
proof of the exactness of the Parisi free energy of the SK
model, known as a full replica-symmetry breaking (FRSB),
was completed only recently.5,6

The full mean-field solution of the Ising spin glass is
not only complicated in its analytic structure, but also in its
physical interpretation.7 That is why simpler models, random
energy,8 p spin,9 Potts,10 or quadrupolar11 glass models
have been introduced so that the origin and the meaning of
replica-symmetry breaking in frustrated spin models can be
better understood. All four models behave differently from
the Heisenberg spin glasses. They show temperature intervals
where a first step toward the Parisi solution in the replica trick,
the so-called one-level replica symmetry breaking (1RSB), is
locally stable. While 1RSB is the true equilibrium state of the
first model in low temperatures, it is locally stable only in a
small interval of temperatures close to the transition temper-
ature to the glassy phase in the latter three. A full replica-
symmetry breaking solution with infinite-many hierarchies of
replicated spin variables should lead to a marginally stable
equilibrium state at very low temperatures there. The genesis
of FRSB and the way a solution with a continuous distribution
of hierarchies of replicated spin variables is reached in these
models without reflection symmetry in spin variables has not
yet been fully clarified.

We recently demonstrated that although the first level of
replica-symmetry breaking below the transition temperature
to the glassy phase in the mean-field model of the Potts glass
is locally stable, a full continuous replica-symmetry breaking
solution coexists with it and has a higher free energy.12 This
result suggests that FRSB leads, even in models without
reflection symmetry, to the true equilibrium state independent
of the fact that a replica-symmetry breaking solution with a
finite number of replica hierarchies is locally stable. It has
been assumed that the Parisi continuous replica-symmetry
breaking in models without spin-reflection symmetry fails
or is inconsistent.13,14 A natural question arises when locally
stable discrete and marginally stable continuous RSB solutions
coexist: How does the FRSB solution emerge when a discrete
RSB solution with finite-many replica hierarchies no longer
decays to a solution with a higher number of replica hierar-
chies? The full RSB state has been assumed to emerge only
below the temperature T2 at which the 1RSB solution again
becomes unstable. Heuristic arguments were used to suggest
a cascade of successive transitions below the instability of
1RSB.15,16

The aim of this paper is to demonstrate explicitly the genesis
of the Parisi solution with a continuous FRSB in the model of
the Potts glass with p states. We use an asymptotic expansion
of the Parisi solution near the critical temperature and show
that for p � 4 the solution with FRSB emerges at the transition
point at which the replica-symmetric solution gets unstable
and the system undergoes a continuous transition to the glassy
phase. We find that near the transition temperature to the
glassy phase there also exists, apart from a locally stable 1RSB
solution for p∗ � p < 4, a series of unstable solutions with
K = 1,2, . . . discrete hierarchies breaking replica symmetry
and converging toward a marginally stable Parisi solution with
a continuous FRSB.

II. MEAN-FIELD MODEL

A. Potts Hamiltonian and a replicated mean-field solution

The Potts model is a generalization of the Ising model to
more than two spin components. The original formulation of
Potts17 with Hamiltonian Hp = −∑i<j Jij δni ,nj

, where ni =
0, . . . ,p − 1 is an admissible value of the p-component model
on the lattice site Ri , is unsuitable for practical calculations.
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The Potts Hamiltonian can, however, be represented via
interacting spins,18

Hp = −1

2

∑
i,j

Jij Si · Sj −
∑

i

h · Si , (1)

where Si = {s1
i , . . . ,s

p−1
i } are Potts vector variables taking

values from a set of state vectors {eA}pA=1. Functions on vectors
eA are in equilibrium fully defined through their scalar product,

eα
Aeα

B = pδAB − 1, (2a)

where α ∈ {1, . . . ,p − 1}. We use the Einstein summation
convention for repeating Greek indices of the vector com-
ponents indicating a scalar product of the Potts vectors. The
components of the Potts vectors obey the following sum rules:

p∑
A=1

eα
A = 0, (2b)

p∑
A=1

eα
Ae

β

A = p δαβ, (2c)

from which we can construct their explicit representation:

eα
A =

⎧⎪⎪⎨
⎪⎪⎩

0 A < α√
p(p−α)
p+1−α

A = α

1
α−p

√
p(p−α)
p+1−α

A > α .

(3)

It is evident from the representation of Potts vectors in Eq. (3)
that the Potts variables are not symmetric around zero for
p > 2, that is, the Potts model does not possess spin-reflection
symmetry. In the case of p = 2 the Potts model reduces to the
Ising model.

Frustration due to a quenched randomness in the Potts
model is introduced via static fluctuations of the interaction
parameters Jij being distributed randomly with probability

P (Jij ) = 1

(2πJ 2/N)1/2
exp

−(Jij − J0)2

2J 2/N
, (4)

where J0 = N−1∑
j J0j is the averaged (ferromagnetic) in-

teraction and N is the number of lattice sites. Randomness is
assumed to be quenched, that is, the equilibrium free energy is
averaged over the configurations of the spin-spin interaction.
The spin-spin interaction is long range with an infinitesimal
(N−1) variance of its fluctuations (mean-field model).

The standard way to derive a mean-field approximation
to frustrated models with random exchange interactions is
to use the replica trick with which a quenched averaging is
transformed to an annealed one of a replicated system.7 There
is, however, a price we pay for this simplifying transformation.
We must perform a limit to zero number of replicas, which
demands analytic continuation of the solution in the replica
number. This is possible only under specific conditions with
an appropriate symmetry of the order parameters in the
replicated phase space.4 There is a possibility of avoiding
the replica trick with the limit to zero replicas in that we
demand thermodynamic homogeneity of the averaged free
energy.19 Although replicas are used, there is no need for
the limit to zero number of replicas. Instead, independence of
the replication index is demanded in the real-replica approach.

The replicated mean-field free energy of the Potts glass with
the Gaussian distribution of spin-spin interactions and the
probability distribution from Eq. (4) is

fν = βJ 2

4

{
1

ν

ν∑
a �=b

χ
αβ

ab

[
χ

αβ

ab + 2qδαβ
]

− (p−1)(1−q)2

}
− J 0

2ν

ν∑
a

mα
amα

a − 1

βν

∫ ∞

−∞
D(p−1)(y)

× ln TrS exp

{
β2J 2

ν∑
a<b

χ
αβ

ab Sα
a S

β

b + β

ν∑
a=1

h
α

aSα
a

}
, (5)

where ν is the number of replicas, h
α

a = hα + J 0m
α
a + Jyα√

q

is an effective magnetic field, and ηα are Gaussian random
fields with a (p − 1)-dimensional measure:

D(p−1)(y) =
p−1∏
α=1

dηα

√
2π

exp

{
− (yα)2

2

}
.

We further denoted an effective “ferromagnetic” exchange
J 0 = J0 + βJ 2(p − 2)/2. The order parameters in the repli-
cated free energy fν are the averaged square local magneti-
zation q = N−1∑

i m
α
i mα

i and local overlap susceptibilities
χ

αβ

ab = N−1∑
i[S

α
i,aS

β

i,b − mα
i,am

β

i,b] for a �= b measuring the
linear response of the replicated system to a small inter-
replica interaction. If the free energy is thermodynamically
homogeneous, the overlap susceptibilities must vanish in
equilibrium, a saddle point of the replicated free energy.
Free energy is then independent of the replica index ν. It
reduces in this case to the replica-symmetric solution having
a representation for the isotropic Potts model (zero magnetic
field and no long-range ferromagnetic order, mα

i = 0):

−βfRS = β2

4
(p − 1)(q − 1)2 +

∫
D(p−1)(y) ln Z0(y). (6a)

Z0(y) =
p∑

A=1

exp{β√
qyαeα

A}. (6b)

We need to break the replica symmetry to check thermo-
dynamic homogeneity of the equilibrium free energy from
Eq. II A, that is, to test the stability of the replica-symmetric
solution with respect to replications of the phase space of the
relevant order parameters.

B. Free energy with discrete hierarchies of replica-symmetry
breaking

A natural way to start with replications of the original
model is simply to use two replicas. It was done in detail
for the Ising spin glass.20 It was demonstrated there that
although free energy was lowered in the system with two
replicas, the instability and thermodynamic inhomogeneity
of the replica-symmetric solution was made worse. It is
necessary to continue analytically the replicated free energy to
an arbitrary positive replication index to analyze dependence
of free energy on the replication index. Making the replication
index a continuous variable is possible only if the symmetry
of the matrix of the local overlap susceptibilities possesses the
symmetry introduced by Parisi in his construction within the
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replica trick. Instead of numbers of replicas used we introduce
a number of hierarchies of replicas that distinguish different
solutions. A solution with K hierarchies is determined from a
saddle point of a free-energy functional,

−βfK (q,{	χl},{ml})

= β2J 2

4
(p − 1)

{(
1 − q −

K∑
j=1

	χj

)2

−
K∑

j=1

mj	χj

×
[
	χj+2

(
q+

K∑
l=j+1

	χl

)]}
+
∫

D(p−1)(y) ln ZK
K (y),

(7a)

ZK
l (y,{λ}l+1) =

[ ∫
D(p−1)(λl)

(
ZK

l−1

)
(y,{λ}l)ml

] 1
ml

(7b)
and {λ}l = λl, . . . ,λK . The initial zero-level partition sum

reads
Z0 (y,λ) ≡ ZK

0 (y,{λ}1)

=
p∑

A=1

exp

⎧⎨
⎩βJ

⎛
⎝√

qyα +
K∑

j=1

√
	χjλ

α
j

⎞
⎠ eα

A

⎫⎬
⎭ .

(7c)

The equilibrium state for this free energy is characterized
by the averaged square magnetization q and a set of K pairs
	χl,ml for l = 1,2, . . . ,K . Thermodynamic homogeneity of
a K-level hierarchical solution is achieved if 	χK+1 = 0,
which leads to independence of the system on the next
replicating parameter mK+1.19 The overlap susceptibilities
0 � 	χl � 1 generally form a decreasing sequence, since
we demand that the last one should vanish in the thermo-
dynamically homogeneous system. The indices counting the
replica hierarchies ml can be arbitrary. There is, however,
a degeneracy in the hierarchical free energy. We obtain
fK+1 = fK if mK+1 = 0,mk,∞. It means that we obtain at
least one new equilibrium solution for a pair 	χK+1,mK+1

with mK+1 < mK . The new mean-field solution is acceptable if
it leads to a smaller thermodynamic inhomogeneity measured
by 	χK+1 < 	χK . In the asymptotic solution near the critical
temperature of the Ising spin glass the new solution with
mK+1 < mK leads to a higher free energy fK+1 > fK .21,22

There is also another stationary solution for mK+1 > mK

that, in the Ising model, lowers the free energy and worsens
thermodynamic inhomogeneity. Hence, it is unacceptable. We
can do a similar analysis of the KRSB free energy, Eq. (7),
near the transition temperature of the Potts glass.

We start with a solution with a first level of replica-
symmetry breaking. An explicit mean-field free energy of the
Potts glass with 1RSB reads

−βf1 = β2

4
(p − 1)

× [(1 − q − 	χ )2 − m	χ (	χ + 2q)]

+ 1

m

∫
D(p−1)(y) ln

∫
D(p−1)(λ) Z

(p)
0 (y,λ)m . (8)

The partition function for the p-state Potts model is con-
structed by using the representation in Eq. (3). For the
three-state model we obtain explicitly

Z
(3)
0 (y,{λ}1) = exp

⎧⎨
⎩βJ

√
2

⎛
⎝√

qy1 +
K∑

j=1

√
	χjλ

1
j

⎞
⎠
⎫⎬
⎭

+ exp

⎧⎨
⎩βJ

⎡
⎣√3

2

⎛
⎝√

qy2 +
K∑

j=1

√
	χjλ

2
j

⎞
⎠

−
√

1

2

⎛
⎝√

qy1 +
K∑

j=1

√
	χjλ

1
j

⎞
⎠
⎤
⎦
⎫⎬
⎭

+ exp

⎧⎨
⎩−βJ

⎡
⎣√3

2

⎛
⎝√

qy2+
K∑

j=1

√
	χjλ

2
j

⎞
⎠

+
√

1

2

⎛
⎝√

qy1 +
K∑

j=1

√
	χjλ

1
j

⎞
⎠
⎤
⎦
⎫⎬
⎭ . (9)

Properties of the mean-field theory of the Potts glass with
1RSB have been analyzed by several groups.15,23,24 The most
prominent feature of the solution of the Potts mean-field
model with 1RSB and the number of states p � 3 is its
local stability near the transition to the low-temperature glassy
phase. One could conclude from this result that the hierarchical
construction of the mean-field free energy stops just at 1RSB
and no Parisi solution with FRSB exists in the region of local
stability of 1RSB. We demonstrate on the asymptotic solution
below the transition temperature to the glassy phase that the
mean-field equations of the Potts glass are degenerate and
allow for a cascade of coexisting metastable sates including
the Parisi FRSB solution that is marginally stable, as in the
Sherrington-Kirpatrick model.

C. Parisi solution with a continuous replica-symmetry breaking

It is not necessary to derive a mean-field free energy with
FRSB via checking stability of free energies with finite-
many hierarchies of discrete replica-symmetry breakings. It
is sufficient to look at the behavior of the hierarchical free
energy in the continuous limit. It obeys a differential equation
derived first by Parisi for the Ising spin glass.4 If we introduce a
parameter λ ∈ (0,1) and denote X = qEA − q =∑l 	χl , then
the λ-dependent free energy g(λ,h) in the continuous limit
of the replica-symmetry breaking hierarchy with K → ∞
and 	χl ∝ K−1 obeys a differential equation that for a
many-component spin model reads

∂g(λ,h)

∂λ
= X

2

[
∂2g(λ,h)

∂hα∂hα
+ m(λ)

∂g(λ,h)

∂hα

∂g(λ,h)

∂hα

]
, (10)

where m(λ) is a continuous limit of the replica indices ml from
the solutions with discrete replica hierarchies.

Having this differential equation we can try to resolve it
on a phase space of the order-parameter functions m(λ). One
of us recently suggested an explicit representation for the free
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energy obeying the Parisi differential equation (10).25 It can
easily be generalized to the Potts glass for which we obtain

−βfc[q,X,m(λ)]

= log p + β2

4
(p − 1)(1 − q − X)2 − β2

2
(p − 1)X

×
∫ 1

0
dλ m(λ)[q + X(1 − λ)] + 〈g(1,y

√
q)〉y, (11a)

where 〈F (y)〉y = ∫ D(p−1)(y)F (y) and

g(ν,h) = Tλ exp

{
X

2

∫ ν

0
dλ[∂h̄α ∂h̄α

+m(λ)g′
α(λ,h + h̄)∂h̄α ]

}
g0(h + h̄)

∣∣
h̄=0 (11b)

with the initial local free energy g0(h) =
ln
∑p

A=1 exp{βhαeα
A}. We introduced an evolution operator

represented via a “time-ordering” operator Tλ ordering
products of λ-dependent noncommuting operators from left
to right in λ-decreasing succession. We further denoted
g′

α(λ,h) ≡ ∂hα
g(λ,h). We used an auxiliary vector field

h̄ = (h̄1,h̄2, . . . ,h̄p−1) to generate the necessary derivatives
of the bare free energy g0.

Free energy, Eq. (11), is stationary with respect to variations
of variables q and X and function m(λ) for every λ ∈ (0,1). It is
straightforward to show that g(λ,h) obeys differential equation
(10). Although representation (11) of a mean-field free energy
with a continuous FRSB of the Potts glass is implicit, it is
self-contained and allows us to derive explicit stationarity
equations for the order parameters and other quantities. It
also enables to reach directly approximate or asymptotic
solutions without using solutions with finite numbers of replica
hierarchies and studying their stability. We use representation
(11) here to derive an asymptotic solution with a continuous
replica-symmetry breaking of the Potts glass with p � 4 states
below the transition temperature to the glassy phase.

III. ASYMPTOTIC SOLUTION NEAR THE CRITICAL
TEMPERATURE

Full-scale solutions of the mean-field equations of the Potts
glass are not available due to their complex structure. What we
can explicitly obtain are only asymptotic limits of the solutions
with various degrees of replica-symmetry breaking. We hence
expand asymptotically the replica-symmetric solution, the
solutions with discrete finite-many hierarchies of the replicated
spin variables, as well as the Parisi solution with the continuous
order-parameter function. The expansion coefficients will be
calculated with the program MATHEMATICA. We expand the
corresponding free energies to the fifth order in the small
expansion parameter τ = (1 − T/Tc), where Tc = J = 1
is the temperature of a continuous transition to the low-
temperature glassy phase at which different mean solutions
can be distinguished. Since we assume a continuous transition
to the glassy phase, our analysis is restricted to the Potts model
with the number of states p � 4. The derived asymptotic solu-
tions allow us, however, to analyze the asymptotic behavior of
the glassy phase below the transition temperature as a function
of a continuous parameter p.

A. Replica-symmetric solution

The simplest mean-field state is a stationary solution of the
replica-symmetric free energy from Eq. (6). The only order
parameter is the average of the square of local magnetizations
q = N−1∑

i m
α
i mα

i = 〈mαmα〉y. This parameter vanishes in
the high-temperature paramagnetic phase and starts to grow
continuously from zero below the transition point to the glassy
phase. The corresponding stationarity equation for the replica-
symmetric order parameter derived from free energy, Eq. (6),
reads

(p − 1)q + 1 = p

p∑
A=1

∫
D(p−1)(y)

exp
{
2β

√
qyαeα

A

}
Z0(y)2

. (12)

We do not want to evaluate fully the Gaussian integrals on the
right-hand side of Eq. (12), but rather only near the transition
temperature. Since the transition is expected to be continuous
we can assume that the order parameter q is small and expand
free energy, Eq. (6), into a power series in q. We cut the
expansion at the fifth order. The explicit expression for the
expanded free energy is given in the Appendix in Eq. (A1).
The first term in the expansion of the free energy proportional
to q2 changes sign at β = 1, indicating a continuous transition
to an ordered phase. The transition is continuous where the
third order of the expansion is positive, that is, for p � 6.

It is sufficient to expand order parameter q to the third order
of the expansion parameter τ = 1 − T to obtain the expansion
of free energy to the fifth order. The expansion calculated with
MATHEMATICA reads

q
.= 4τ

6 − p
+ 2(−7p2 − 60p + 180)τ 2

3(6 − p)3

+ 8(p4 + 300p3 − 1044p2 + 4320p − 7776)τ 3

9(6 − p)5
. (13)

Inserting this expansion into Eq. (A1) we obtain an asymptotic
expression for the replica-symmetric free energy:

β

p − 1
fRS

.= 8τ 3

3(6 − p)2
+ 4(p2 − 84p + 252)τ 4

3(6 − p)4

+2(29p4 + 1320p3 + 54360p2 − 294624p + 421200)τ 5

45(6 − p)6
.

(14)

The asymptotic expansion based on smallness of the order
parameter breaks down at p = 6, indicating a change in the
way the transition to the glassy phase occurs. Notice that the
expanded free energy of the Potts glass in Eq. (14) coincides
with that of the Ising spin glass for p = 2.22

B. 1RSB solution

The next step beyond the replica-symmetric solution is a
state with the first level of replica-symmetry breaking. Its free
energy is described by three order parameters: q,	χ,m. We
derive their defining equations from the stationarity point of
the 1RSB free energy in Eq. (8). To be able to write down
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these equations in a condensed way we first introduce a useful
notation:

Z0(y,λ) =
∑
A

EA(y,λ) , (15a)

EA(λ,y) = exp
{
β[

√
qyα +

√
	χλα]eα

A

}
. (15b)

Further on we will need

tα =
∑

A eα
AEA(y,λ)

Z0(y,λ)
, (15c)

ρ = Z0(y,λ)m

〈Z0(y,λ)m〉λ . (15d)

An equation for the equilibrium order parameter q derived
from ∂f1/∂q = 0 reads

(p − 1)(q + (1 − m)	χ )

= (1 − m)〈〈ρ tαtα〉λ〉y + m〈〈ρ tα〉λ〈ρ tα〉λ〉y . (16)

Analogously from ∂f1/∂	χ = 0 we obtain

(p − 1)(q + 	χ ) = 〈〈ρ tαtα〉λ〉y. (17)

Finally, the equation for parameter m is

m
β2

4
(p − 1)	χ (2q + 	χ )

= 〈〈ρ ln Z0(y,λ)〉λ〉y − 〈ln Z1(y)〉y, (18)

where Z1(y) = [
∫
D(p−1)(λ)Z0(y,λ)m]1/m ≡ 〈Z0(λ,y)m〉1/m

λ .
We simplify the stationarity equations in that we assume

that parameters q and 	χ are small near the transition to the
glassy phase. We then expand free energy f1 from Eq. (8) to the

overall fifth order in these parameters. An explicit expression
for the expanded free energy is given in the Appendix, in
Eq. (A2). It allows us to derive explicit equations for the order
parameters of the 1RSB solution. They are straightforward
to derive but are rather lengthy. That is why we do not list
them explicitly. We give here only the result of the asymptotic
expansion in the small expansion parameter τ . The results
were again derived with the aid of MATHEMATICA. The glassy
phase of the Potts model allows for multiple solutions with
discrete replica-symmetry breakings.

We found a double degeneracy of the 1RSB solution. Both
solutions have the same parameter m to the two lowest orders
in τ :

m
.= p − 2

2
+ 36 − 12p + p2

8(4 − p)
τ . (19)

One nontrivial 1RSB solution then leads to the order parame-
ters

q(1) .= 0 , (20a)

	χ (1) .= 2

4 − p
τ + 228 − 96p + p2

6(4 − p)3
τ 2, (20b)

while the second one has both parameters nonzero:

q(2) .= −12 + 24p − 7p2

3(4 − p)2(p − 2)
τ 2 , (21a)

	χ (2) .= 2

4 − p
τ − 360 − 204p − 6p2 + 13p3

6(4 − p)3(p − 2)
τ 2 . (21b)

Both solutions have the same asymptotic free energy to the
fifth asymptotic order:

β

p − 1
f1RSB

.= τ 3

3(4 − p)
+ [p(11p − 102) + 204]τ 4

12(4 − p)3

− (p{p[(18744 − 1103p)p − 120648] + 325728} − 317232)τ 5

720(4 − p)5
. (22)

Unlike the replica-symmetric solution we can see that the
asymptotic expansion with small parameters q and 	χ

breaks down already at p = 4 above which we expect a
discontinuous transition from the paramagnetic to a 1RSB state
at T0 > 1.

The 1RSB solution has a higher free energy than the replica-
symmetric one. The difference is of order τ 3:

f1RSB − fRS
.= (p − 2)2(p − 1)τ 3

3(4 − p)(6 − p)2
. (23)

The two stationary states of the 1RSB free energy, Eq. (A2),
behave differently as a function of the parameter p. The
former solution is physical for all values of p, unlike the latter
which becomes unphysical for p > p∗ ≈ 2.82 where q(2) from
Eq. (21a) turns negative. It is also the region of parameter p

where the first solution is locally stable as can be seen from
the stability function

�
(0)
1 = p − 1 − β2

∑
αβ

〈〈ρ[tαβ − (1 − m)tαtα]2〉λ〉y

.= τ 2(p − 1)

6(4 − p)2
(7p2 − 24p + 12), (24)

which is positive in this region. We denoted

tαβ =
∑

A eα
Ae

β

AEA(y,λ)

Z0(y,λ)
. (25)

The first 1RSB solution q(1),	χ (1) is not physically in-
consistent and is locally stable for p > p∗. It should not break
into solutions with a higher number of hierarchies of replicated
spins. That is why it has been considered the equilibrium state
of the Potts glass on a “high-temperature” interval of the glassy
phase.
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The two asymptotic solutions behave differently when
approaching the Sherrington-Kirkpatrick model, p → 2. The
first is regular and goes over at p = 2 to a new 1RSB solution
with q = 0. Since both 	χ and m are nontrivial, it is a solution
breaking replica symmetry. This solution was not discussed in
Ref. 21 as we excluded the q = 0 case. The second solution is
singular in the limit p → 2. The singularity can be seen first in
the second order in the expansion parameter τ . Consequently,
the asymptotic limits τ → 0 and (p − 2) → 0 do not commute
and the result depends on the value of ratio τ/(p − 2). Due
to this singularity we cannot unambiguously continue the
second solution to the Sherrington-Kirkpatrick model. This
nonanalyticity is connected with emergence of spin-reflection
symmetry in the two-component Potts (Ising) model.

C. KRSB solution

Although we have a locally stable solution of the 1RSB
free energy for p > p∗, there is another unstable solution that
decays to a solution with a higher number of hierarchies of the
replicated spins. We hence can investigate possible solutions
of free energies with an arbitrary number of spin hierarchies.

We start with stationarity equations for the KRSB free
energy from Eq. (7). The equation for the order parameter q

reads

(p − 1)q = 〈〈tα〉K〈tα〉K〉y, (26)

where we denoted 〈F 〉l(y,{λ}l+1) = ∫ D(p−1)(λl)ρl(y,{λ}l)
〈F 〉l−1(y,{{λ}l), ρl(y,{λ}l) = Zl−1(y,{λ}l)ml /〈Zml

l−1〉λl

(y,{λ}l+1). We further abbreviated 〈X〉λl
= ∫ D(p−1)λl X.

Equations for the overlap susceptibilities are

(p − 1)	χl = 〈〈〈tα〉l−1〈tα〉l−1〉K〉y − 〈〈〈tα〉l〈tα〉l〉K〉y. (27)

They are accompanied by equations for scaling parameters ml

having the following form:

ml

β2

4
(p − 1)	χl = 〈〈ln Zl−1〉K〉y − 〈〈ln Zl〉K〉y

2(q +∑K
i=l+1 	χi) + 	χl

(28)

with l = 1, . . . ,K .
One cannot solve these equations fully but we can reach

their solution in the asymptotic limit below the transition
temperature to the glassy phase as done for the replica-
symmetric and 1RSB solutions. We obtain only a single
solution for K > 1 within the leading-order asymptotic limit
τ → 0 :

qK .= − 1

3K2

12 − 24p + 7p2

(4 − p)2(p − 2)
τ 2 , (29)

	χK
l

.= 1

K

2

(4 − p)
τ , (30)

mK
l

.= p − 2

2
+ 2

4 − p

[
3 + 3

2
p − p2

+
(

3 − 6p + 7

4
p2

)
2l − 1

2K

]
τ . (31)

We can see that the KRSB solution behaves unphysically
in the same way as the second 1RSB solution does. The
averaged square of local magnetizations is negative for p > p∗

where the first 1RSB solution is locally stable. Negativity of
q means that local magnetizations are imaginary and the so-
lution is unphysical. This deficiency, however, decreases with
the increasing number of spin hierarchies and disappears in
the limit K → ∞. It is analogous to negativity of entropy
in the low-temperature solutions of KRSB approximations of
the Sherrington-Kirkpatrick model.

Free-energy density of the KRSB solution increases with
increasing the number of hierarchical levels,

β

p − 1
fKRSB

.= τ 3

3(p − 4)
+ [p(11p − 102) + 204]τ 4

12(p − 4)3

+ (p{p[p(16p − 265) + 1686] − 4532} + 4408)τ 5

10(p − 4)5

− (7p2 − 24p + 12)2τ 5

720K4(p − 4)5
, (32)

and reaches its maximum at K = ∞. Since the overlap
susceptibilities are linear in 1/K , the limit K → ∞ leads to a
solution with a continuous order-parameter function.

D. Continuous replica-symmetry breaking

We showed in the preceding section that the Parisi contin-
uous full RSB solution is not isolated and there is a cascade
of discrete KRSB states, even in the region of stability of
a 1RSB solution, converging to the full continuous RSB.
The asymptotic expansions of these solutions are singular
in the limit of the Ising spin glass, p = 2. The singularity,
however, vanishes in the limit K = ∞ and the asymptotic
expansion in τ of the Parisi solution appears to be analytic
around p = 2. The leading asymptotic order of the full RSB
solution can then be obtained from the limit of the discrete
KRSB approximations of the preceding section. To lift the
degeneracy in the asymptotic region T → Tc, we have to
expand the order-parameter function to higher powers of the
small parameter τ . We use the explicit representation in Eqs.
(11) to determine the asymptotic limit of the Parisi solution
near the transition temperature.

The characteristic function for the Parisi solution is a
“dynamical magnetization” with the following representation
via an evolution operator:

g′
α(λ,h) = E(X,h; λ,0) ◦ g′

0,α

≡Tν exp

{
X

∫ λ

0
dν

[
1

2
∂h̄β ∂h̄β +m(ν)g′

β(ν,h+h̄)∂h̄β

]}

× ∂g0(h + h̄)

∂hα

∣∣∣∣
h̄=0

. (33)

The defining equation for the stationary value of parameter
q reads

β2(p − 1)q = 〈g′
α(1,hη)g′

α(1,hη)〉η, (34)

where hη ≡ h + η
√

q. Parameter X is determined from

β2(p − 1)X = 〈E(X,hη; 1,0) ◦ [g′
0,α(hη)g′

0,α(hη)]〉η
−〈g′

α(1,hη)g′
α(1,hη)〉η . (35)
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Order-parameter function m(λ) is obtained from an identity

β2(p − 1)Xλ = 〈E(X,hη; 1,0) ◦ [g′
0,α(hη)g′

0,α(hη)]〉η
−〈E(X,hη; 1,λ) ◦ [g′

α(λ,hη)g′
α(λ,hη)]〉η (36)

valid for λ ∈ (0,1).
We next use the knowledge from the limit K → ∞ of the

discrete KRSB solutions, namely,

g′
α(1,0) = 0, (37)

expressing consistency of the continuous limit.
Equation (36) holds for all index variables λ ∈ (0,1).

Its form is unsuitable for determination of order-parameter
function m(λ). We can, however, perform analytic operations
on both sides of this equation to transform it to a more suitable
form. Applying the derivative with respect to λ leads to a
condition of marginal stability.25 It reads

β2(p − 1) = 〈E(X,0; 1,λ) ◦ [g′′
αβ(λ,0)g′′

αβ(λ,0)] . (38)

To derive this form we used representation (11) and differential
equation (10). Further derivation of the above equation with
respect to λ leads to an explicit representation for the order-
parameter function:

2m(λ) = E(X,0; 1,λ) ◦ [g′′′
αβγ (λ)g′′′

αβγ (λ)]

E(X,0; 1,λ) ◦ [g′′
αβ(λ)g′′

βγ (λ)g′′
γα(λ)]

. (39)

Evaluating this expression at the transition point Tc = 1 where
X = 0 andE = 1 we obtain 2m(0) = p − 2. Below the critical
temperature where X > 0 we expand order-parameter function
m(λ) in λX and X as independent parameters,

m(λ) =
∑

j=0,k=j

m[j,k]λjXk, (40)

where k is the order of the asymptotic expansion and
determines the asymptotic precision. We expand analogously
the λ-dependent free energy to be able to resolve evolution
operator E. We have to keep dependence of the free energy on
an external magnetic field, and hence

g(λ; h) = g0(h) +
∑

j=1,k=j

g[j,k; h]λjXk . (41)

We expand all quantities in powers of X and λX and solve
each equation for individual orders independently. We do not
list here all equations for the expansion parameters. Nontrivial
expansion parameters m[j,k] and g(j,k) = g[j,k; 0] to the
order k = 5 are listed in the Appendix.

The low-temperature glassy phase is reached when there
is a nontrivial solution of Eq. (35) for parameter X. In the
asymptotic limit X → 0 we obtain an equation allowing for a
nontrivial solution if β > 1:

0 = 1

6
X3β8[β2(4p2(3m[0,0] − 19)

+ 6p(m[0,0]2 − 29m[0,0] + 114)

− 12(2m[0,0]2 − 33m[0,0] + 105) + p3)

+ 2(p − 4)(3m[0,1] + m[1,1])]

+ 1

2
X2β8(2p(m[0,0] − 10) − 8m[0,0]

+p2 + 50) + (p − 4)Xβ6 + β2(β2 − 1). (42)

Using expansion coefficients m[j,k] from the Appendix we
obtain the first four exact powers in parameter τ = (β − 1)/β:

X = 2

4 − p
τ − p(p + 12) − 36

(4 − p)3
τ 2 − 560 − 4p[p(11p − 57) + 136]

(4 − p)5
τ 3

− p(p{p[p(71p − 705) + 5832] − 25832} + 54960) − 44560

(4 − p)7
τ 4 + O(τ 5) (43)

being small (finite) for p < 4. We can analogously evaluate the free energy of the Potts glass. Using again expansion coefficients
m[j,k] we obtain an asymptotic expansion up to the fifth order in X of g(1,0):

g(1,0)

p − 1
= log(p)

p − 1
+ Xβ2

2
+ 1

8
(p − 4)X2β4 − 1

48
(p(p + 38) − 112)X3β6 − 1

384
{p[p(19p + 194) − 3828] + 7896} X4β8

+ X5β4[4m[3,3] + 3(p{p[(1765 − 576p)p + 45394] − 322428} + 493032)β6]

5760
+ O(X6). (44)

We insert the asymptotic values of parameters X and m[3,3]
and obtain an explicit dependence on the small parameter τ :

β

p − 1
fc(τ )

.= 1

3(4 − p)
τ 3 + p(11p − 102) + 204

12(4 − p)3
τ 4

+ (p{p[p(16p − 265) + 1686] − 4532} + 4408)
10(4 − p)5

τ 5 .

(45)

It is easy to demonstrate that the free energy of the full RSB
solution is higher than the free energies of the discrete RSB
solutions. We have

β(fc − fKRSB)
.= (p − 1)(p(7p − 24) + 12)2τ 5

720K4(4 − p)5
(46)

and

β(fc − fRS)
.= (p − 1)(p − 2)2τ 3

3(4 − p)(6 − p)2
. (47)
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The Parisi-like solution with a continuous order-parameter
function has the highest free energy as in the SK model and
represents the true thermodynamic equilibrium of the Potts
glass for 2 � p < 4.

IV. DISCUSSION AND CONCLUSIONS

In this paper we studied the asymptotic behavior of the
mean-field p-state Potts glass below the transition temperature
to the glassy phase defined by instability of the replica-
symmetric solution. We analyzed separately the replica-
symmetric solution, solutions with 1RSB, KRSB for K > 1,
and a solution with continuous RSB. We separated the 1RSB
scheme, since its free energy is the only one with two distinct
stationary states. We found that the RSB solutions peel off
from the replica-symmetric one continuously for p � 4 so that
the small expansion parameters are q, the averaged square of
the local magnetization, and the overlap susceptibilities 	χl

between neighboring hierarchies of spin variables l − 1 and
l. We expanded the corresponding free energies to the fifth
order in τ = 1 − T/Tc to distinguish these order parameters
in individual states. The asymptotic expansion allowed us to
analyze the behavior of the Potts glass also as a function of
parameter p as a continuous variable connecting solutions for
2 � p < 4. We were able to distinguish two regions where
the solutions with finite-many replica hierarchies behave
differently. The two regions are separated by a critical value
p = p∗ ≈ 2.82.

The Potts model in the region with 2 � p < p∗ has only
a single solution representing the true equilibrium. It is the
solution with continuous RSB being marginally stable. The
solutions for the schemes with finite-many replica hierarchies
are all unstable as in the case of the Ising spin glass. The
KRSB solutions are, however, nonanalytic around the Ising
limit, p = 2. A singularity in the asymptotic expansion of these
solutions emerges in the second order of τ for p = 2. It means
that there is no analytic continuation of the KRSB solutions
from the Ising spin glass to the Potts one. This nonanalyticity is
caused by spin-reflection symmetry present only in the Ising
model. The 1RSB free energy of the Potts model deserves
special attention. Apart from the asymptotic solution with q �=
0 singular at p = 2 we found another solution with q = 0 free
of any singularity in the limit p → 2. This solution can hence
be analytically continued to a 1RSB solution at p = 2 with
nonzero parameters 	χ and m. Such analytic continuation
has a lower free energy than the standard 1RSB solution with
q > 0 discussed in Ref. 21. It is interesting to note that the
1RSB solution of the SK model with q = 0 decays to solutions
with a higher number of replica hierarchies. The asymptotic
expansion of parameters 	χ and m for the general KRSB
solution reads

	χK
j = 1

K
τ + (6K2 − 1)

6K3
τ 2 ,

mK
j = [2(K − j + 1) − 1]

K
τ

+ (12K2 + 1)[2(K − j + 1) − 1]

6K3
τ 2 .

All these KRSB solutions with q = 0 are unstable, have a
lower free energy than the KRSB solutions with q > 0, and

converge toward the Parisi full RSB solution where q = 0 as
well.

The RSB schemes with finite-many hierarchies change
their behavior after passing a critical value p = p∗ where the
stability function of the first 1RSB solution, �

(0)
1 , becomes

positive, indicating its local stability. Moreover, the second
1RSB solution and all other KRSB schemes turn unphysical,
since the averaged square of the local magnetization goes
through zero and gets negative, q < 0 for p > p∗. It is,
however, important that the negativity of parameter q decreases
with increasing K and approaches zero in the continuous limit
K → ∞. The unphysical KRSB states converge then toward a
solution with full continuous RSB for which q = 0. Hence, the
continuous RSB solution does not experience any unphysical
behavior for p � p∗. It remains marginally stable for all values
of p, has the highest free energy from all studied construction
schemes, and is thermodynamically homogeneous. The only
observable change in the full RSB solution for p > p∗, as
discussed in Ref. 12, is a change in the sign of the derivative
of order-parameter function m(λ), cf. coefficient m[1,1] in the
Appendix.

To conclude, we analyzed the asymptotic behavior of the
mean-field random Potts glass with the number of states p < 4
below the transition to the glassy phase. We demonstrated
that a Parisi-like solution with continuous replica-symmetry
breaking emerges simultaneously with the instability of the
replica-symmetric solution. Its existence is independent of the
local stability of the 1RSB solution observed for p > p∗ ≈
2.82. We found that the solution with continuous RSB in the
Potts model is a limit of other unstable solutions with discrete
RSB that decay toward it, as in the Sherrington-Kirkpatrick
model. These solutions are unphysical, since the averaged
squared local magnetization is negative, but the resulting limit
with continuous RSB is free of any unphysical behavior. We
studied in this paper only the Potts model with p � 4, but
our construction of the asymptotic expansion in parameter
X = qEA − qSK can be extended also to p = 4 + ε for which
X � 1. There we expect that replica-symmetry breaking
solutions emerge above the critical temperature of instability of
the replica-symmetric one. The solution with continuous RSB
does not seem to display any singularity at p = 4. The question
to be answered in the Potts model with p > 4 is: which
solution represents the true equilibrium state in the region
of coexistence of the replica-symmetric and replica-symmetry
breaking solutions?
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APPENDIX: EXPANDED FREE ENERGIES NEAR THE
CRITICAL TRANSITION TEMPERATURE TO THE

GLASSY PHASE

Free energy of the replica-symmetric solution has only a
single parameter q that we can use as the expansion parameter
below the critical transition temperature to the glassy phase.
We expand free energy to the fifth order, although third order
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would be sufficient to distinguish it from the replica-symmetry
breaking ones. We obtain for q � 1,

β

p − 1
fRS

.= β2

4
q2(β2 − 1)

+ β6

12
(p − 6)q3 + β8

48
(p2 − 30p + 90)q4

+ β10

240
(p3 − 114p2 + 1236p − 2520)q5. (A1)

We explicitly expand only the 1RSB solution from all
discrete KRSB ones with two small expansion parameters
q and 	χ . It is necessary to expand it to the fifth order
to distinguish it from higher-order RSB solutions and the
continuous full RSB one. We obtain

β

p − 1
f1

.= β

p − 1
fRS + 1 − m

2

(
q(β2 − 1)β2 + 1

2
(p − 6)q2β6.

+ 1

6
(p2 − 30p + 90)q3β8 + 1

24
(p3 − 114p2 + 1236p − 2520)q4β10

)
	χ

+ 1 − m

4

(
(β2 − 1)β2 + qβ6(2m + p − 6) + 1

2
q2β8[10m(p − 4) + p2 − 30p + 90]

+ 1

6
q3β10[2m(19p2 − 276p + 630) + p3 − 114p2 + 1236p − 2520]

)
	χ2

+ 1 − m

6

(
mβ6 + 1

2
(p − 6)β6 + 1

2
qβ8[6m2 + 6m(2p − 9) + p2 − 30p + 90]

+ 1

4
q2β10[30m2(3p − 10) + 6m(8p2 − 129p + 308) + p3 − 114p2 + 1236p − 2520]

)
	χ3

+ 1 − m

8

[
m2β8 + 1

6
m(12p − 54)β8 + 1

6
(p2 − 30p + 90)β8

+ q(4m3β10 + 4m2(5p − 19)β10 + 1

6
mβ8(50p2β2 − 840pβ2 + 2064β2)

+ 1

6
β8(p3β2 − 114p2β2 + 1236pβ2 − 2520β2))

]
	χ4

+ 1 − m

10

(
m3β10 + m2(5p − 19)β10 + 1

24
m(50p2 − 840p + 2064)β10

+ 1

24
(p3 − 114p2 + 1236p − 2520)β10

)
	χ5 (A2)

The full continuous free energy is defined via its expansion
coefficients in Eq. (41). Their values to the fifth order at zero
magnetic field read

g(1,1) = β2

2
, (A3)

g(1,l) = 0, l > 1, (A4)

g(2,2) = 1
4β4(m[0,0] − 1), (A5)

g(2,3) = 1
4β4m[0,1], (A6)

g(3,3) = 1
12β4(β2(m[0,0] − 1)(2m[0,0] + p − 6)

+m[1,1]), (A7)

g(2,4) = 1
8β4m[0,2], (A8)

g(3,4) = 1
24β4(2β2m[0,1](4m[0,0] + p − 8)

+m(1,2)), (A9)

g(4,4) = 1
96β4(2β4(m[0,0] − 1){6p(2m[0,0] − 5)

+ 6(m[0,0]2 − 9m[0,0] + 15) + p2}
+ 2β2m[1,1](6m[0,0] + p − 10) + m[2,2]),

(A10)

g(2,5) = 1
24β4m[0,3], (A11)

g(3,5) = 1
72β4(3β2{m[0,2](4m[0,0] + p − 8)

+ 4m[0,1]2} + m[1,3]), (A12)

g(4,5) = 1
288β4(6β4m[0,1]{6p(4m[0,0] − 7)

+ 6(3m[0,0]2 − 20m[0,0] + 24) + p2}
+ 3β2{m[1,2](6m[0,0] + p − 10)

+ 12m[0,1]m[1,1]} + m[2,3]), (A13)
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g(5,5) = 1
1440β4(6β4m[1,1]{p(38m[0,0] − 56)

+ 36m[0,0]2 − 206m[0,0] + p2 + 212}
+ 6β6(m[0,0] − 1){2p2(25m[0,0] − 57)

+ 12p(10m[0,0]2 − 70m[0,0] + 103)

+ 24(m[0,0]3 − 19m[0,0]2 + 86m[0,0]

− 105) + p3} + 3β2{m[2,2](8m[0,0] + p

− 12) + 12m[1,1]2} + m[3,3]) (A14)

The corresponding expansion coefficients of the order-
parameter function to the third order are

m[0,0] = p − 2

2
, (A15)

m[0,1] = 1
2 [(3 − 2p)p + 6]β2, (A16)

m[1,1] = 1
4 [p(7p − 24) + 12]β2, (A17)

m[0,2] = (p + 2)[p(p + 9) − 27]β4, (A18)

m[1,2] = − 1
2 {p[p(17p + 19) − 228] + 204} β4, (A19)

m[2,2] = 3
4 (p − 2)[p(25p − 32) − 44]β4, (A20)

m[0,3] = − 3
2 (p{p[(p − 29)p + 332] + 68} − 1504)β6,

(A21)

m[1,3] = 3
2 (p{p[2p(5p + 46) + 935] − 4296}
+ 3684)β6, (A22)

m[2,3] = − 9
4 (p{p[p(52p + 285) − 1006] − 1068}

+ 3016)β6, (A23)

m[3,3] = 9
8β6(p{p[p(283p − 488) − 1208] + 1184}
+ 1776) (A24)
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