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We consider the Gaussian random field Ising model (RFIM) on the Bethe lattice at zero temperature in the
presence of a uniform external field and derive the exact expressions of the two-point spin-spin and spin-random
field correlation functions along the saturation hysteresis loop. To complete the analytical description and suggest
possible approximations for the RFIM on Euclidian lattices we also compute the corresponding direct correlation
functions (or proper vertices) and show that they decay rapidly with the distance in the weak-coupling/large-
disorder regime; their range, however, is not limited to the nearest-neighbor distance.
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I. INTRODUCTION

The random field Ising model (RFIM) at zero temperature
is a simple prototype of a class of disordered systems (such
as random magnets, martensitic materials, fluids in porous
solids, etc.) that exhibit hysteretic and jerky behavior when
slowly driven by an external field.1 The most interesting
feature of the model, which has been the subject of extensive
analytical and numerical studies, is the existence of a disorder-
induced nonequilibrium phase transition between two different
regimes of avalanches.2 This transition manifests through a
change in the shape of the magnetization hysteresis loop that
evolves from continuous to discontinuous as the disorder
strength is reduced. The discontinuity is associated to a
macroscopic avalanche involving a finite fraction of the spins
in the thermodynamic limit. As shown recently, this type
of mechanism plausibly explains the hysteretic behavior of
4He adsorbed in high-porosity silica aerogels.3,4 Interestingly,
this nontrivial behavior is already present on the Bethe
lattice (i.e., the infinite Cayley tree) where a fully analytical
characterization of the major and minor hysteresis loops,
the avalanche size distribution, and other quantities can be
obtained thanks to the tree topology.5–9 In this case, the out-
of-equilibrium phase transition occurs when the coordination
number z � 4 and is described by a traditional saddle-node
transition in the self-consistent field equation5 (which makes
the critical behavior the same as that for the infinite-range
mean-field model). In this work, we extend the analytical
description to the spin-spin and spin-random field correlation
(or Green’s) functions along the hysteresis loop, using the fact
that correlations on a treelike graph have a one-dimensional
character. For a Gaussian distribution of the random fields, the
spin-random field correlation function is also related to the
slope of the magnetization curve through a “susceptibility”
sum rule. The motivation for this calculation is twofold.
First, on the theoretical side, Green’s functions (or, better,
their matrix inverse, the so-called direct correlation functions
in liquid state theory or proper vertices in field-theoretic
language) may be used as the building blocks of approximate
theories, as illustrated by the recent computation of the
hysteresis loop in the three-dimensional soft-spin random

field model.10 Exact results, even for simple models, may
give some insight of the actual structure of these functions.
Secondly, on the experimental side, scattering methods are
now frequently combined with other standard probes (response
to an applied field or thermodynamic measurements) for
extracting information on the structure and the dynamics of
systems with quenched randomness (see, e.g., Ref. 11 in
the case of fluids adsorbed in porous solids). Knowing the
structure of the correlation functions can thus make easier the
interpretation of the scattered intensity.12

The outline of the paper is as follows. In Sec. II, we
define the model and give the expressions of the correlation
functions, first for the one-dimensional chain (correcting
the result obtained in Ref. 13), and then generalizing to
the Bethe lattice (the detailed calculations are presented in
Appendixes A and B). Analytical predictions are compared to
simulations performed on regular random graphs. In Sec. III,
we compute the corresponding direct correlation functions.
We then conclude.

II. MODEL AND CORRELATION FUNCTIONS

The RFIM is defined by the following Hamiltonian:

H = −J
∑
〈ij〉

SiSj +
∑

i

(H + hi)Si, (1)

where the N spins Si = ±1 are placed on the vertices of
a Bethe lattice with coordination number z. The first sum
is restricted to nearest-neighbor (n.n.) pairs and J > 0. H

is a uniform external field and the fields {hi} are random
variables drawn independently from a Gaussian distribution
ρ(h) = exp(−h2/2�)/

√
2π� with the variance � measuring

the strength of disorder.
The relaxation dynamics is the T = 0 limit of the Glauber

dynamics and consists in aligning the spins with their local
effective field at each time step,2

Si = sgn(fi), (2)
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where

fi = −∂H
∂Si

= J
∑
j/i

Sj + H + hi (3)

and the sum runs over the z nearest neighbors of site i.
The dynamics thus proceeds via a series of avalanches that
stop when a metastable state is reached, i.e., when all spins
satisfy Eq. (2). The saturation hysteresis loop is obtained by
adiabatically ramping H from −∞ to +∞ and back. Thanks to
the tree topology of the Bethe lattice and the abelian property
of the dynamics (i.e., the fact that the metastable state after
an avalanche does not depend on the order in which the spins
flip), the shape of the hysteresis loop can be exactly derived.
According to Ref. 5, the magnetization m(H ) along the lower
half (ascending) branch is given by

1

2
[m(H ) + 1] =

z∑
k=0

(
z

k

)
P ∗(H )k[1 − P ∗(H )]z−kpk(H ),

(4)

where pk(H ) (k = 0, . . . ,z) is the probability for a down spin
to flip up at the field H when k of its z nearest neighbors are
up,

pk(H ) =
∫ +∞

(z−2k)J−H

ρ(h)dh = 1

2
erfc

[
(z − 2k)J − H√

2�

]
,

(5)

[here, erfc(x) = (2/
√

π )
∫ ∞
x

du exp(−u2) is the complemen-
tary error function] and P ∗(H ) is the solution of the self-
consistent equation,

P ∗(H ) =
z−1∑
k=0

(
z − 1

k

)
P ∗(H )k[1 − P ∗(H )]z−1−kpk(H ).

(6)

This key quantity represents the conditional probability that a
nearest neighbor of spin i flips up before spin i. For z � 4, the
polynomial equation (6) has several solutions at low enough
disorder [for � < �c(z)] and the magnetization displays a
jump discontinuity at a coercive field Hc(�).

In the following, we are interested in calculating the
correlations along the loop between the spin at site i and the
spin or the random field at site j ,

Gss
ij = SiSj − Si Sj ,

Gsh
ij = Sihj , (7)

where the overbar denotes the average over the random field
distribution ρ(h) and the dependence on the applied field H

is implicit [hence, Si ≡ m(H ) as given by Eq. (4) along the
ascending branch]. Due to the average over disorder, the two
functions only depend on the distance between the two spins,
i.e., on n, the number of bonds between i and j . We thus denote
them by Gss(n) and Gsh(n), respectively.

Let us recall that at finite temperature and equilibrium,
because of the additional average over thermal fluctua-
tions, there are two distinct spin-spin correlation functions,
〈SiSj 〉 − 〈Si〉〈Sj 〉 and 〈SiSj 〉 − 〈Si〉 〈Sj 〉, where 〈· · · 〉 denotes
the thermal average.14 The former (the so-called connected or

truncated function) may be nonzero at T = 0 if the ground
state of the system is highly degenerate. This does not occur
when the random-field distribution is continuous and then only
the disconnected function Gss(n) remains nonzero. At T = 0,
one may also consider an average over all the metastable
states at a given field H and then distinguish again connected
and disconnected contributions.10 However, the connected
contribution vanishes along the hysteresis loop since there
is only one metastable state and, again, only Gss(n) remains.
On a regular Euclidian lattice, its Fourier transform is the
structure factor Ŝ(q), which is the quantity measured in
scattering experiments. Gss(n) should not be confused with the
avalanche correlation function that measures the probability
that the initial spin of an avalanche will trigger, in the same
avalanche, another spin at a distance n away.1 In particular, in
finite dimension, the algebraic decays of these two functions
at criticality are not described by the same exponent.

As was noticed only recently,10 for a Gaussian distribution
of the random fields, there exists a susceptibility sum rule
that relates the correlation function Gsh(n) to the slope of
the magnetization curve at T = 0. It is obtained by using the
following property of the Gaussian distribution:

∫
dhρ(h)hA(h) = −�

∫
dh

dρ(h)

dh
A(h)

= �

∫
dhρ(h)

∂A(h)

∂h
. (8)

Hence,

Sihj = �
∂Si

∂hj

, (9)

and by summing over i and j one gets

1

N

∑
i,j

Gsh
ij = �

dm

dH
. (10)

On the Bethe lattice, this becomes

Gsh(0) +
∞∑

n=1

cnG
sh(n) = �

dm

dH
, (11)

where cn = z(z − 1)n−1 is the number of sites distant from an
arbitrary site i by n � 1 bonds (i.e., the number of sites that
belong to nth shell).

To compute the correlation functions we first consider
the case of a one-dimensional (1D) chain (i.e., z = 2) and
then extend the results to the Bethe lattice with a generic
coordination number z. We find that

Gss(n) = λn−1[a + b(n − 1)], (12a)
Gsh(n) = λn−1Gsh(1) (12b)

for n � 1 [with Gss(0) = 1 − m2 due to the hard-spin con-
dition S2

i = 1, and Gsh(0) given by Eq. (B3)]. The explicit
expressions of λ, Gss(1) ≡ a, Gss(2) ≡ λ(a + b), and Gsh(1)
are given by Eqs. (23), (B1), (B10), and (B14), respectively.
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A. One dimension

The hysteresis loop in the 1D chain was calculated in
Ref. 15. In this case, there are only three probabilities
p0, p1, and p2 defined by Eq. (5), and from Eqs. (4) and (6),
the magnetization along the ascending branch is simply given
by

m = 2[(1 − P ∗)2p0 + 2P ∗(1 − P ∗)p1 + P ∗2p2] − 1

(13)

with P ∗ = p0/(1 − p1 + p0) (hereafter, to simplify the no-
tation, the dependence of all quantities on the field H is
dropped). The results on the descending branch can be obtained
by symmetry. The analytical calculation of the spin-spin
correlation function Gss(n) was first considered in Ref. 13
but the final expressions of a and b in Eq. (12a) are wrong
(see Appendix A); the dependence on the distance n, however,
is correctly given. Moreover, Gsh(n) was not considered. On
the other hand, the exact expressions of Gss(1) = SiSi+1 − m2

and Gsh(0) = Sihi were derived in Ref. 7 in order to compute
the energy per spin along the hysteresis loop. The complete
calculation that leads to Eqs. (12a) and (12b) is performed in
Appendix A. In particular, we obtain

λ = p1 − p0, (14)

as correctly found in Ref. 13. As shown in Fig. 1, Eqs. (12a)
and (12b) are in an excellent agreement with the results of
numerical simulations performed on random graphs with z =
2 (we also checked numerically that the expression of Gss(n)
given in Ref. 13 is not valid).

The two functions Gss(n) and Gsh(n) are thus characterized
by the same correlation length ξλ = (− ln λ)−1 = [− ln(p1 −
p0)]−1. However, Gss(n) is not a purely exponential function

-2 -1 0 1 2 3
H/J

0

0.1

0.2

0.3

0.4

0.5

G
ss
(n

)

-2 -1 0 1 2 3
H/J

0

0.1

0.2

0.3

0.4

0.5

G
sh
(n

)

n=1
n=2
n=3
n=4
n=5

FIG. 1. (Color online) Correlation functions Gss(n) and Gsh(n)
along the ascending branch of the hysteresis loop for z = 2 and � =
4. The simulation results (symbols) are compared to the predictions
of Eqs. (12a) and (12b) (lines). Simulations were performed on
random graphs with N = 106 and the results were averaged over
1000 disorder realizations.

because of the prefactor b(n − 1). Remarkably, a similar
behavior has been observed for the equilibrium RFIM in
the very few cases where the correlation function Gss

eq(n) =
〈SiSi±n〉 − 〈Si〉 〈Si±n〉 has been calculated exactly. This is
indeed the leading long-distance behavior observed at T > 0
with the special random-field distribution (somewhat related
to percolation) considered in Ref. 16 [in this model, however,
the T = 0 behavior is complicated and the correlation function
behaves at long distance as an exponential divided by n2 (see
Ref. 17). For the Gaussian distribution that we here consider,
no analytical expression is available for generic values of �

and T , but an exact result has been obtained in the universal
regime where the random field and the temperature are both
much smaller than the exchange coupling.18 For H = 0, the
leading long-distance behavior turns out to be also proportional
to n exp (−n/ξeq), where ξeq = 8J 2/(π2�) = (2/π2)LIM and
LIM is the Imry-Ma length that sets the typical size of the
domains in the 1D chain at T = 0.19 This coincidence is
noteworthy but it must be emphasized that the full expression
of Gss

eq(n) in this regime is much more complicated than the
one described by Eq. (12a) [moreover, for H �= 0, Gss

eq(n)
decays as a sum of exponentials]. The correlation length
ξλ along the hysteresis loop also behaves quite differently
from ξeq in the limit � 	 J : it goes to the finite value
1/ ln(2) in zero applied field (as H = 0 does not play any
special role along the hysteresis loop) and grows like ξλ ∼
(
√

πJ/
√

2�) exp(J 2/2�) for H = J , which is the value of
the field for which the susceptibility ∂m/∂H is maximum.

An interesting consequence of Eq. (12a) is that the structure
factor Ŝ(q) in the small-q regime is a superposition of a
Lorentzian and a Lorentzian-squared terms. By definition,

Ŝ(q) = Gss(0) +
∞∑

n=1

[eiqn + e−iqn]Gss(n), (15)

and using

+∞∑
−∞

eiqlλ|l| =
√

1 − x2

1 − x cos q
(16)

with

x = 2λ

1 + λ2
, (17)

we obtain after simple algebra

Ŝ(q) = A + B

1 − x cos q
+ C

[1 − x cos q]2
(18)

with

A = 1 − m2 + b − a

λ
, B = (a − b)

√
1 − x2 − b

λ
, (19)

C = b
1 − x2

λ
.
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The Lorentzian plus Lorentzian-squared structure that
emerges from Eq. (18) in the small-q regime is also found in
the mean-field theory of the equilibrium RFIM20 and is usually
used to fit experimental data on random magnetic systems.

In contrast, the spin-random field correlation function
Gsh(n) is a pure exponential for n � 1 so that its Fourier
transform simply reads

Ĝsh(q) =
[
Gsh(0) − Gsh(1)

λ

]
+ Gsh(1)

λ

√
1 − x2

1 − x cos q
. (20)

This yields

Ĝsh(q = 0) = Gsh(0) + 2

1 − λ
Gsh(1), (21)

and using the expression of the magnetization, Eqs. (4), and
(B3) and (B14) for Gsh(0) and Gsh(1), one can check that the
susceptibility sum rule, Ĝsh(q = 0) = �(dm/dH ), is indeed
satisfied. Note that the q-independent term inside brackets in
Eq. (20) is nonzero, which is a somewhat unusual feature [the
constant term A in Eq. (18) is also nonzero because Eq. (12a)
is only valid for n � 1]. As will be discussed in more detail in
Sec. III in the case of the Bethe lattice, this has a significant
consequence for the matrix inverse of Gsh (the so-called direct
correlation function).

B. Bethe lattice

In principle, the probabilistic reasoning used in Appendix
A for the 1D chain can be extended to the case of the Bethe
lattice with a generic coordination number z. This is how
the analytical expressions of Gss(1) and Gsh(0) were derived
in Ref. 8 in order to compute the energy per spin along the
hysteresis loop (thereby generalizing the 1D results of Ref. 7).
These expressions are recalled in Appendix B where we also
calculate Gss(2) and Gsh(1). However, using the same method
to derive the general expressions of Gss(n) and Gsh(n) is
unnecessarily complicated. Instead, one can simply exploit
the fact that there is a unique path connecting a given pair
of spins on a Bethe lattice so that the dependence of the
correlation functions on the distance n must be the same
as in one dimension (just like in nonrandom systems). This
implies that Eqs. (12a) and (12b) are also valid for the Bethe
lattice. Strictly speaking, we do not provide a demonstration
of this assertion but it is fully supported by numerical
simulations for small values of n, as illustrated in Figs. 2 and 3.
Equation (12a) for Gss(n) is also confirmed by the very recent
analytical calculations of Ref. 21. In that work, however, there
is some confusion between Gss(n) and the so-called avalanche
correlation function (using the terminology of Ref. 1). This
latter function can be shown to behave as a simple exponential
for n � 1 without the n − 1 prefactor.

The analytical expression of λ can then be obtained via the
susceptibility sum rule. Inserting Eq. (12b) in Eq. (11) yields

�
dm

dH
= Gsh(0) + z

1 − (z − 1)λ
Gsh(1), (22)
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FIG. 2. (Color online) Correlation functions Gss(n) and Gsh(n)
on a Bethe lattice with a coordination number z = 3 for � = 9 (the
curves result from an average over 5000 random graphs of size N =
105). The simulation results (symbols) are compared to the predictions
of Eqs. (12a) and (12b) (lines).

so that

λ = 1

z − 1

[
1 − z

Gsh(1)

� dm/dH − Gsh(0)

]
. (23)

Using Eqs. (4), (B3), and (B14), one can check that Eq. (14)
is recovered for z = 2. One can also check that Eq. (23) is
equivalent to the compact expression obtained in Ref. 21: λ =
(z − 1)−1∂F (P ∗)/∂P ∗, where F (P ∗) is the right-hand side of
Eq. (6).

For z � 4 and � < �c(z), the magnetization jumps dis-
continuously at the coercive field Hc(�), which corresponds
to a spinodal singularity where dm/dH → +∞.5,6 As can
be deduced from Eq. (22), this is due to the fact that
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FIG. 3. (Color online) Same as Fig. 2 for z = 4 and � = 4.
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FIG. 4. (Color online) The quantities λ(H ) (top) and μ(H )
(bottom) characterizing the exponential decay of the correlation and
direct correlation functions, respectively, for z = 4 and (a) � = 2, (b)
� = �c ≈ 3.173, and (c) � = 6. In (a), below the critical disorder
�c, λ and μ jump discontinuously at the coercive field Hc(�). In (b),
λ → (z − 1)−1 = 1/3 at the critical field Hc(�c) = J . Note that μ is
significantly smaller than λ in (c) above the critical disorder.

λ → (z − 1)−1, as illustrated in Fig. 4(b) for z = 4. Therefore
the correlation length ξλ = (− ln λ)−1 keeps a finite value at
all H and �, including at the critical point. This is indeed the
expected (and standard) behavior on the Bethe lattice where the
divergence of the susceptibility is generated by the exponential
growth of the number of sites at the distance n (due to the
hyperbolic-like geometry of the lattice) and is not associated
to a divergence of the correlation length.

III. DIRECT CORRELATION FUNCTIONS

We now investigate the structure of the direct correlation
functions (or one-particle irreducible functions, or else proper
vertices in field-theoretic language), which (roughly speaking)
are the matrix inverses of the correlation functions Gsh

ij and Gsh
ij

[see Eqs. (24) and (46) below]. As briefly mentioned in the
introduction, the motivation for this calculation is that proper
vertices may be simpler or at least shorter-ranged than the
Green’s functions, and therefore can be used as the building
blocks of approximate theories. For instance, in liquid-state
theory, the direct correlation function c(r), which is the matrix
inverse of the pair correlation function h(r) at equilibrium and
is defined via the so-called Ornstein-Zernike (OZ) equation,
is in general shorter-ranged than h(r) (essentially having the
range of the pair potential), irrespective of the thermodynamic
state.22 This feature is the starting point of the successful in-
tegral equation approach to the structure and thermodynamics
of simple liquids. For Ising spins on a lattice with nearest-
neighbor interactions, it is also a reasonable approximation
to assume that the matrix inverse of the spin-spin correlation
function is zero for n > 1.23 This can been used to build a very
accurate description of the three-dimensional Ising model24

and other spin models,25 including in the presence of quenched
disorder.26 More recently, a similar approximation has been
proposed to obtain an analytical description of the hysteresis

loop in the three-dimensional soft-spin random field model
at T = 0.10 It is therefore interesting to check whether the
direct correlation functions on the Bethe lattice are indeed
shorter-ranged than Gsh and Gsh.

We first consider the function Csh = {Csh
ij } defined by the

OZ equation
∑

k Csh
ik Gsh

kj = δij , i.e.,

Csh = [Gsh]−1, (24)

where Gsh and Csh are N × N matrices. As pointed out in the
preceding section, Gsh(n) is a pure exponential for n > 1, but
Gsh(1) �= λGsh(0). At first sight this is an innocuous feature
but it has an important consequence for Csh(n). Indeed, as is
well known (and is also shown below), if Gsh(1) were equal
to λGsh(0) and therefore Gsh(n) = λnGsh(0) for all n, Csh

would be simply proportional to A, the adjacency matrix of
the lattice (Aij = 1 if the vertices i and j are connected and
0 otherwise) and the range of Csh(n) would then be limited to
the n.n. distance.

In order to solve the Ornstein-Zernike equation (24), it
is convenient to consider the simple random walk on the
lattice where, at each time step, a particle jumps to any of
the z neighboring sites with probability 1/z. Indeed, Gsh is
directly related to the lattice Green function F(x), which is the
probability-generating function defined as (see, e.g., Refs. 27
and 28)

Fij (x) =
∞∑

τ=0

xτpτ
ij , (25)

where pτ
ij is the probability that the particle starting at i reaches

j after τ time steps. As is well known, one has

F(x) = (I − xM)−1, (26)

where M = (1/z)A. Since all sites are topologically equiva-
lent, one can choose the origin of coordinates as the origin of
the random walk and simply consider Fn(x) = ∑∞

τ=0 xτfτ (n),
where fτ (n) is the probability of being in the nth shell
after τ time steps. By definition, F0(x) = Fii(x) and Fn(x) =
cnFij (x), where i and j are connected by n � 1 bonds [recall
that cn = z(z − 1)n−1]. It can then be shown28 that

F0(x) = 2(z − 1)

z − 2 +
√

z2 − 4(z − 1)x2
,

Fn(x) = cn

[
r(x)

z − 1

]n

F0(x) for n � 1, (27)

with

r(x) = z −
√

z2 − 4(z − 1)x2

2x
. (28)

Using the identification

λ = r(x)

z − 1
, (29)

we readily see from Eq. (12b) that

Gsh = uF(x) + vI (30)

with

u = Gsh(1)

λF0(x)
, v = Gsh(0) − Gsh(1)

λ
. (31)
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Note that Eq. (29) can also be written as

λ = F1(x)

xF0(x)
= F0(x) − 1

xF0(x)
, (32)

which can be inverted to express x as a function of λ,

x = zλ

1 + (z − 1)λ2
. (33)

Therefore x → 1 when λ → (z − 1)−1 at the spinodal.
If v were equal to 0, one would simply have Csh =

[uF]−1 = u−1(I − xM) and Csh(n) would be zero for n > 1,
as stressed above. The matrix equation Csh = [uF + vI]−1 is
now easily solved:

Csh = 1

u

[
I + v

u
F−1(x)

]−1

F−1(x)

= 1

u

[
I + v

u
(I − xM)

]−1

(I − xM)

= 1

u + v

[
I − vx

u + v
M)

]−1

(I − xM)

= 1

u + v
F(x ′)(I − xM), (34)

where

x ′ = v

u + v
x. (35)

This yields

Csh
ij = 1

u + v

[
Fij (x ′) − x

z

∑
k/j

Fik(x ′)
]
, (36)

where k is connected to j . Hence,

Csh(0) = 1

u + v

[
F0(x ′) − x

z
F1(x ′)

]

= − u

v(u + v)
F0(x ′) + 1

v
,

(37)

Csh(1) = 1

u + v

{
F1(x ′) − x

z

[
F0(x ′) + F2(x ′)

z

]}

= − u

v(u + v)

F0(x ′) − 1

x ′ ,

and

Csh(n) = 1

u + v

{
Fn(x ′)

cn

− x

z

[
(z − 1)

Fn+1(x ′)
cn+1

+ Fn−1(x ′)
cn−1

]}

= 1

u + v

1

cn

{
Fn(x ′) − x

z
[Fn+1(x ′)+ (z − 1)Fn−1(x ′)]

}

= − u

v(u + v)

Fn(x ′)
cn

for n � 2, (38)

where we have used the recurrence relations28

F2(x ′) = z

x ′ F1(x ′) − zF0(x ′),

Fn+1(x ′) = z

x ′ Fn(x ′) − (z − 1)Fn−1(x ′) for n � 2 . (39)

Introducing

μ = F0(x ′) − 1

x ′F0(x ′)
, (40)

which is equivalent to

x ′ = zμ

1 + (z − 1)μ2
, (41)

we finally obtain

Csh(0) = 1

u + v
F0(x ′)(1 − μx) (42)

and

Csh(n) = − u

v(u + v)
F0(x ′)μn for n � 1 . (43)

For z = 2, one has F0(x) = (1 − x2)−1/2 and one can check
that Eq. (43) is in agreement with the expression obtained by
directly solving the OZ equation in Fourier space. One can also
check that the following susceptibility sum-rule is satisfied,

�
dm

dH
=

[
Csh(0) + z

1 − (z − 1)μ
Csh(1)

]−1

. (44)

We thus see from Eq. (43) that Csh(n) exhibits an expo-
nential decay like Gsh(n), but with a different correlation
length ξμ = (− ln |μ|)−1. Moreover, since the sign of v =
Gsh(0) − Gsh(1)/λ depends on H , μ is not always positive
(see Fig. 4) and there is a range of H where the exponential
decay is modulated by an oscillating sign. It turns out, however,
that μ is significantly smaller than λ in the weak-coupling (or
large-disorder) regime, as illustrated in Fig. 4(c), so that Csh(n)
decreases rapidly with n. Indeed, expanding all quantities in
powers of J , one finds that

Gsh(1) = λGsh(0) + O(J 3), (45)

so that μ = O(J 3). Since Csh(1) = −J/� + O(J 2), this im-
plies that Csh(2) = O(J 4), Csh(3) = O(J 7), etc. Therefore set-
ting Csh(n) = 0 for n > 1 may be a reasonable approximation
above the critical disorder (for instance, one has J/�c ≈ 0.315
for z = 4 at the critical disorder).

A similar calculation can be performed for the direct corre-
lation function Css(n) associated to the spin-spin correlation
function Gss(n). It is defined via a second OZ equation

Css = −CshGssCsh (46)

whose origin (in terms of a Legendre transform) is explained
in Ref. 10. After some involved algebra, we obtain

Css(n) = μn−1[a′ + b′(n − 1)] (47)

for n � 1, were a′,b′ are functions of H/J and �/J , which
are not detailed here for the sake of brevity. Hence, Css(n) has
the same structure as Gss(n) with λ replaced by μ (the fact that
there is only one correlation length appearing in the final result
and not two as could be expected from Eq. (46) is due to some
remarkable cancellations occurring in the intermediate steps of
the calculation). As a consequence, Css(n) decreases rapidly
with n like Csh(n) (i.e., Css(2) = O(J 4), Css(3) = O(J 7), etc),
so that the n.n. approximation is also reasonable above �c.
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IV. SUMMARY AND CONCLUSION

In this work we have determined the two-point spin-spin
and spin-random field correlation (or Green’s) functions of
the zero-temperature Gaussian RFIM on a Bethe lattice along
the saturation hysteresis loop. This adds the model to the
short list of nonequilibrium systems for which the correlation
functions are analytically calculable. In the RFIM, these
functions are not known at equilibrium, even in one dimension,
except for very special random-field distributions or in the
universal regime of very small disorder. We find that the two
correlation functions decay exponentially with the distance
with the same correlation length. This length remains finite
at the disorder-induced critical point, which is the expected
behavior on a Bethe lattice. The spin-spin correlation function
also contains a prefactor proportional to the distance, so that
the corresponding structure factor is a sum of a Lorentzian
and a Lorentzian squared at small wave vector, just like in
the mean-field description of the equilibrium RFIM. This
gives some justification for using these simple functional
forms to describe the data obtained in scattering experiments
in RFIM-like systems (e.g., along the adsorption-desorption
isotherms in the case of gases adsorbed in disordered porous
solids). We also find that the direct correlation functions,
which are the inverses of the correlation functions in the
sense of matrices, have essentially the same analytic structure
as the correlation functions, but with a different correlation
length and a modulation of the sign (depending on the value
of the applied field). This correlation length, however, is
small, especially in the weak-coupling/large-disorder regime,
and it is thus reasonable to assume that the range of the
direct correlation functions is limited to the nearest-neighbor
distance above the critical disorder. Although this Ornstein-
Zernike type of approximation breaks down in the vicinity of
the critical point,29 it may the starting point of an analytical
description of the hysteresis loop in the three-dimensional
RFIM, as developed recently for the soft-spin version of the
model.10

APPENDIX A: CALCULATION OF Gss(n) AND Gsh(n)
IN THE 1D CHAIN

In this appendix, we present the calculation of the correla-
tion functions Gss(n) and Gsh(n) along the hysteresis loop in
the 1D chain (specifically, along the ascending branch obtained
by starting with a field H large and negative). The correlations
are obtained by generalizing the procedure used in Ref. 15 to
get the magnetization.

We first consider the spin-spin correlation function

Gss(n) = S0Sn − S0
2
. As stressed in the main text, the cal-

culation of Gss(n) was first considered in Ref. 13 but the final
expression is flawed. We therefore redo the whole calculation,
closely following the reasoning and the notations of Ref. 13
(note however that the calculation in Ref. 13 is performed
along the descending branch of the loop). By definition,

S0Sn =
∑
S0,Sn

S0Sn
n(S0,Sn)

= 
n(+,+) − 
n(+,−) − 
n(−,+) + 
n(−,−),

(A1)

FIG. 5. Schematic representation of the environment of the spins
S0 and Sn. In addition to the spin variables Si = ±1, we also use the
variables l1 = (1 + S−1)/2, l2 = (1 + S1)/2, r2 = (1 + Sn−1)/2, and
r1 = (1 + Sn+1)/2 taking the values 0,1.

where 
n(+,+) is the probability that spins at 0 and n are
both up and 
n(+,−),
n(−,+), and 
n(−,−) are defined
analogously.

To calculate the probabilities 
n(S0,Sn), we relax the spins
in two steps (a spin is relaxed when it is aligned with its local
field). In the first step, the spins S0 and Sn are kept down and
the other spins can relax. In the second step, we also allow S0

and Sn to relax. The crucial point is that the final state does not
depend on the order in which spins are relaxed.

In the first step, we need to compute the constrained proba-
bilities Gn(S1,Sn−1) (not to be confused with the correlations
functions) that the spins adjacent to S0 and Sn (see Fig. 5 for a
schematic representation) are in the state {S1,Sn−1}.

1. Constrained probabilities Gn(S1,Sn−1)

By definition,

Gn(S1,Sn−1) =
∑

S2...Sn−2

P (S1,S2 . . . Sn−2,Sn−1), (A2)

where P (S1,S2 . . . Sn−2,Sn−1) is the probability of the con-
figuration {S1,S2 . . . Sn−2,Sn−1} when the spins S0 and Sn are
pinned down and the spins between them are allowed to relax.

Carrying out the calculation as in Ref. 13, one easily
derives the following recurrence relations for the constrained
probabilities along the ascending branch of the hysteresis loop:

Gn(−,−) = (1 − p0)Gn−1(−,−) + (1 − p1)Gn−1(−,+),

Gn(+,−) = (1 − p0)Gn−1(+,−) + (1 − p1)Gn−1(+,+).

(A3)

Moreover Gn(−,+) = Gn(+,−) by symmetry, and Gn(+,+)
is obtained via the sum-rule

Gn(−,−) + Gn(+,−) + Gn(−,+) + Gn(+,+) = 1. (A4)

This gives the matrix equation

Gn = MGn−1, (A5)

where

Gn =

⎡
⎢⎣

Gn(−,−)

Gn(+,−)

Gn(+,+)

⎤
⎥⎦ (A6)
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and

M =

⎡
⎢⎣

1 − p0 1 − p1 0

0 1 − p0 1 − p1

p0 2p0 + p1 − 1 2p1 − 1

⎤
⎥⎦ . (A7)

Hence, Gn = Mn−1G1 with G1 ≡
[

1
0
0

]
. We then change to the

vector basis13

V =

⎡
⎢⎣

(1 − P ∗)2 +1 +1

P ∗(1 − P ∗) −1 0

P ∗2 +1 −1

⎤
⎥⎦ (A8)

[recall that P ∗ = p0/(1 − p1 + p0)] in which the matrix M

takes the form

M̃ = V −1MV =

⎡
⎢⎣

1 0 0

0 p1 − p0 1 − p1

0 0 p1 − p0

⎤
⎥⎦ , (A9)

so that

M̃n−1

=

⎡
⎢⎣

1 0 0

0 (p1 − p0)n−1 (n − 1)(1 − p1)(p1 − p0)n−2

0 0 (p1 − p0)n−1

⎤
⎥⎦ .

(A10)

To simplify the notation, we shift to the variables l2 ≡ (1 +
S1)/2 and r2 ≡ (1 + Sn−1)/2 that take the values 0 and 1, and
after some algebra we finally obtain

Gn(0,0) = (1 − P ∗)2 +
[
P ∗(1 − P ∗)

+ (n − 1)P ∗ 1 − p1

p1 − p0
+ P ∗

]
(p1 − p0)n−1,

Gn(1,0) = P ∗(1 − P ∗) −
[
P ∗(1 − P ∗)

+ (n − 1)P ∗ 1 − p1

p1 − p0

]
(p1 − p0)n−1, (A11)

Gn(1,1) = P ∗2 +
[
P ∗(1 − P ∗)

+ (n − 1)P ∗ 1 − p1

p1 − p0
− P ∗

]
(p1 − p0)n−1.

2. Calculation of Gss(n)

To compute 
n(S0,Sn) and then Gss(n), we now consider
the second step where S0 and Sn are relaxed. We define
P (S0,Sn|l1,S1 . . . Sn−1,r1) as the probability of the state
{S0,Sn} under the condition that the state {l1,S1 . . . Sn−1,r1} has
been reached after the first step (as indicated in Fig. 5, l1 and
r1 describe the states of the spins S−1 and Sn+1, respectively).
Knowing these probabilities and the probability of all possible
environments of S0 and Sn after the first relaxation step, we
can write


n(S0,Sn)

=
∑
l1r1

P ∗l1+r1 (1 − P ∗)2−l1−r1
∑

S1...Sn−1

P (S1 . . . Sn−1)

×
∑

S1...Sn−1

P (S1 . . . Sn−1)P (S0,Sn|l1,S1 . . . Sn−1,r1).

(A12)

If any of the spins {S1, . . . ,Sn−1} is up, the probability re-
lated to the second relaxation step is just a product of two inde-
pendent terms. On the other hand, if all the spins {S1, . . . ,Sn−1}
are down, the expressions of the probabilities are more com-
plicated since extra terms appear which account for the cases
where the flip of S0 (respectively, Sn) triggers an avalanche,
which make all the spins {S1...Sn−1} to flip up, changing the
environment or the state of Sn (resp. S0). This yields

P (−1, − 1|l1,S1 . . . Sn−1,r1)= (
1 − pl1+l2

)(
1 − pr1+r2

)
,

P (+1, − 1|l1,S1 . . . Sn−1,r1)=
{

pl1+l2

(
1 − pr1+r2

)
, if {S1 . . . Sn−1} �= {−1 · · · − 1},

pl1 (1 − pr1 ) −
(

p1−p0

1−p0

)n−1
pl1

(
pr1+1 − pr1

)
, if {S1 . . . Sn−1} = {−1 · · · − 1},

P (−1,+1|l1,S1 . . . Sn−1,r1)=
{(

1 − pl1+l2

)
pr1+r2 , if {S1 . . . Sn−1} �= {−1 · · · − 1},(

1 − pl1

)
pr1 − (

p1−p0

1−p0

)n−1(
pl1+1 − pl1

)
pr1 , if {S1 . . . Sn−1} = {−1 · · · − 1},

P (+1,+1|l1,S1 . . . Sn−1,r1)=
{

pl1+l2pr1+r2 , if {S1 . . . Sn−1} �= {−1 · · · − 1},
pl1pr1 + (

p1−p0

1−p0

)n−1[
pl1

(
pr1+1 − pr1

) + (
pl1+1 − pl1

)
pr1

]
, if {S1 . . . Sn−1} = {−1 · · · − 1},

(A13)

where l2 = (1 + S1)/2 and r2 = (1 + Sn−1)/2. Using Eqs. (A2), (A13), and the probability (1 − p0)n−1that all the spins
{S1 . . . Sn−1} are down after the first relaxation step, we then obtain


n(−,−) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)
(
1 − pl1+l2

)
(1 − pr1+r2 )

}
,


n(+,−) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)pl1+l2

(
1 − pr1+r2

) − (p1 − p0)n−1pl1 (pr1+1 − pr1 )

}
,
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n(−,+) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)
(
1 − pl1+l2

)
pr1+r2 − (p1 − p0)n−1

(
pl1+1 − pl1

)
pr1

}
,


n(+,+) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)pl1+l2pr1+r2 + (
p1 − p0)n−1pl1 (pr1+1 − pr1

) + (p1 − p0)n−1(pl1+1 − pl1 )pr1

}
,

(A14)

where P (l,r) ≡ P ∗l+r (1 − P ∗)2−l−r . One can check that the following exact relations are satisfied:


n(+,−) = 
n(−+), 
n(+,+) + 2
n(+,−) + 
n(−,−) = 1, 
n(+,+) + 
n(+,−) = 1
2 [m(H ) + 1], (A15)

where the magnetization m(H ) is given by Eq. (4).
In Fig. 6, Eqs. (A14) are compared to simulation results in the case n = 4. The excellent agreement confirms that the whole

calculation is correct.
Note that in Ref. 13 it is stated that the probabilities 
n(S0,Sn) are just linear combinations of the constrained probabilities

Gn’s without inhomogeneous terms. Equations (A14) show that this is only true for 
n(−−). Finally, inserting Eqs. (A14) in
Eq. (A1) yields

S0Sn =
∑
l1,r1

P (l1,r1)
∑
l2,r2

Gn(l2,r2)
(
1 − 2pl1+l2

)(
1 − 2pr1+r2

) + 4(p1 − p0)n−1
∑
l1,r1

P (l1,r1)pl1

(
pr1+1 − pr1

)
. (A16)

A simpler expression is actually obtained by using Eqs. (A15) to express Gss(n) in terms of 
n(−,−) only, as done in Ref. 13.
This finally yields

Gss(n) = 4

{

n(−,−) −

[
1 − m(H )

2

]2}
= (p1 − p0)n−1[a + b(n − 1)] (A17)

with

a = 4P ∗(Q∗ − P ∗)[2(1 − P ∗) − P ∗(Q∗ − P ∗)], b = 4P ∗(Q∗ − P ∗)2 (1 − p1)

(p1 − p0)
. (A18)

For z = 2, we recall that

P ∗ = p0

1 − p1 + p0
, Q∗ = p1 − p2

1 + p0p2

1 − p1 + p0
. (A19)

3. Calculation of Gsh(n) = S0hn

We now consider the spin-random field correlation function

Gsh(n) ≡ S0hn =
∑
S0,Sn

∫
dhnS0hn
n(S0,Sn,hn), (A20)

where 
n(S0,Sn,hn) is the probability density that the two spins S0 and Sn are in the state {S0,Sn} after full relaxation of the
system, with the random field acting on the spin Sn having a value within (hn,hn + dhn). The calculation of these probabilities is
straightforward since we already have computed the probabilities 
n(S0,Sn). There is no more integration over the random field
hn but the range of the field must be compatible with the state of the spin Sn. This gives


n(−, − ,hn) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)
(
1 − pl1+l2

)
ρ(hn)�[hn < 2(1 − r1 − r2)J − H ]

}
,


n(+, − ,hn) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)pl1+l2ρ(hn)�[hn < 2(1 − r1 − r2)J − H ]

− (p1 − p0)n−1pl1ρ(hn)�[2(1 − r1 − 1)J − H < hn < 2(1 − r1)J − H ]

}
,


n(−, + ,hn) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)
(
1 − pl1+l2

)
ρ(hn)�[hn > 2(1 − r1 − r2)J − H ]

− (p1 − p0)n−1
(
pl1+1 − pl1

)
ρ(hn)�[hn > 2(1 − r1)J − H ]

}
,
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n(+, + ,hn) =
∑
l1,r1

P (l1,r1)

{∑
l2,r2

Gn(l2,r2)pl1+l2ρ(hn)�[hn > 2(1 − r1 − r2)J − H ]

+ (p1 − p0)n−1pl1ρ(hn)�[2(1 − r1 − 1)J − H < hn < 2(1 − r1)J − H ]

+ (p1 − p0)n−1(pl1+1 − pl1 )ρ(hn)�[hn > 2(1 − r1)J − H ]

}
, (A21)

where �(· · · ) is the characteristic function of the domain
indicated by the argument (i.e., 1 inside the domain and 0
outside). Inserting in Eq. (A20), yields

S0hn =
∫

dhnhn[
n(+, − ,hn) + 
n(+, + ,hn)

−
n(−, − ,hn) − 
n(−, + ,hn)]

=
∑
l1,r1

P (l1,r1)
∑
l2,r2

Gn(l2,r2)
(
2pl1+l2 − 1

)

×
∫ +∞

−∞
dhnhnρ(hn)

+ 2(p1 − p0)n−1
∑
l1,r1

P (l1,r1)
(
pl1+1 − pl1

)

×
∫ +∞

2(1−r1)J−H

dhnhnρ(hn), (A22)

and finally

S0hn = 2�(p1 − p0)n−1

[∑
l1

P ∗l1 (1 − P ∗)1−l1
(
pl1+1 − pl1

)]

×
[∑

r1

P ∗r1 (1 − P ∗)1−r1ρ(2(1 − r1)J − H )

]
.

(A23)

APPENDIX B: CALCULATION OF Gss(2) AND Gsh(1) ON
THE BETHE LATTICE.

In this Appendix, we calculate Gss(2) and Gsh(1) on a Bethe
lattice with coordination number z. For completeness, we first
recall the expressions of Gss(1) and Gsh(0) obtained in Ref. 8:

Gss(1) + m2 = 1 − 4P ∗ + 4P ∗Q∗, (B1)

where Q∗ is given by

Q∗ =
z−1∑
k=0

(
z − 1

k

)
[P ∗(H )]k[1 − P ∗(H )]z−1−kpk+1(H ),

(B2)

and

Gsh(0) = 2�

z∑
k=0

(
z

k

)
[p∗(H )]k[1 − p∗(H )]z−k

× ρ[(z − 2k)J − H ]. (B3)

We recall that P ∗ (respectively, Q∗) is the probability that,
along the ascending branch of the loop, a spin is up given that
a neighbor is forced to be down (respectively, up).

1. Calculation of Gss(2)

To compute the correlations between two spins S1 and
S2 at the distance n = 2, we consider a central spin S0

and its z neighbors {S1, . . . Sz} as depicted in Fig. 7(a). By
definition,

S1S2 =
∑

S0,S1...Sz

S1S2P (S0,S1 . . . Sz)

=
∑
S1,S2

S1S2

⎡
⎣ ∑

S3...Sz

P (−1,S1 . . . Sz)

+
∑

S3...Sz

P (+1,S1 . . . Sz)

⎤
⎦

=
∑
S1,S2

S1S2[P (−1,S1,S2) + P (+1,S1,S2)], (B4)

where P (S0,S1, . . . ,Sz) is the probability of having the
configuration {S0,S1, . . . ,Sz} when the system is fully
relaxed.

-2 -1 0 1 2 3
H/J

0.0

0.2

0.4

0.6

0.8

1.0

Φ 4
(S

0
,S

4
)

Φ
4
(+,+)

Φ
4
(+, -)

Φ
4
(- , -)

FIG. 6. (Color online) Probabilities 
n(S0,S4) along the ascend-
ing branch of the hysteresis loop for z = 2 and � = 4. The simulation
results (symbols) are compared to the predictions of Eqs. (A14)
(lines). Simulations were performed on random graphs with N = 106

and the results were averaged over 1000 disorder realizations.
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(a)

(b)

FIG. 7. Schematic representation of the environment of (a) a
single spin S0 and (b) a pair of spins Si and Sj .

By relaxing the spins in two steps, we obtain

P (−1,S1 . . . Sz) = [1 − P ∗]z−q[P ∗]q(1 − pq), (B5)

P (+1,S1 . . . Sz) = [1 − Q∗]z−q

q∑
k=0

(
q

k

)

× [Q∗ − P ∗]q−k[P ∗]kpk, (B6)

where q is the number of neighbors of S0 that are up when the
system is fully relaxed,

q =
∑z

j=1 Sj + z

2
= 0,1, . . . ,z. (B7)

Equation (B5) is rather straightforward (recall that P ∗ is the
probability that a spin is up given that a neighbor is forced
to be down). In Eq. (B6), the summation accounts for all the
different ways of having S0 = 1 when q neighbors are up, and
the term in front of the summation accounts for the probability
that S0 has z − q of his neighbors down if it is up.

Using Eqs. (B5) and (B6), we find

P (−1,S1,S2) =
z−2∑
l=0

(
z − 2

l

)
[1 − P ∗]z−l−n[P ∗]l+n(1 − pl+n),

P (+1,S1,S2) =
z−2∑
l=0

(
z − 2

l

)
[1 − Q∗]z−l−n

[
l+n∑
k=0

(
l + n

k

)

× [Q∗ − P ∗]l+n−k[P ∗]kpk

]
, (B8)

where

n = S1 + S2 + 2

2
= 0,1,2. (B9)

We finally obtain the following expression for the correlations
at the next-nearest-neighbor distance:

S1S2 =
2∑

n=0

(−1)n
(

2

n

) z−2∑
l=0

(
z − 2

l

)

× {
[1 − P ∗]z−l−n[P ∗]l+n(1 − pl+n) + [1 − Q∗]z−l−n

×
[

l+n∑
k=0

(
l + n

k

)
[Q∗−P ∗]l+n−k[P ∗]kpk

]}
. (B10)

2. Calculation of Gsh(1)

To compute

Gsh(1) = Sihj =
∑
Si

∫
dhjSihjP (Si,hj ), (B11)

we again relax the spins in two steps so to obtain

P (Si,hj ) =
z−1∑
l=0

(
z − 1

l

)
P ∗l(1 − P ∗)z−1−l

×
z−1∑
r=0

(
z − 1

r

)
P ∗r (1 − P ∗)z−1−rP (Si,hj |l,r),

(B12)

where P (Si,hj |l,r) is the probability that the spin at i is in
the state Si after the second relaxation step, with the random
field acting on Sj having a value within (hj ,hj + dhj ), and
under the condition that the environment of Si and Sj is in the
state (l,r) after the first relaxation step [see Fig. 7(b)]. As in
Ref. 8, l = 1, . . . ,z − 1 (respectively, r = 1, . . . ,z − 1) is the
number of neighbors of Si (Sj ) that are up, without taking into
account Sj (respectively, Si).

These probabilities are given by

P (−1,hj |l,r) =
{

(1 − pl)ρ(hj ), if hj < (z − 2r)J − H,

(1 − pl+1)ρ(hj ), if hj > (z − 2r)J − H,

P (+1,hj |l,r) =
{
plρ(hj ), if hj < (z − 2r)J − H,

pl+1ρ(hj ), if hj > (z − 2r)J − H.
(B13)

Inserting these expressions in Eq. (B12) and after some algebra, we finally obtain

Gsh(1) = 2�

[
z−1∑
l=0

(
z − 1

l

)
P ∗l(1 − P ∗)z−1−l(pl+1 − pl)

] [
z−1∑
r=0

(
z − 1

r

)
P ∗r (1 − P ∗)z−1−rρ((z − 2r)J − H )

]
. (B14)

For z = 2 and n = 1, one can check that this equation gives back Eq. (A23).
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