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Local electronic structure information contained in energy-filtered diffraction patterns
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We analyze the information contained in energy-filtered diffraction patterns measured on core-level edges.
By inversion of the sum rules for electron energy loss near edge structures we calculate the reciprocal space
distribution of the contribution to the total signal originating from spin moment, orbital moment, spin-orbital
interaction, and individual components of magnetic and spin-orbital anisotropy tensors. We demonstrate, in
particular, that the diffraction patterns contain information about all three vector components of the spin and
orbital magnetic moments.
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I. INTRODUCTION

The quantitative understanding of orbital and spin magnetic
moments on a microscopic level is key to many phenomena
in modern magnetism. In this context, the x-ray magnetic
circular dichroism (XMCD) technique is of central importance
with its possibility to determine magnetic spin and orbital
moments (mS and mL) in an atom-specific way. It was
recently shown that the electron magnetic circular dichroism
(EMCD) technique1 in the transmission-electron microscope
(TEM) can equally be used to determine the mL/mS ratio.2

To determine the mL/mS ratio, both techniques, XMCD
and EMCD, make use of sum rules.3–6 In these, intensities
measured in x-ray and electron-energy-loss spectra are related
to the local magnetic characteristics. As was shown later,
sum rules are not limited to spin and orbital moments. Also
other physical properties described by a set of local operators
discussed in Refs. 5 and 7 can be extracted from polarized
spectral measurements. In the electron-energy-loss near-edge
structures (ELNES)—the spectroscopic method behind the
EMCD technique—the measured signal is a function of both
electron energy loss and scattering vector q. By inverting the
sum rules expressions we develop an analysis tool, which
allows one to study partial spectroscopic signals that originate
from local magnetic characteristics described by each of these
operators—as a function of scattering vector q.

II. THEORY

Here we summarize the theory behind our calculations.
A concise summary of the Bloch-waves theory is presented
first, then the ELNES sum rules in rotationally invariant form
are expressed in terms of irreducible operators introduced by
Ankudinov and Rehr.7 In the following section the sum rules
are inverted in order to obtain simple algebraic expressions for
real and imaginary parts of energy-integrated mixed dynamical
form factors (MDFFs).

A. Bloch-waves approach

The Bloch-waves theory for calculation of the dynamical
diffraction effects dates back to the middle of the last century8

and entered textbooks about electron diffraction.9,10 Its

extension to electron-energy-loss spectroscopy was introduced
independently by groups of Kohl and Schattschneider.11,12

Here we will quote only the key expression, which will be
helpful in the context of this work. We follow the notation of
Ref. 13.

In a crystal, the double-differential scattering cross section
(DDSCS) of fast electrons with energy E0 and incoming wave
vector kin scattered into direction kout and losing energy E is
given by the expression
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where γ is the relativistic factor and a0 is Bohr radius.
Summation variables j,l,j ′,l′ are indexing the Bloch
waves—the eigenstates of fast electrons in a crystalline
sample, g,h,g′,h′ index their plane-wave components. Index a
labels the atom positions in the sample and Na is the number
of these scattering centers. Vectors q,q′ denote momentum
transfers between the plane-wave components of the Bloch
waves. Approximately, one can write q = kout − kin + h − g
and similarly for q′. More precisely, q also depends on indices
j and l (see Ref. 13 for more details). The matrix element
Sa(q,q′,E) is the energy-loss-dependent MDFF,14 which will
be the subject of the following sections. Finally, the coefficient
X

jlj ′l′

ghg′h′(a) is a shorthand notation for a product of Bloch
coefficients and phase factors (see Ref. 13).

A remark on the notation: In the expression above we
used S(q,q′,E) to denote the energy-dependent MDFF. The
sum rules are expressed via energy integrals of spectra over
an energy range of a selected core level (edge). Because
the energy dependence of DDSCS is mainly determined by
the MDFFs, it will be useful to introduce a notation for
energy-integrated MDFFs over a particular edge j± (where
j ± ≡ l ± s; l and s are orbital and spin magnetic moments of
the initial states, respectively). We will use Sj±(q,q′) to denote
the MDFF integrated over the energy region corresponding
to the j± edge, i.e., dropping the energy variable E and
attaching the edge index j±. In a somewhat unfortunate clash
of notation, the “S” will be used also as a spin operator, but
always with the “hat” sign, e.g., Ŝ or Ŝi for a vector spin
operator or its Cartesian component (i = x,y,z).
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B. ELNES sum rules

Ankudinov and Rehr7 presented a complete set of six dipole
sum rules for the x-ray absorption spectroscopy (XAS) spectra,
which can be expressed in terms of the following six operators:

Ô1 = 2L(2L − 1)Nh1̂/(3Ne), (2)

Ô2;i = (2L − 1)L̂i, (3)

Ô3;ij = (L̂iL̂j + L̂j L̂i)/2 − δijL(L + 1)1̂/3, (4)

Ô4;i = 2L(L − 1)[Ŝi − (L̂iL̂ · Ŝ + L̂ · ŜL̂i)/L], (5)

Ô5 = 2(L − 1)L̂ · Ŝ/L, (6)

Ô6;ij = L̂i(L̂ · Ŝ)L̂j + L̂j (L̂ · Ŝ)L̂i − L(L̂i Ŝj + L̂j Ŝi), (7)

where i,j are coordinate components and L is an orbital
quantum number of final states in dipole transitions from
initial states with an orbital quantum number l. We assume
l → l + 1 ≡ L, i.e., we neglect the l → l − 1 transitions. Nh

and Ne denote the number of holes and number of electrons,
respectively, in the shell with orbital quantum number L. These
are connected by the relation Nh = 2(2L + 1) − Ne. Ŝ and L̂
are spin and orbital momentum vector operators; 1̂ is the unity
operator, i.e., Tr[1̂ρ̂L] = Ne with ρ̂L a density matrix—all
operators acting within the dipole-selected shell of final states.

As shown in Ref. 7, it is possible to express an integrated
XAS spectrum as a linear combination of ground-state mean
values of Ô1, . . . ,Ô6 operators multiplied by photon polar-
ization vectors. Or vice versa, suitable linear combinations of
polarized XAS spectra allow one to separate a mean value of
any of these six operators. This is one of the ways to derive
the well-known spin and orbital moment XMCD sum rules.3,4

A useful relation between the operator Ô4 and the magnetic
dipole moment operator T̂ allows one to reformulate Eq. (5)
into a more familiar, but equivalent form,

Ô4;i = 2

3
(2L − 1)L(L − 1)

[
Ŝi + 2L + 3

L
T̂i

]
. (8)

Contrary to x-ray absorption, the EELS spectra cannot
be described by a single inelastic transition matrix element
with well-specified momentum-transfer vectors. The EELS
spectrum is a combination of a multitude of inelastic transition
with various momentum-transfer vectors q, q′ weighted by
coefficients given by dynamical diffraction conditions. This
had to be taken into account in the derivation of the EELS sum
rules. The spin and orbital EMCD sum rules have been inde-
pendently reported in two articles by Calmels et al.6 and Rusz
et al.5 The latter work presents a complete set of four electron-
energy-loss spectroscopy (EELS) dipole transition sum rules in
a rotationally invariant form, which we will briefly show below.

To derive the final expressions for the EELS sum rules
we need to find an equivalent of a difference spectrum as
in XMCD. For that we need two different final wave-vector
directions kout, which are connected by a symmetry operation
of the whole experimental geometry, including incoming
beam and crystal structure orientation. Particularly, we need
a symmetry operation that inverts the direction of magnetic

moments, such as a mirror plane parallel to magnetic-moment
directions. In such conditions it can be shown that the two
measured spectra can be simulated with the same Bloch fields;
just the order of vectors q,q′ in MDFFs becomes interchanged,
which, in turn, inverts the sign of the imaginary part of
the MDFF. Assuming that we can identify two such wave
vectors kout1 and kout2, we denote the sum and difference of
corresponding spectra by S(E) and D(E), and their energy
integrals over a particular edge j we denote simply as Sj

and Dj . Then the complete set of ELNES sum rules can be
formulated in the following form:
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where the coefficient Kqq′ summarizes all prefactors, including
the multiple product of Bloch coefficients and atom-dependent
phase factors X

jlj ′l′

ghg′h′(a), originating from dynamical diffrac-
tion effects, i.e.,
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[see Eq. (1)]. For more details we refer the reader to Refs. 5
and 13.

C. Inversion of sum rules

The procedure of deriving the EELS sum rules can be
inverted: i.e., we can express an energy-integrated MDFF in
terms of mean values of operators Ô1 · · · Ô6. It is a relatively
lengthy, but straightforward procedure, and we will state only
the final expressions,

Re[Sj±(q,q′)] ∝ L − δj−
2L − 1

〈X̂〉 ± L(L − 1)

2L − 1
〈Ŷ 〉, (14)

Im[Sj±(q,q′)] ∝ (q × q′)
2(2L − 1)

[(L − δj−)〈Ô2〉 ± 〈Ô4〉],
(15)

where

X̂ = (q · q′)NeÔ1 + q · Ô3 · q′, (16)

Ŷ = −(q̂ · q̂′)L2Ô5 + q · Ô6 · q′s. (17)

Combining these expressions with Eqs. (1) and (13) we can
calculate the diffraction pattern integrated over a selected edge
j by equation

dσ

d�
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≡ 1

2
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∑
qq′

Kqq′Sj (q,q′). (18)
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TABLE I. Ab initio calculated mean values of operators present
in the model expressions for energy-integrated MDFF for L2,3 edges
(L = 2) of late 3d transition metals. All values are calculated in
local density approximation within an atomic sphere with a radius
of 2.3 Bohr radii using the WIEN2k code,15 assuming magnetization
orientation along the (001) direction.

bcc Fe hcp Co fcc Ni

Nh 3.904 2.837 1.761
||〈L̂〉|| 0.048 0.086 0.049
||〈Ŝ〉|| 1.130 0.842 0.329
||〈T̂〉|| 2.8 × 10−4 9.6 × 10−4 2.0 × 10−4

〈L̂ · Ŝ〉 −0.051 −0.062 −0.049

Now we have a powerful tool to calculate how a signal
originating solely from, let us say, the x component of the
orbital magnetic momentum is distributed in the diffraction
plane. For this case (assuming the total orbital moment to
be normalized to one) we simply put in Eqs. (14)–(17) the
〈L̂x〉 ≡ 1 −→ 〈Ô2;x〉 = (2L − 1) and set mean values of the
y and z componets of this operator (as well as all the other
operators) to zero and calculate the diffraction pattern using
Eq. (18). Such calculations are reported in the next section.

Note a useful secondary outcome of these formulas: We
have obtained expressions for an ab initio dipole approx-
imation of energy-integrated MDFFs, since all the mean
values present in these expressions can be easily evaluated
by electronic structure calculations. As an example, we show
such values for bcc iron, hcp cobalt, and fcc nickel in Table I,
assuming that the anisotropy operators have negligible mean
values.

Accuracy of the dipole approximation for MDFF was
discussed in Ref. 13. It is known that for larger momentum-
transfer vectors, dipole approximation overestimates the
MDFF, which could reduce the accuracy of simulations at
larger scattering angles. In the above-mentioned manuscript
it was shown that so-called λ = 1 approximation improves
accuracy significantly. That can be added to Eqs. (14) and
(15) by explicitly including the radial integral ML(q, q ′) from
Eq. (13), expressed via spherical Bessel functions instead of
their linear approximations. Note that such extension also
requires a knowledge of radial parts of initial- and final-state
wave functions. Nevertheless, in the following text, we use
a simple dipole approximation in which ML(q,q ′) is q,q ′
independent.

III. RESULTS AND DISCUSSION

Here we summarize the results of our calculations for
various experimental geometries. The signal maps originating
from various operators are presented and their symmetries are
analyzed.

We chose the following parameters for our calculations: The
assumed crystal structure is body-centered cubic with lattice
parameters of bcc iron. The crystal surfaces are parallel, with
normals along the (001) direction. Acceleration voltage was set
to 300 keV. In systematic row calculations we assumed a beam
tilt toward the (016) direction, i.e., approximately 10◦ tilt from
(001) zone-axis orientation. This means that the systematic

row reflections are multiples of G = (200). All diffraction
patterns are calculated on a grid of 4.6G(200) × 4.6G(200) with
step 0.05G(200), with center at the transmitted beam and qx

axis along the systematic row with multiples of G(200).
The Cartesian coordinates x,y,z are oriented according to

the lattice vectors a,b,c. The lattice vector c is parallel to the
sample surface normals.

The dynamical diffraction calculations were performed
using the program DYNDIF, first reported in Ref. 13, with the
improved Bloch-waves convergence scheme.16 The conver-
gence parameter was set to 10−5, providing highly converged
results.

First we will state some general results originating from
symmetry and algebraic structure MDFF expressions. In total,
the operators Ô1 · · · Ô6 have 26 components, since we have
two scalar operators (Ô1 number of particles and Ô5 spin-
orbital interaction), two vector operators (Ô2 orbital moment
and Ô4 spin moment + magnetic dipole term), and two tensor
operators describing anisotropies. However, several of those
will lead to the same signal distribution in the diffraction plane,
up to an edge-dependent constant factor.17 For example, the
spin-orbital interaction will give the same signal distribution
as the number of holes, or the x component of orbital
momentum will have the same signal distribution as the x

component of spin momentum. They will only differ by an
edge-dependent prefactor. Another reduction of the number of
different distributions comes from the symmetry of the tensors
Ô4 and Ô6 stating Ôij = Ôji . Taking this into account, there
can be only ten different signal distributions, namely, one from
a scalar operator (let us choose Nh, number of holes), three
from a vector operator (e.g., spin moment vector components),
and three diagonal and three off-diagonal tensor components
(e.g., anisotropic spin-orbit tensor Ô6). We have calculated all
these distributions separately by always setting one of these
ten components to 1 and all the others to zero.

A. Two-beam case

We will show results first for the two-beam geometry,
which was the first suggested geometry for observation of
the EMCD signal.18 The incoming beam direction is set to
(016). The thickness-dependent maps of the signals from all
ten independent components are shown in Fig. 1.

By far the strongest relative signal comes from scalar
operators, i.e., number of holes Nh and also spin-orbital
interaction 〈Ô5〉 (not shown). A reciprocal space distribution
of these signals is shown in the first column of Fig. 1. This
contribution essentially determines the shape of the observed
diffraction pattern, including the thickness-dependent Pen-
dellösung oscillations of the intensities of the transmitted beam
and the Bragg-diffracted beam G = (200).

In practice, for lighter elements the value of Nh is larger
than the mean value of spin-orbital interaction 〈Ô5〉, therefore
it is the 〈Ô1〉 ∝ Nh that is the major contribution. For spin-orbit
split edges, such as L3 and L2, one can see from the first term
of Eq. (14) that Nh contributions are scaled in ratio 2 : 1 (or
L vs L − 1, in general). The spin-orbital interaction in the
valence band then distorts this ratio by adding contributions
of opposite signs to L2 vs L3 intensities, according to the
second term of Eq. (14). For instance, at the M4,5 edges of
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FIG. 1. (Color online) Reciprocal space distribution of the
signal, Eq. (18), at the L3 edge from number of holes, spin-orbital
anisotropic tensor (xx,yy,zz,xy,xz,yz), and spin moment vector
(x,y,z) components for two-beam case geometry. The signal from
the number of holes is scaled down by a factor of 20. The vertical and
horizontal axes give qx and qy in multiples of G(200).

actinides, the ratio of signal strength deviates considerably
from 3 : 2 (Ref. 19) due to strong spin-orbital interaction in
the valence 5f states. If we can neglect (or remove) other
contributions rather than Nh and spin-orbital interaction, we
can separate out the Nh and spin-orbit contributions owing to
the difference of their prefactors for L3 vs L2 edge. This is
actually used in the formulation of the “N” and “spin-orbit”
sum rules in the XAS.7,19 Similarly we separate the orbital
moment contribution from the spin moment (plus the magnetic
dipole term).

The signal from diagonal elements of the anisotropy
tensors 〈Ô3〉 and 〈Ô6〉 has an interesting distribution. The zz

component more or less enhances the Bragg spots, although
one can observe its tendency to shift the maxima toward the
positive qy direction. That seems to be a consequence of
the tilt, as will be seen below. The xx and yy components
are stronger. The xx component has a tendency to add a
signal in between the spots on the systematic row, forming
a dumbbell-like structure along the systematic row. The yy

component similarly adds a signal aside the spots, but in this
case in the perpendicular direction to the systematic row. All
these diagonal components lead to solely positive contributions
to the diffraction pattern.

The signal from off-diagonal elements of the anisotropy
tensors has varying sign throughout the diffraction plane. The
xy component forms d-orbital-like shapes, four-leaf clovers,
which are centered on Bragg spots. Their intensity follows
the Pendellösung oscillations. In case of a strong contribution
from this term, the Bragg spots would be slightly deformed
into elliptic shapes with diagonal main axes. The xy and yz

components lead to a displacement of the Bragg spot positions
along qx and qy directions, respectively.

Note that in cubic crystals the anisotropy contributions
should vanish, unless there is a spontaneous breaking of
symmetry, for example, an orbital ordering observed in

FIG. 2. (Color online) The same as in Fig. 1, but for the three-
beam geometry.

manganites.20 In other words, observation of anisotropy signal
in diffraction patterns can be used to study changes of the
local symmetry under phase transitions, even when the crystal
structure stays the same.

The magnetic contributions, which are the core of the
EMCD phenomenon, are shown in the last three columns.
According to a simplified interpretation of EMCD, stressing
its analogies with XMCD,1 one would expect to observe only
a signal from the magnetization parallel to the beam direction.
We can see here that, in general, this is not the case. This
will be seen more clearly in the zone-axis calculations below.
However, already here we can see that there is clearly a signal
from both Sy and Sz components and that they are all different
from each other21 (note that Sy has a signal on the systematic
row). This means that the EMCD experiment is sensitive to
both in-plane and out-of-plane magnetization components. A
more detailed discussion of distribution of the magnetic signal
is found in the next section, since the three-beam setup is the
preferred geometry for quantitative EMCD measurements.2,22

B. Three-beam case

The three-beam geometry was shown to be a preferred
choice for EMCD measurements due to its higher symmetry
and possibility to use signals from all four quadrants of the
diffraction plane by means of a double difference method.2,16

An inspection of the nonmagnetic contributions to the diffrac-
tion pattern shows that all observations made in the previous
section also apply here. The only additional property of maps
in Fig. 2 is a symmetry or antisymmetry of contributions with
respect to a vertical mirror axis passing through the transmitted
beam. This gives us the possibility to exploit symmetries to
enhance or remove certain contributions from the diffraction
plane by adding or subtracting the two diffraction half-planes
from each other.

Here we will mainly focus on the distribution of the
magnetic signal in the diffraction plane. Similarly to the
two-beam geometry, a magnetization along the x direction
does not produce a visible signal,23 which is a consequence
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of the dynamical diffraction. Qualitatively we can argue in
the following way: Eq. (15) shows that the magnetic-moment
components are scalarly multiplied by q × q′. We can estimate
typical relative sizes of x,y,z components of this vector prod-
uct. There are numerous contributions with large momentum
transfer along the systematic row (i.e., the x direction), where
all the strongly excited Bragg spots are located. For the y

direction, qy components will mainly originate from placement
of the detector relative to the incoming beam and eventually
from excited spots outside the systematic row of reflections.
Finally, for the z direction, apart from weak Bragg spots
outside the systematic row, the main source of qz is only
the energy-loss process that shortens the beam wave vector.
Therefore the magnetization components, which contain the
prefactor qx , will produce much stronger signals than the
others. Therefore the x component of q × q′ is on average
much smaller than y and z components, which explains why
the x component of the magnetization is suppressed in the
systematic row geometry.

Thus, the signal originating from the x component of
magnetization is weak, and conversely, contributions from y-
and z-direction magnetizations are much larger and mutually
of similar magnitude. Both have the same symmetry, therefore
in the three-beam geometry we cannot easily separate them.
Nevertheless, we have demonstrated that experiments measur-
ing EMCD in Lorentz mode should be able to detect in-plane
magnetization in magnetic thin films.24

Note that the signal originating from magnetization in the
y direction provides a nonzero signal directly at Bragg spots
(200) and (2̄00). Due to the antisymmetry of the magnetic
signal with respect to the vertical mirror plane, this component
has opposite sign at (200) and (2̄00) spots. The presence of
such signal components introduces a difference of the total
intensities of the {200} spots, despite that we are in an exact
three-beam orientation—i.e., expecting their intensities to be
the same. Relative strength of this effect is thickness depen-
dent. In our chosen geometry the signal per unit of magnetic
moment reaches more than 5% of the signal per hole under 10
nm and about 3% at 20 nm, respectively. Therefore it should be
feasible to detect in-plane magnetization via measurement of
the difference of intensities of crystallographically equivalent
Bragg spots. As an additional check one can use the fact that
on spin-orbit split edges, such as L3 and L2, the asymmetry of
intensities switches sign.

C. Zone-axis conditions

The zone-axis geometry is the most symmetric geometry
setup. Though, at first sight it seems to be rather challenging
for EMCD measurements due to strong dynamical diffraction
effects, which sensitively alter the distribution of the magnetic
signal as a function of thickness and orientation.16 Neverthe-
less, the zone-axis geometry allows one to observe the EMCD
signal and if the experimental conditions can be precisely
set and kept stable during the measurement of energy-filtered
TEM data cubes,2,22 it would provide substantial advantages
compared to systematic row geometries.

Most of the observations about properties of nonmagnetic
contributions made in previous sections apply here as well.
Of course, we now have higher symmetry, which makes all

diagonal components of anisotropic tensors symmetric with
respect to both horizontal and vertical mirror axes (Fig. 3). The
xx and yy components bring certain rectangular distortions,
while the zz component seems to only enhance the Bragg
spots. The xy component forms four-leaf clover shapes, and
xz and yx form dumbbell shapes along the x and y directions,
respectively, at the positions of Bragg spots.

Due to increased symmetry in the zone-axis orientation,
the operator maps for magnetization directions x and y differ
only by a rotation of 90◦ (similarly for 〈Ô6;xx〉 vs 〈Ô6;yy〉 and
〈Ô6;xz〉 vs 〈Ô6;yz〉, respectively). This is of course expected,
because from the dynamical diffraction point of view the qx

and qy directions are symmetrically equivalent and the local
electronic structure with magnetization along the x direction is
equivalent to magnetization along the y direction after rotating
by 90◦.

In Ref. 24 it was observed that the signal from in-plane
magnetization depends on the energy loss. We have studied this
influence in the zone-axis orientation by artificially changing
the energy-loss value. By reducing the energy-loss value
the in-plane magnetization signal becomes weaker. This can
be qualitatively explained in the following way. In order
to observe, let us say, magnetization along the x direction,
the momentum-transfer cross products q × q′ must have a
nonzero x component [see Eq. (15)]. That requires nonzero
qz components of momentum-transfer vectors. There are three
sources of the nonzero qz in the scattering processes: (1) shift of
detector orientation, which tilts the kout, (2) energy loss, which
shortens the kout, and (3) contributions from higher-order Laue
zones. The first effect increases linearly with the square root
of the acceleration voltage and quadratically as a function
of scattering angle, qz = kf (1 − cos �) ∝ √

U�2, where U

is the acceleration voltage and � is the scattering angle.
The value of qz reaches 0.05 a.u.−1 at 25 mrad scattering
angle and 300 keV acceleration voltage. Compared to typical
reciprocal lattice cell sizes, e.g., a	 = 1.16 a.u.−1 for bcc
iron, it is a very weak effect. The second effect provides
qz

kf
= 1 − kf

ki
= 1 −

√
U

U−E
≈ − E

2U
, where E is the energy

loss. At 300 kV voltage and an energy loss of 700 eV it gives
qz ≈ 0.2 a.u.−1, which is a considerably stronger effect. It is
not easy to qualitatively evaluate the contribution from higher
Laue zones, because that strongly depends on the dynamical
diffraction effects. However, when we artificially set the energy
loss to zero, the signal from in-plane magnetization dropped
down approximately by factors of 5–10, which suggests that
higher-order Laue-zone excitations do not contribute stronger
than tilting the kout. We can conclude that the intensity of the
in-plane magnetization signal scales approximately linearly
with the energy loss. For energy losses below 100 eV it
becomes a rather weak effect.

It is interesting to note that in an exact (001) zone-axis
orientation of a cubic crystal, we can separate contributions
from all three components of the magnetization vector from
a single diffraction pattern (Fig. 3). Observe that the signal
from the x component is symmetric with respect to the ky

axis, while both y and z components lead to an antisymmetric
distribution of the signal with respect to that axis. Therefore if
we sum the left diffraction half-plane with a mirror image of the
right diffraction half-plane, we remove contributions from the
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FIG. 3. (Color online) The same as in Fig. 1, but for (001) zone-
axis geometry.

y and z components, while the x contribution becomes
doubled. A subsequent difference of the upper and lower
diffraction quarter-planes removes the contributions from the
N term and spin-orbit term. It also removes the eventual
contributions from tensor operators Ô3 and Ô6, with the
exception of their yz term, the contribution of which has
the same symmetry properties as the contribution from the x

component of the magnetic signal. In an analogous way we can
extract the signal from the y component of the magnetization.

The contribution from the z component of the magnetiza-
tion is antisymmetric to both horizontal and vertical mirror
axes, therefore it can be extracted by the double difference
procedure.2 Its antisymmetry with respect to the kx = ky line
can moreover be used to remove the eventual xy components
from the anisotropy tensors.

Thus a single measurement of a diffraction pattern in the
zone-axis orientation allows one, in principle, to probe the
magnetization vector in all three dimensions and that is a
unique feature of EMCD. It is necessary to say, though, that
such analysis is only possible for structures with sufficiently

high symmetry, otherwise there might not be a sufficient
number of symmetry operations, which would allow such
simple separation.

IV. CONCLUSIONS

We have analyzed the physical information contained in
energy-filtered diffraction patterns. In the dipole approxima-
tion the signal is composed of distributions originating from
the number of holes, spin-orbital interaction, spin and orbital
magnetic moments, and anisotropy tensors. In the case of
highly symmetric diffraction patterns it is possible to isolate
individual components by exploiting its symmetry properties.
In more general cases, one can use such maps to fit the
measured diffraction pattern in order to decompose it into
a combination of theoretical distributions from individual
components of Ô1, . . . ,Ô6, in a way similar to that used in
Refs. 25 and 26.

We have shown that such diffraction patterns contain
information about all three components of the magnetization
vector—a unique feature of EMCD compared to x-ray-based
techniques.

As a side result, we have formulated an ab initio-based
dipole approximation for calculating mixed-dynamic form
factors. It allows for efficient evaluation of energy-integrated
MDFFs over a particular edge as a function of a few phys-
ical properties, which are easily obtainable from electronic
structure calculations.

We note that the formalism in the present paper can
be generalized beyond the dipole approximation by using
methods described in Ref. 27 to study higher multipole terms,28

such as quadrupoles, octupoles, or even the exotic rank five
triacontadipole term suggested to be responsible for hidden
order in URu2Si2.29
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