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Green’s function for magnetostatic surface waves and its application to the study
of diffraction patterns
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This paper presents the two-dimensional (2D) Green’s function (GF) of magnetostatic surface waves (MSSWs)
in real space and the frequency domain, i.e., the spatial propagation pattern of MSSWs emitted by a point wave
source in a tangentially magnetized slab geometry, including the effect of finite damping. The theory first
derives an inhomogeneous differential equation of the spin system under a magnetostatic approximation. This
equation is translated into a Sturm-Liouville problem by introducing a Hermitian operator, and solved by the
eigenfunction expansion technique, which yields an integral expression of the GF in the form of a 2D inverse
Fourier transform. The obtained GF demonstrates various features characteristic of MSSWs, such as strongly
anisotropic propagation, angular confinement of energy flow from the wave source whose limit angle is defined
as the critical angle for the group velocity θg , and semicaustic beams along θg . We then calculate the 1D spatial
profiles and 2D diffraction patterns of MSSW propagation by convolving the GF with various wave source
distributions, and compare them with experimental results observed on a tangentially magnetized Permalloy film.
Comparison between these numerical and experimental results shows excellent agreement.
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I. INTRODUCTION

Magnetostatic waves (MSWs) have been a subject of
intensive research for more than five decades as a fundamental
excitation mode in high-frequency magnetization dynamics. If
a film is tangentially magnetized, rotational symmetry about
the axis normal to the film is broken. This results in anisotropic
wave propagation of MSWs. Such behaviors have been both
theoretically derived1,2 and experimentally observed3,4 by
many researchers.

Until the last decade, the most widely used experimental
techniques for the study of MSWs were (1) inductive probing,
which picks up ac magnetic fields using a coil4,5 and (2) Bril-
louin light scattering (BLS), which detects inelastic scattering
of a plane optical wave by a plane MSW.6,7 Since neither of
these can capture dynamic magnetization with a high lateral
resolution, most theoretical studies about the response of the
dynamic magnetization to excitation fields assumed either an
excitation field distribution having the form of a plane wave
or a laterally 1D system,8–11 in order to be applicable to these
techniques.

While these studies are quite useful for analyzing wide
MSW beams, many source distributions have a finite,
nonuniform spatial geometry that emits laterally confined
MSWs. Such situations have been attracting increased in-
terest with the recent introduction of two experimental tech-
niques, microfocus BLS (MF-BLS)12–19 and spatially resolved
ferromagnetic resonance scanning Kerr effect microscopy
(SRFMR-SKEM),20–23 which can measure both amplitude and
phase of local dynamic magnetization with sub-μm lateral
resolution.16,21 These techniques opened doors for studying
various wave physics problems of MSWs such as diffraction,
interference, spatial eigenmode profiles, scattering, and so on.
In order to analyze the results obtained by these new techniques
and understand the underlying wave physics in spin systems,
another form of response function is strongly sought, namely
the Green’s function (GF) in real space and the frequency
domain for a laterally 2D system, �m(�r,ω).

Physically, the GF represents the spatial distribution of
fields emitted by a point field source. Mathematically, it is an
integral kernel of inhomogeneous linear differential equations
appearing in various field problems. Once this information is
provided, many problems can be solved simply by convolving
it with the field source distribution. The GF is such a funda-
mental piece of knowledge that it has been derived for many
standard differential equations such as Poisson’s equation,
Helmholtz’s equation, diffusion equation to name a few. But
the systems for which the GF has been derived typically have a
high degree of symmetry that greatly simplifies its mathemat-
ical derivation. On the other hand, a tangentially magnetized
slab geometry requires very complicated mathematical treat-
ment due to its low symmetry. There have been some past
studies that attempted to derive the GF of MSWs.10,19,24–26 To
the author’s knowledge, however, they were either incomplete
or significantly simplified to circumvent such complexity, and
therefore their applicability is limited.

The goal of this work is to present the two-dimensional
(2D) GF of magnetostatic surface waves (MSSWs) excited in
a tangentially magnetized slab geometry including the effect
of finite damping. This paper consists of two main parts. The
first part is the calculation of the GF of MSSWs. In this part,
the mathematical theory for deriving the expression of the
GF is first described, then an algorithm for performing the
numerical calculation of it is presented, and finally various
features of the GF obtained by our approach are discussed.
The theory starts with the combination of the Landau-Lifshitz
equation and Maxwell’s equations in the magnetostatic limit,
which leads to an inhomogeneous differential equation of the
spin system having two source terms of different physical
origins. This is translated into a Sturm-Liouville problem by
introducing a Hermitian operator, and solved by the standard
eigenfunction expansion technique, which yields an integral
expression of the two GFs in the form of the 2D inverse Fourier
transform. We also introduce a finite Gilbert damping in the
theory and calculate the GFs for a lossy system. The GFs
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FIG. 1. Arrangement of the magnetic film, static/dynamic mag-
netization, dc bias field and ac excitation field sources modeled in
this work, along with the coordinate definition.

of MSSWs obtained by this approach show various features
characteristic of MSSWs, such as an anisotropic propagation
pattern, angular confinement of energy flow from the point
wave source, whose limit angle is defined as the critical angle
for the group velocity θg , and semicaustic beams along θg .
The second part presents the application of the GF of MSSWs
to the reconstruction of spatial MSSW propagation patterns,
and the comparison between the numerically calculated and
experimentally measured spatial patterns. Three cases are pre-
sented in this work: one for 1D propagation along the direction
perpendicular to the bias field, and two for 2D diffraction
patterns around different irregularities. The measurements are
done on a tangentially magnetized Permalloy (Py) film using
SRFMR-SKEM. The numerical calculation corresponding
to each measurement is performed by convolving the GF
of MSSWs with the wave source distribution calculated
from the sample geometry. These results are compared to
examine the validity of the GFs of MSSWs obtained in
this work.

II. CALCULATION OF THE GREEN’S
FUNCTION OF MSSWs

A. Definition of the problem

Figure 1 shows the arrangement of the system to be
modeled. We will consider how MSSWs are excited by an
arbitrary distribution of ac excitation fields �he, and how they
propagate in an infinitely large magnetic film with a saturation
magnetization MS and a thickness s, tangentially magnetized
by an external dc bias field HB , applied along the x axis.
The film is assumed to be lossless in the beginning of the
mathematical derivation, and a finite Gilbert damping α is
introduced later. The dynamic magnetization in the film due
to MSSW excitation and the dynamic field associated with
it are denoted as �mi and �hi , respectively. Excitation field
sources, such as ac current density �je and ac magnetization
distribution �me, exist only in the exterior of the magnetic film.
The film thickness s is much smaller than distances between
the magnetic film and these excitation field sources such that
�he in the interior of the film can be approximated as uniform
across the film thickness, and also much smaller than the skin
depth of electromagnetic fields such that eddy currents are
negligible. In the following discussion, we assume that the
dynamic quantities are much smaller than the static ones, i.e.,
mi � MS and hi,he � HB . Exchange fields and anisotropy
fields are ignored, meaning that the excitation mode considered
here is pure MSSWs propagating in an isotropic soft magnetic
film. The coordinate origin is set at the middle of the film
thickness. The SI unit system is followed throughout this work.

Some other notations are given here for clarity.
(i) �r = (x,y,z): position vector in real space;

(ii) �rt = (x,y): transverse position vector in real space; if it
is operated with �r , �rt = (x,y,0);

(iii) �k = (kx,ky,kz): wave vector (position vector in inverse
space);

(iv) �kt = (kx,ky): transverse wave vector (transverse po-
sition vector in inverse space); if it is operated with �k,
�kt = (kx,ky,0);

(v) �ex , �ey , �ez: unit vector along the axis specified by the
index;

(vi) a decay constant qz may be used to replace kz such that
iqz = kz;
(vii) the superscript i or e of variables signifies that the

variable is either for the interior or exterior of the film, e.g.,
qi

z is the decay constant along the z axis for the interior of the
film;
(viii) t is time, f is frequency, and ω = 2πf is angular
frequency;

(ix) the integration range is ±∞ unless specified otherwise;
(x) The Fourier transform (FT) and inverse Fourier trans-

form (iFT) used in this work are defined as

F�r [f ] = 1

(2π )n/2

∫
f (�r)e−i�k·�rdnr, (1)

F−1
�k [g] = 1

(2π )n/2

∫
g(�k)ei�k·�rdnk, (2)

where the subscript is the variable vector along which the
transform is performed and n is its dimension

(xi) a Gaussian distribution with the standard deviation of
σ in real and inverse space is denoted as

φr
σ (�r) = F−1

�k
[
φi

σ

] = 1

(2π )n/2σn
exp

(
− |�r|2

2σ 2

)
, (3)

φi
σ (�k) = F�r

[
φr

σ

] = 1

(2π )n/2
exp

(
−σ 2|�k|2

2

)
, (4)

where n is the dimension of the variable vector.

B. Inhomogeneous differential equation for MSWs excited
in a tangentially magnetized slab geometry

The first step of this modeling is to derive the inhomo-
geneous differential equation for MSWs. According to the
Damon-Eshbach (DE) theory, either magnetostatic backward
volume waves (MSBVW) or MSSWs are excited in a tangen-
tially magnetized slab geometry depending on the condition.1

We will first construct a theory applicable to both modes, then
limit our discussion to MSSWs when necessary.

We begin with the Landau-Lifshitz (LL) equation, which
describes the dynamics of a single magnetic moment without
damping:27

d �M
dt

= −γ �M × �H, (5)

where �M is the magnetization, �H is the magnetic field, γ =
μ0gqe/2me is the gyromagnetic constant, μ0 is the vacuum
permeability, g is Lande g factor, qe is the electron charge, and
me is the electron mass.
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The condition that the dynamic terms are much smaller than
the static terms allows one to decompose the magnetic field
and the magnetization into a static and a dynamic part as

�H = HB �ex + �he−iwt , (6)
�M = MS �ex + �me−iwt , (7)

where �h and �m are the amplitude vectors of the dynamic part
of the field and the magnetization, respectively. By plugging
Eqs. (6) and (7) into Eq. (5), dropping the second-order terms,
and solving the equation in terms of �m, the linearized equation
of motion for a magnetic moment is obtained:

�m = P �h, (8)

where

P =
⎛
⎝0 0 0

0 χ −iκ

0 iκ χ

⎞
⎠ ,

χ = ωHωM

ω2
H − ω2

,

κ = ωωM

ω2
H − ω2

,

ωH = γHB and ωM = γMS . The coefficient matrix P is the
dynamic susceptibility tensor (Polder tensor), which represents
the linear relationship between the ac field and the dynamic
response of the magnetization.

In this work, we focus on the behavior of spin waves under
a magnetostatic approximation. The physical meaning of this
is that the wavelength of the spin wave, λ, is much shorter
than the distance over which electromagnetic fields propagate
within one cycle, i.e., c � f λ, where c is the speed of light.
This condition allows the displacement current to be ignored.
Also, eddy currents are negligible, as mentioned above. In this
case, Maxwell’s equations for magnetic fields are completely
separated from those for electric fields. By plugging Eqs. (6)
and (7) into Maxwell’s equations for magnetic fields, Gauss’
law and Ampere’s law for the dynamic terms are obtained:

∇ · (�h + �m) = 0, (9)

∇ × �h = �je. (10)

By definition, the total dynamic magnetic field is the sum of
the dynamic fields due to MSW excitation and the ac excitation
fields,

�h = �hi + �he. (11)

�he can be expressed by �je and �me as

4π �he(�r) = ∇ ×
∫ �je(�r ′)

|�r − �r ′|d
3r ′ + ∇

∫ ∇′ · �me(�r ′)

|�r − �r ′| d3r ′.

(12)

It is clear that these quantities satisfy

∇ · �he = −∇ · �me, (13)

∇ × �he = �je. (14)

A function u(z) that signifies the interior of the magnetic film
is introduced as

u(z) =
⎧⎨
⎩

0 |z| > s/2,

1/2 |z| = s/2,

1 |z| < s/2.

(15)

The derivative of u is

du

dz
= δ(z + s/2) − δ(z − s/2), (16)

where δ(z) is Dirac’s delta function. The total dynamic
magnetization can be expressed by using Eqs. (8), (11), and
(15) as

�m = �mi + �me = uP ( �hi + �he) + �me. (17)

By using Eqs. (11) and (17), Gauss’s law, Eq. (9), and Ampere’s
law, Eq. (10), can be written as

∇ · { �hi + �he + uP ( �hi + �he) + �me} = 0, (18)

∇ × ( �hi + �he) = �je. (19)

Sources of the ac excitation fields are assumed to exist only
in the exterior of the film. Therefore the following equations
hold:

u∇ · �he = −u∇ · �me = 0, (20)

u∇ × �he = u �je = 0. (21)

Equation (18) can be expanded by using Eqs. (8), (13), (16),
(20), and (21) as

∇ · ( �hi + uP �hi) = χu
∂hex

∂x
− du

dz
P �he · �ez. (22)

The physical meaning of each of the two terms in the right-hand
side (RHS) is as follows. The first term is due to “fictitious”
volume charges. When a magnetic flux enters the magnetic film
from the y-z plane, it acts on a magnetic moment to tip it away
from the x axis. If the flux changes its direction from within the
y-z plane to the x axis, it becomes parallel to the magnetization
and therefore exerts no torque on the magnetic moment. This is
equivalent to the disappearance of the magnetic flux in the film.
This situation looks as if a magnetic volume charge exists in
the film which absorbs the flux line. The second term is due to
surface charges induced at the boundaries as a result of tipping
of the magnetization by the application of ac excitation fields.

Now let us turn to Ampere’s law for the dynamic terms,
Eq. (19). This can be written by using Eq. (14) as

∇ × �hi = 0. (23)

This permits the introduction of a magnetic scalar potential ψ

such that

hi = −∇ψ, (24)

as in the DE theory. By using ψ , Eq. (22) becomes

−∇ · (∇ + uP∇)ψ = χu
∂hex

∂x
− du

dz
P �he · �ez. (25)

This is the inhomogeneous differential equation ψ must satisfy
under an arbitrary distribution of ac excitation fields. As stated
in the definition of the problem, the film is thin enough that
�he can be approximated as uniform across the film thickness.
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This reduces the problem to two dimensions and the magnetic
potential can be expressed by introducing the following two
kinds of GFs. One is the GF for fictitious volume charges GV ,
defined by

−∇ · (∇ + uP∇)GV = uδ(x)δ(y). (26)

The other is the GF for surface charges GS , defined by

−∇ · (∇ + uP∇)GS = −du

dz
δ(x)δ(y). (27)

Once these two GFs are obtained, the magnetic potential
due to MSW excitation for any field source distribution can
be obtained by first calculating �he using Eq. (12) and next
performing the following convolution integral:

ψ(�r) =
∫ [

GV (�r − �r ′
t )χ

∂hex

∂x ′ + GS(�r − �r ′
t )P �he(�r ′

t ) · �ez

]
d2r ′

t .

(28)

C. Introduction of the MSW operator

The differential equations for the two kinds of GFs,
Eqs. (26) and (27), have a nonstandard, complicated form. In
order to solve these equations, we introduce a MSW operator
M, which represents the whole operator appearing in the
left-hand side (LHS) of these equations:

M = −∇ · (∇ + uP∇). (29)

This operator can be expanded as

M = −∇2 − χu

(
∂2

∂y2
+ ∂2

∂z2

)
− du

dz

(
iκ

∂

∂y
+ χ

∂

∂z

)
.

(30)

It can be easily understood that M takes the following forms
in the exterior and interior of the film, respectively,

M =
{−( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

) |z| > s/2,

− ∂2

∂x2 − (1 + χ )
(

∂2

∂y2 + ∂2

∂z2

) |z| < s/2.
(31)

Thus the equation Mψ = 0 becomes the standard Laplace’s
or Walker’s equation depending on the range of z except at the
boundaries.

In order to obtain the form of M at the boundaries, the
treatment of a discontinuity must be clearly defined. ψ has
to be continuous over the boundaries. However, its derivative
has discontinuities because it generally has a sharp cusp at the
boundary. The first partial derivative with respect to z at the
boundary is defined as the average of the derivatives calculated
as the limit value from the negative and positive side,

∂

∂z

∣∣∣∣∣
z=±s/2

= 1

2

⎛
⎝ ∂

∂z

∣∣∣∣∣
z→±s/2+0

+ ∂

∂z

∣∣∣∣∣
z→±s/2−0

⎞
⎠ , (32)

where z → s/2 + 0 signifies that z approaches to s/2 from
the positive side, and vice versa. The second partial derivative
is defined as having a delta function at the boundary whose

magnitude is the height of the discontinuity in the first
derivative,

∂2

∂z2

∣∣∣∣∣
z=±s/2

= δ(z ∓ s/2)

⎛
⎝ ∂

∂z

∣∣∣∣∣
z→±s/2+0

− ∂

∂z

∣∣∣∣∣
z→±s/2−0

⎞
⎠ .

(33)

By substituting these equations into Eq. (30), it can be shown
that M takes the following form at the boundaries:

M|z=±s/2 = − ∂2

∂x2

∣∣∣∣∣
z=±s/2

− (1 + χ/2)
∂2

∂y2

∣∣∣∣∣
z=±s/2

± δ(z ∓ s/2)

{
iκ

∂

∂y

∣∣∣∣∣
z=±s/2

+ (1 + χ )
∂

∂z

∣∣∣∣∣
z→±s/2∓0

− ∂

∂z

∣∣∣∣∣
z→±s/2±0

}
. (34)

In this equation, the coefficient term of the delta function must
be zero in order for Mψ to be finite at the boundaries. This
requirement yields the following equation:

iκ
∂

∂y

∣∣∣∣∣
z=±s/2

+ (1 + χ )
∂

∂z

∣∣∣∣∣
z→±s/2∓0

= ∂

∂z

∣∣∣∣∣
z→±s/2±0

. (35)

This is, when acting on ψ , exactly the same as the standard
magnetic boundary condition that normal component of the
magnetic induction is continuous, i.e.,

(hiz + miz)|interior = hiz|exterior. (36)

In addition, the requirement that the potential function is
continuous over the boundaries is equivalent to the other
boundary condition that the tangential component of the
magnetic field is continuous. From the above discussion, it
has been shown that the MSW operator M contains all the
conditions the potential function ψ must satisfy. Therefore the
differential equation

Mψ = 0 (37)

gives the very MSW solution as derived in the DE theory.

D. Eigenfunctions of the MSW operator

In this subsection, it is first shown that M is Hermitian.
Then the eigenfunctions of this operator are derived and their
properties are examined for the purpose of expanding the
GF with them. The discussion up to this point has not been
limited to the mode of magnetic excitation, meaning that the
formalism presented so far is applicable to both MSBVWs
and MSSWs. From this subsection on, we limit our discussion
to only MSSWs. Mathematically, this means that 1 + χ > 0
holds in the following. This leads to the fact that there is only
one solution that satisfies Eq. (37), since only one dispersion
surface exists for MSSWs. This greatly reduces the burden for
performing the numerical calculation, as shown later. How-
ever, the theory itself presented in the following should be ap-
plicable to both MSBVWs and MSSWs. If the GF of MSBVWs
is sought, one only needs to extend the following discussion
to take into account the multiplicity of the MSBVW solutions.
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The eigenfunctions of M, �, are defined as the solution of
this equation

M� = ε�, (38)

where ε is the eigenvalue associated with the eigenfunction. It
can be easily understood from Eq. (31) that M is a separable
operator. Thus the eigenfunction should have the following
form:

�(x,y,z) = �x(x)�y(y)�z(z). (39)

By plugging this and Eq. (31) into Eq. (38), it can be shown
that the general form of �x , �y and �z, becomes

�x(x) = eikxx, (40)

�y(y) = eikyy, (41)

�z(z) =
⎧⎨
⎩

C3e
−qe

z z + C4e
qe

z z z > s/2,

C1 cosh
(
qi

zz
)+ C2 sinh

(
qi

zz
) |z| � s/2,

C5e
−qe

z z + C6e
qe

z z z < −s/2,

(42)

where Cn(n = 1 . . . 6) are constants. It should be noted that
both kx and ky are always real while qi

z and qe
z may be either

real or imaginary, but cannot take a general complex value, as
we will show later.

It can be shown that M is Hermitian. It is obvious that �x

and �y , as given in Eqs. (40) and (41), are the function space
of the Fourier transform, which satisfies all the Hermitianity
conditions. Therefore it is sufficient to show that M is
Hermitian along the z axis. By substituting Eqs. (40) and (41)
into Eq. (30), the MSW operator along the z axis, Mz, can be
written as

Mz = − d

dz

{
(1 + χu)

d

dz

}
+ k2

x + (1 + χu)k2
y + κ

du

dz
ky.

(43)

In general, an operator having a form of

L = − d

dz

{
p(z)

d

dz

}
+ q(z) (44)

is called a Sturm-Liouville operator, which is always Hermi-
tian as long as p(z) and q(z) are both real. It is clear that Mz is
a Sturm-Liouville operator as both χ and κ are real under the
lossless condition. Hermitianity of M leads to the following
three postulates:

(i) the eigenvalues ε are always real;
(ii) the eigenfunctions �z form a complete set;

(iii) the eigenfunctions associated with different eigenvalues
are orthogonal.

Now the properties of the eigenfunctions are examined in
more detail. Substituting Eqs. (39)–(42) and (31) into Eq. (38)
yields the following relations:

k2
x + k2

y − qe
z

2 = ε, (45)

k2
x + (1 + χ )

(
k2
y − qi

z

2) = ε. (46)

It can be easily understood from these equations that both qe
z

and qi
z are either pure real or pure imaginary because kx , ky , ε,

and 1 + χ are all real, and therefore qe
z

2 and qi
z

2
are also both

real, which may be either negative or positive. Equating these
equations yields

qe
z

2 = (1 + χ )qi
z

2 − χk2
y. (47)

It should be noted first that χ is always negative because
the frequency of magnetic excitations is always higher than
the Zeeman frequency, i.e., ω > ωH , and second that 1 + χ is
positive for MSSW excitation as stated above. From Eq. (47), it
can be understood that there are three types of eigenfunctions:

(1) Both qe
z and qi

z are real.
(2) qe

z is real, qi
z is imaginary.

(3) Both qe
z and qi

z are imaginary.
Properties of eigenfunctions belonging to each of these

three cases will be discussed below. In the following, ky is
limited to non-negative because the eigenequation contains
only k2

y , as shown later, so ±ky give the same solution. Also,
ki
z or qi

z, whichever real, and qe
z are limited to non-negative

for cases (1) and (2) without losing generality, because the
eigenfunction �z behaves like a guided wave for these cases
and the sign of ki

z or qi
z makes no difference in the resultant

eigenfunction, and the sign of qe
z must be chosen such that �z

converges at ±∞.
Case (1): Both qe

z and qi
z are real. In this case, C4 and C5

in Eq. (42) must be zero in order for �z to converge to zero at
z → ±∞. Therefore �z can be written as

�z(z) =
⎧⎨
⎩

C3e
−qe

z z z > s/2,

C1 cosh
(
qi

zz
)+ C2 sinh

(
qi

zz
) |z| � s/2,

C6e
qe

z z z < −s/2.

(48)

The eigenequation for this case can be obtained by the
same procedure as for deriving the characteristic equation of
the MSSW solution in the DE theory. From the continuity
requirement at the boundaries, C3 and C6 are eliminated. Next,
plugging Eq. (48) into Eq. (35) yields simultaneous linear
equations of C1 and C2. The requirement that C1 and C2 take
nontrivial values and eliminating qe

z using Eq. (47) give the
following eigenequation:

(1 + χ )(2 + χ )qi
z

2 − (κ2 + χ )ky
2

+ 2(1 + χ )qi
z

√
(1 + χ )qi

z
2 − χky

2 coth
(
qi

zs
) = 0. (49)

It should be noted that Eq. (49) contains only two variables
qi

z and ky . This means that qi
z is a function of only ky and

independent of kx .
For explanations given below, two values are examined

here. The first is the behavior of ky in the limit of qi
z → 0.

Noting that limz→0 z coth z = 1, it can be shown that ky

approaches either 0 or a constant η, given as

ηs = 2
√−χ (1 + χ )

κ2 + χ
. (50)

The second is the minimum value of ky that gives ε = 0,
which we denote as km. This is the wave number of the MSSW
propagating along the y axis, i.e., the solution of Eq. (37) with
kx = 0, given by the following equation:

kms = −1

2
ln

(
1 − 4

ω2 − ω2
K

ω2
M

)
, (51)
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where ωK is the Kittel frequency given by

ω2
K = ωH (ωH + ωM ). (52)

The eigenequation, Eq. (49), and its solution have the
following properties:

(i) η is always smaller than km.
(ii) Equation (49) has one real solution of qi

z when ky �
η. In other words, qi

z is a real function of ky in this range.
Hereafter, this solution is denoted as qi

z0.
(iii) qi

z becomes imaginary when ky < η [therefore Eq. (49)
does not have a solution belonging to case (1) in this range].

(iv) The point ky = η is a branch point on the Riemann
surface of the function qi

z0(ky).
(v) The eigenfunction �z, as given by substituting qi

z =
qi

z0(ky) into Eq. (48), is a real function. This property
corresponds to the fact that the amplitude of this eigenfunction
is confined around the magnetic film and �z behaves like a
guided wave.

(vi) Case (1) corresponds to the MSSW solution, which can
exist under the condition of 1 + χ > 0. Thus only this case
can give ε = 0.

Case (2): qe
z is real and qi

z is imaginary. In this case too, C4

and C5 must be zero for the same reason as in case (1). As for
the form of �z, it is more convenient to adopt trigonometric
functions since qi

z is imaginary:

�z(z) =
⎧⎨
⎩

C3e
−qe

z z z > s/2,

C1 cos
(
ki
zz
)+ C2 sin

(
ki
zz
) |z| � s/2,

C6e
qe

z z z < −s/2.

(53)

The eigenequation for this case can be derived simply by
plugging iqi

z = ki
z into Eq. (49):

(1 + χ )(2 + χ )ki
z

2 + (κ2 + χ )k2
y

−2(1 + χ )ki
z

√
−(1 + χ )ki

z
2 − χk2

y cot
(
ki
zs
) = 0. (54)

As for case (1), Eq. (54) contains only ki
z and ky . Thus ki

z

is a function of only ky . However, ki
z may not be uniquely

determined for a given ky due to the multivaluedness of
cot−1(ki

zs). In fact, a finite number of discrete ki
z can generally

satisfy Eq. (54). These discrete solutions are labeled as ki
zn

where n is an integer. Bearing this in mind, the eigenequation,
Eq. (54), has the following properties:

(i) Equation (54) has one real solution of ki
z when ky � η,

which is analytically continuous to qi
z0 for case (1). Hereafter,

this solution is denoted as ki
z0 = iqi

z0.
(ii) Equation (54) has zero or a finite number of real

solutions of ki
z when ky > η, which are denoted as ki

zn.
(iii) ki

zn satisfies nπ < ki
zns < (n + 1/2)π if it exists.

(iv) When Eq. (54) has real ki
zn solutions, the eigenfunction

�z, as given by substituting the ki
zn into Eq. (53), becomes a

real function due to the same reason as for case (1).
(v) Case (2) corresponds to the MSBVW solution, which

cannot exist under the condition of 1 + χ > 0. Thus this case
cannot give ε = 0.

Case (3): Both qe
z and qi

z are imaginary. In this case, C4

and C5 do not have to be zero since qe
z is imaginary and

therefore �z becomes oscillatory. Thus the eigenfunction has
six coefficients while the boundary conditions provide only

kz1
i

ky

kz2
i

0

2π

π

ikz = qz

0

Point of =0ε

← z
i

i
Continuous
kz

qz0

kz0
i

qz0
i

η

k i i

km ss s

s

s

s s

i s

s

s

s area

k s=0x

q s=kms

FIG. 2. Behavior of ki
z = iqi

z as a function of ky . Notice that all the
quantities shown in this figure are normalized by the film thickness s.
The parameters used for this calculation are HB = 5.03 × 103 A/m,
f = 8 GHz, MS = 7.96 × 105 A/m, and γ = 2.39 × 104 rad m/s A.
The solid and broken lines show ki

zn and qi
z0, respectively. The shaded

area shows the region where ki
z takes continuous values. The point of

ε = 0 moves on the real qi
z0 line. The minimum value of ky , which can

give ε = 0, occurs when kx = 0 and ky = qi
z = km, given by Eq. (51).

four equations, which are not enough for eliminating all the
coefficients and uniquely determining the value of qi

z for a
given �kt . In other words, iqi

z = ki
z and iqe

z = ke
z can take con-

tinuous values. This corresponds to the fact that the amplitude
is not confined around the film but spreads over the entire range
of z. This is physically similar to the leaky modes appearing
in 2D waveguide problems. Likewise, cases (1) and (2) are
similar to the surface and bulk guided modes, respectively.
The properties of case (3) are summarized as follows:

(i) ki
z can take continuous values;

(ii) the eigenfunction �z for case (3) is oscillatory and
complex;

(iii) the amplitude of �z for case (3) is not confined around
the film, but spreads over the entire range of z;

(iv) no value of qi
z in case (3) can give ε = 0.

Figure 2 shows the behavior of ki
z = iqi

z as a function
of ky along with the movement of the point that can give
ε = 0. Notice that all the quantities shown in this figure are
normalized by the film thickness s. Only one line for qi

z0 exists,
while multiple lines for ki

zn exist. In the shaded area, ki
z takes

continuous values. The point of ε = 0 starts at ky = km on
the qi

z0 line. At this point, qi
z0 = km and kx = 0 hold. As |kx |

becomes larger, the point of ε = 0 moves to the larger ky

direction on the qi
z0 line, but never goes to any of the ki

zn lines
under the condition of 1 + χ > 0.

E. Expansion of the Green’s function with the eigenfunctions
of the MSW operator

In order to write the general form of the inhomogeneous
differential equations for the two kinds of GFs, the inhomoge-
neous term is denoted as F (z):

F (z) =
{

FV (z) = u(z),
FS(z) = δ(z − s/2) − δ(z + s/2), (55)
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where FV and FS are for fictitious volume charges and surface
charges, respectively. Using this notation, Eqs. (26) and (27)
can be written as

MG = δ(x)δ(y)F (z). (56)

The GF, which may be either GV or GS , can be expanded with
the eigenfunctions as

G(�r) =
∑
ki
z

F−1
�kt

[
��z

2πε

]
, (57)

where �z is the eigenfunction of Mz given as one of Eqs. (48),
(53), or (42) depending on which case ki

z belongs to, and � is
the expansion coefficient given as

� =
∫

�∗
zFdz

/∫
|�z|2dz, (58)

where * signifies the complex conjugate. This is the integral
expression of the GF that gives the magnetic scalar potential
due to MSSW excitation, which conforms to the standard
2D iFT.

In real experiments, the physical quantity that SRFMR-
SKEM detects is not the magnetic potential but the magne-
tization component normal to the film surface miz. In this
technique, laser pulses illuminate the top surface of the film
and the optical power penetrates into a finite depth. Thus
the reflected light contains information of the exponentially
weighted average of miz over the penetration depth. Taking this
into account, the GF in the same representation as measured
by SRFMR-SKEM, Gm, is given as

Gm(�rt ) = −
∫ s/2

−s/2

(
iκ

∂G

∂y
+ χ

∂G

∂z

)
e(z−s/2)/δpdz, (59)

where δp is the optical penetration depth. Plugging Eq. (57)
into Eq. (59) yields the following expression:

Gm(�rt ) =
∑
ki
z

F−1
�kt

[
��m

z

2πε

]
, (60)

where �m
z is given as

�m
z =

∫ s/2

−s/2

(
κky�z − χ

d�z

dz

)
e(z−s/2)/δpdz. (61)

The 2D spatial distribution of the dynamic magnetization
response captured by SRFMR-SKEM is proportional to the
convolution of Gm(�rt ) and the wave source distribution. We
will focus on this quantity, rather than ψ in the following
discussion.

Up to this point, the expression of the GF is mathematically
rigorous. However, direct numerical calculation of Eq. (60)
requires a very large amount of computational time and
resources. Thus the following approximations will be em-
ployed to reduce the required computation resources without
significantly sacrificing the accuracy:

(1) Equation (60) is for an infinitesimally small point
source. In practice, the size of the point wave source can
be finite, reflecting the lateral resolution of the measurement
technique and the finite spatial frequency of the wave source

distribution. For this purpose, the delta function is replaced
with a Gaussian having a finite standard deviation:

δ(x)δ(y) → φr
σ (�rt ). (62)

The Fourier transform of the infinitesimally small point source
is also replaced as follows:

1

2π
→ φi

σ ( �kt ). (63)

(2) All ki
z other than the solution of the eigenequation

belonging to case (1), i.e., iqi
z0 = ki

z0, are ignored in the
summation of Eq. (60), since we are interested in the behavior
of the GF in areas sufficiently far away from the point source.
Since only real qi

z0 can give ε = 0, this should have the
dominant contribution to the integration.

With these approximations, Gm can be written as

Gm(�rt ) ≈ F−1
�kt

[
�0�

m
z0φ

i
σ ( �kt )

ε0

]
. (64)

This expression no longer has a summation because we take
into account only qi

z0, and ignore all other ki
z. The terms

appearing in the integrand, �0, �m
z0, and ε0, are obtained by

plugging qi
z = qi

z0(ky) into Eqs. (47), (48) or (53) depending
on the range of ky , (58), (61), and (46), respectively.

It should be noted that the complex conjugate * and the
absolute value | . . . | are no longer necessary in the inner
product and normalization integral appearing in Eq. (58)
because �z associated with qi

z0 is real. This indeed has
vital importance for the numerical calculation of Eq. (64).
Equation (64) has singularities because ε0 can take 0 at
certain points of �kt . In order to calculate such an improper
integral, we need to perform complex integration using
Cauchy’s theorem. If the integrand had * and | · · · |, it would
be a nonholomorphic function which invalidates Cauchy’s
theorem. In reality, we take into account only the discrete
solutions of the eigenequation ki

zn (in this work, only ki
z0 =

iqi
z0) in Eq. (64). The eigenfunctions associated with the

discrete solutions are always real, and therefore * and | · · · | can
be removed in Eq. (58). This guarantees the holomorphicity of
�0. Obviously all other terms in the integrand of Eq. (64) are
holomorphic functions, though the dependence of qi

z0 on ky

is very complicated. This holomorphicity validates Cauchy’s
theorem and enables one to compute Eq. (64) by complex
integration.

The concrete forms of the terms appearing in Eq. (64) are
presented here:

�m
z0 = e−s/2δp

[(
χqi

z0 − κky

)
(1 + R0)

sinh
{(

1/δp + qi
z0

)
s/2
}

1/δp + qi
z0

−(χqi
z0 + κky

)
(1 − R0)

sinh
{(

1/δp − qi
z0

)
s/2
}

1/δp − qi
z0

]
,

(65)

�0 =
⎧⎨
⎩

�V 0 = 2 sinh (qi
z0s/2)

qi
z0N0

F = FV ,

�S0 = 2R0 sinh (qi
z0s/2)

N0
F = FS,

(66)
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(a) (b)

(c) (d)

FIG. 3. (a) Dispersion surface of MSSWs originally presented in
Ref. 1. ωK is the uniform (Kittel) mode frequency. This surface is
symmetric with respect to both kx and ky axes. (b) Slowness surface
given as a cross section of the MSSW dispersion surface cut by a
constant frequency plane at ω in (a). (c) Profile of Gm along a line of
kx = c in (b). (d) Integration path for positive/negative y. With the
addition of iδ to kp , the positive and negative poles move upward and
downward, respectively.

N0 = s

2

[(
1 − R2

0

) ( 1

qe
z0s

+ 1

)

+(1 + R2
0

) {cosh
(
qi

z0s
)

qe
z0s

+ sinh
(
qi

z0s
)

qi
z0s

}]
, (67)

R0 = κky

(1 + χ )qi
z0 + qe

z0 tanh
(
qi

z0s/2
) . (68)

F. Algorithm for numerically calculating the Green’s function

Figure 3(a) shows the dispersion surface of MSSWs
originally derived by the DE theory. This surface is symmetric
with respect to both kx and ky axes. In SRFMR-SKEM, the
excitation frequency is fixed during measurement. The disper-
sion relation of MSSWs in the kx-ky space under a constant ω,
called the slowness surface, is given as the cross section of the
MSSW dispersion surface cut by a constant frequency plane,
as shown in Fig. 3(b).2 The positive and negative slowness
surfaces are denoted as ±kp(kx), respectively.

For explanations given below, the integrand function
excluding the Gaussian in Eq. (64) is denoted as

Gm = �0�
m
z0

ε0
. (69)

This becomes singular on the slowness surfaces because
ε0 = 0 on them. Figure 3(c) shows the profile of Gm along the
kx = c line. The positions of these singularities are symmetric
with respect to the origin, but their strength, i.e., residue, is
different between the negative and positive side, which gives
rise to the field displacement nonreciprocity of MSSWs. In

order to numerically calculate such an improper integral, the
following algorithm is adopted.

In the 2D iFT of Eq. (64), the 1D iFT along the ky axis must
be performed first because performing the iFT along kx first
causes it to diverge at ky → ±km ∓ 0. Prior to performing the
iFT along ky , the integrand is separated into the singular part
Gm

s and the regular part Gm
r as follows:

Gm
s =

(
Rp

ky − kp

+ Rn

ky + kp

)
, (70)

Gm
r = Gm − Gm

s , (71)

where Rp and Rn are residues given as

Rp/n = lim
ky→±kp

(ky ∓ kp)Gm. (72)

This is equivalent to separating the GF into the nonpropagating
(evanescent) and propagating components.

The 1D iFT of the regular part along ky , including the
Gaussian

F−1
ky

[
Gm

r φi
σ (ky)

]
, (73)

can be easily calculated by the standard fast Fourier transform
(FFT) routine because the integrand is a well behaved function
having no singularity, and the integration range can be reduced
from ±∞ to a finite range (≈ ±2π/σ is usually sufficient) due
to the Gaussian in the integrand, which rapidly rolls off as k2

y

becomes larger.
The 1D iFT of the singular part, which represents the

propagating wave component of the GF, along ky is calculated
as follows. If the iFT integration is performed strictly along the
real ky axis, the result contains both incoming and outgoing
waves, thus the result becomes the standing-wave solution. In
the real experiment, we do not see any incoming waves so we
have to take into account only the outgoing wave component.
For this purpose, an infinitesimally small imaginary value iδ

is added to kp in Eq. (70):

Gm
s =

(
Rp

ky − kp − iδ
+ Rn

ky + kp + iδ

)
. (74)

Physically, this is equivalent to giving a very small loss to the
system under consideration. With this small loss, the positive
and negative poles move up and down, respectively, as shown
in Fig. 3(d). The 1D iFT of Eq. (74) can be analytically
calculated by integrating along the path shown in the figure
and applying Jordan’s lemma:

F−1
ky

[
Gm

s

] =

⎧⎪⎨
⎪⎩

√
2πiRpeikpy y > 0√
π/2i(Rp − Rn) y = 0

−√
2πiRne

−ikpy y < 0

. (75)

Inclusion of the Gaussian can be accomplished by utilizing the
convolution theorem. For the FT/iFT defined as Eqs. (1) and
(2), the convolution theorem becomes

F−1
ky

[
Gm

s

]⊗ φr
σ (y) =

√
2πF−1

ky

[
Gm

s φi
σ (ky)

]
, (76)

where ⊗ signifies convolution. Numerical calculation of
this convolution can be easily implemented using Eqs. (75)
and (3).
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After the iFT along the ky axis is done, the integrand no
longer has any singularities. Thus the iFT along the kx axis,
including the Gaussian

Gm(�rt ) = F−1
kx

[
F−1

ky

[(
Gm

r + Gm
s

)
φi

σ (ky)
]
φi

σ (kx)
]
, (77)

can again be easily performed using the standard FFT routine.

G. Inclusion of finite damping

The above formalism up to Eq. (73) has been based on
the lossless assumption, but an infinitesimally small loss was
added in Eq. (74) in order to exclude the incoming wave
components. On the other hand, Sturm-Liouville operators
require that both p(z) and q(z) should be real.

Under the limit of δ → 0, the MSW operator M still
remains Hermitian because it can be shown that Mz satisfies
the following Hermitianity condition:

〈�zm|Mz|�zn〉 = 〈�zn|Mz|�zm〉∗ , (78)

where 〈· · ·〉 is Dirac’s bra-ket notation.
Now we discuss how to incorporate a finite loss into the

magnetic film. The magnetization dynamics with a finite loss
are expressed by the Landau-Lifshitz-Gilbert (LLG) equation:

d �M
dt

= −γ �M × �H + α

M
�M × d �M

dt
. (79)

By using Eq. (79) instead of Eq. (5), Polder’s susceptibility
tensor for a lossy magnetic system can be obtained:

P ′ =

⎛
⎜⎝

0 0 0

0 χ ′ −iκ ′

0 iκ ′ χ ′

⎞
⎟⎠ ,

χ ′ = (ωH − iαω)ωM

(ωH − iαω)2 − ω2
,

(80)
κ ′ = ωωM

(ωH − iαω)2 − ω2
.

This is equivalent to replacing ωH with ωH − iαω. A finite
value of α makes both p(z) and q(z) of Mz complex. Thus
M is no longer Hermitian under the lossy condition. This
invalidates the expression of the GF given as a summation of
eigenfunctions as shown in Eq. (57), because the orthogonality
of the eigenfunctions is broken. The broken orthogonality
gives rise to cross coupling between two different order
eigenfunctions, meaning that energy of one mode leaks to
other modes. Also, the eigenfunctions for the discrete solutions
belonging to either case (1) or (2) are no longer real but
take complex values. This necessitates a complex conjugate
∗ and absolute value | · · · | when calculating the function
inner product and normalization integral in Eq. (58), which
invalidate holomorphicity of the integrand function.

However, we assume that the approximate expression of the
GF, Eq. (64), should be still reasonably accurate as it is even
with a finite loss due to the following reasons. First, the cross
coupling and the deviation of the expansion coefficient are
proportional to α, and therefore expected to be reasonably
small for a sufficiently small α. Second, the lowest-order
eigenfunction �m

z0 should have the dominant contribution to
the total GF as the lowest-order eigenvalue εo is much smaller

than other eigenvalues. The appreciable effects expected from
a finite α are first a finite propagation decay of MSSWs emitted
by a point source, which should be properly expressed by Eq.
(64), and second a small deviation of the coupling coefficient
from the excitation field to the lowest eigenfunction. Apart
from the change of the coupling coefficient, the further �rt

moves away from the excitation source, the more accurate
Eq. (64) should become as the contributions from other
eigenfunctions due to energy leakage diminish.

As for the numerical calculation of Eq. (64), the same
algorithm as presented in the above subsection can be used,
because Eq. (64) is still holomorphic even with a finite α, and
it was confirmed that the inclusion of finite α as explained
here moves the poles in the same directions as shown in Fig.
3(d), but of course, by a finite distance. The calculation just
needs to use complex parameters P ′, χ ′, and κ ′, as given
in Eq. (80).

Theoretically, it is possible to numerically calculate the GF
by directly applying the standard FFT routine to Eq. (64),
because the integrand function Gm no longer has any singu-
larity on the real ky axis if the system has a finite loss. That
way, it is possible to perform the iFT even if the integrand
function is nonholomorphic. However, the discretization step
in the numerical integration of the iFT must be sufficiently
smaller than the distance of the pole from the ky axis in order
to achieve a good accuracy. This may actually require larger
computational resources than the algorithm presented in this
work, especially for small α. This requirement is equivalent
to saying that a sufficiently large area in real space has to
be included in the numerical calculation such that MSSWs
emitted from the point source at the origin completely damp
out before reaching the edges of the area and no reflection
occurs.

H. General characteristics of the Green’s functions of MSSWs

Figure 4 shows the GFs of MSSWs in the same repre-
sentation as measured by SRFMR-SKEM for both fictitious
volume charges Gm

V and surface charges Gm
S calculated by our

approach. This calculation was performed with the follow-
ing parameters: HB = 3.42 × 104 A/m, f = 8 GHz, Ms =
7.96 × 105 A/m, γ = 2.39 × 105 rad m/s A (corresponding
to g = 2.16) and α is set to either 0 or 0.0074 for a lossless
or lossy magnetic film, respectively. These parameters are the
same as in the experiments presented later in this paper except
for HB . The GFs are symmetric with respect to the y axis
but slightly asymmetric with respect to the x axis due to the
field displacement nonreciprocity.28 Thus only the right half is
shown for each image.

These images clearly show strong anisotropy of the GF of
MSSWs, reflecting the polar nature of the spin system. The
amplitude images show that the MSSW propagation from the
point source is confined within a certain angular range with
respect to the y axis. Also seen is a significant increase of the
MSSW amplitude along the limit angles of the angular range
of wave propagation. The phase distribution is totally different
from that of standard 2D isotropic waves. The wave front is
not concentric but more or less parallel to the x axis both
inside and outside the angular range of wave propagation, and
becomes quite complicated along the limit angles.
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FIG. 4. GFs of MSSWs, represented as the polar Kerr signal,
which is measured by SRFMR-SKEM. In the amplitude images,
the brightness is assigned proportional to the natural log of the
normalized amplitude in the range of (−6,0). In the phase images,
brightness stands for the phase. White and black correspond to π

and −π , respectively. The four lines in each image show θc and θg ,
respectively. Only the right half of each image is shown because these
are symmetric with respect to the y axis, but slightly asymmetric with
respect to the x axis due to the field displacement nonreciprocity.

The limit angle of the energy flow from the point source due to
MSSW propagation is given by the following argument.13,24

As shown in Fig. 3(b), the slowness surface of the MSSW
asymptotically approaches straight lines as | �kt | becomes larger,
so the angle of �kt is limited between these asymptotes. This
limit angle is defined as the critical angle for the wave vector
θc, given as

θc(ω) = sin−1

⎛
⎝
√

ω2 − ω2
K + ω

ωH + ωM

⎞
⎠ . (81)

In the limit of ω → ωK , this expression becomes particularly
simple as θc = tan−1(

√
HB/MS)1. The vectorial expression of

the group velocity is given as �vg = ∇kω. This indicates that
the direction of energy flow set by �vg is perpendicular to the
tangent of the slowness surface, as shown in Fig. 3(b). Thus the
angle of energy flow is limited between π/2 ± θc with respect
to the y axis, which is defined as the critical angle for the
group velocity θg . θc and θg are calculated as 23.9◦ and 66.1◦,
respectively, using Eq. (81) and the parameters given above.
The angular range of MSSW propagation shown in the images
in Fig. 4 agrees very well with the calculated value of θg .

The amplitude increase seen in these images is a “semi-
caustic” beam due to focusing of MSSWs. In general, caustic
beams are formed where the curvature of the slowness surface
vanishes, i.e., d2ky/dk2

x = 0. The point that satisfies this
condition will be referred to as a caustic point. The MSSW
slowness surface does not have a caustic point, thus does not
form a “real” caustic beam. But the curvature asymptotically
decreases down to zero as the angle of �kt approaches θc,

causing semicaustic beams of the MSSW along the θg

directions.2

MSBVWs also form caustic beams.13 It is interesting,
and actually important, to see the amplitude behaviors of
the caustic beams of both the MSSW and MSBVW when
performing the GF calculation on these modes.

Let us first discuss the behavior of the semicaustic beams
of the MSSW. Figure 3(b) shows that waves carrying energy
in the direction between �vg and �vg + d �vg actually have a wave
vector between �kt and �kt + d �kt . If we define the mode density
as a function of angle of �kt as g(θ ) = |d �kt/dθ |, g(θ ) increases
as θ approaches θc, and diverges at θc. On the other hand, it
can be shown that the coupling between a plane MSSW and
a point source remains finite for any angle of �kt . Thus the
amplitude of the semicaustic beam should diverge if the point
source were infinitesimally small. In the calculation, the point
source is assumed to be of finite size, Gaussian with standard
deviation σ = 2.5s to guarantee fast convergence. This causes
waves having a too large wave number to be filtered out.
Consequently, the magnitude of the integrand exponentially
decreases as the angle of �kt approaches θc, outweighing the
divergence of the mode density, and eventually the amplitude
of the caustic beam is suppressed to a finite value.

Next we consider the behavior of the caustic beams of
the MSBVW. The MSBVW slowness surface has maximum
of two caustic points for each quadrant depending on the
condition. Also, it can be shown that the slowness sur-
face asymptotically approaches straight lines whose slope is
±1/

√−(1 + χ ) as | �kt | becomes large (note that MSVBWs
are excited when 1 + χ < 0, thus the slope given here is real).
This means that it forms zero, four, or eight real caustic beams
and four semicaustic beams in total.2

The caustic points on the MSBVW slowness surface occur
at a finite �kt if they exist. It can be shown that the amplitude of
the caustic beam is inversely proportional to the third derivative
of the slowness surface, which is in general finite.13 Therefore
the amplitudes of these real caustic beams of the MSBVW stay
finite. On the other hand, the amplitudes of the semicaustic
beams should diverge for the same reason as for MSSWs if an
infinitesimally small point wave source emits MSBVWs.

These arguments are based on pure dipole interaction.
In reality, if | �kt | becomes large, exchange interaction bends
the slowness surface. For this reason, the amplitude of the
semicaustic beam can never diverge even if the point source is
infinitesimally small.

Figure 4 also shows the GFs for a lossy magnetic film. The
effect of a finite damping is seen as an exponential decay of
the MSSW amplitude (linear slope in the log plot) as they
propagate away from the point source. However, the damping
does not seem to have any appreciable effect on the phase
distribution. This is consistent with the experimental result
that the decay constant of the MSSW propagating along the y

axis (imaginary part of the complex km) is very sensitive to the
Gilbert damping factor α, while the wave number (real part of
the complex km) is not.21

I. Differences between the two Green’s functions of MSSWs

The theory presented in this work derived two GF of
MSSWs, one for fictitious volume charges Gm

V and the other
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for surface charges Gm
S . Thus some comments about the

differences between these two GFs are in order.
These GFs share the same general characteristics discussed

in the previous subsection, such as limited propagation angle
and formation of semicaustic beams. The major difference is
seen in the phase distribution. The GFs for fictitious volume
charges Gm

V and surface charges Gm
S have nearly antisymmetric

and symmetric phase distribution with respect to the x axis,
respectively. A fictitious volume charge source, shown in the
RHS of Eq. (26), located at the origin, generates static magnetic
fields radially in the outward directions. These fields exert
torque on magnetic moments in the outward direction with
respect to the x axis, meaning that magnetic moments in the
positive y region are tipped out to the positive y direction, and
vice versa. As a result, the phase distribution shows an abrupt
180◦ change, and the amplitude of Gm

V becomes zero near the x

axis. The reason why this transition is not right on the x axis is
due to the field displacement nonreciprocity of MSSWs, which
causes a finite offset between the amplitudes of the MSSWs
propagating in the positive and negative y directions. On the
other hand, the GF for surface charges, Gm

S , does not show
such an abrupt phase jump or zero amplitude near the x axis.
The surface charge source, shown in the RHS of Eq. (27), has
two delta functions at the top and bottom surfaces of the film
(z = ±s/2). This means that the same magnitude of positive
and negative charges are induced at these boundaries, which
act as a dipole oriented along the z axis. The magnetic fields
generated by a dipole located at the origin exert torque in the
same direction along the z axis to magnetic moments both
in positive and negative y region, which results in smoothly
varying amplitude and phase distributions for Gm

S . The reason
why Gm

S is not completely symmetric with respect to the x

axis is again due to the field displacement nonreciprocity of
MSSWs.

Another difference to be pointed out is that under the condi-
tion commonly met in parametric pumping measurements, Gm

V

is generally much smaller than Gm
S . In parametric pumping, a

metal layer is deposited on top of the magnetic film with some
kind of insulation layer in between to electrically separate
them. This metal layer is patterned to form an antenna and
excitation currents flow through it to excite MSWs. Thus je

lies in the x-y plane. The total �he is given by integrating
magnetic fields generated by current elements according to
Biot-Savart’s law as expressed by the first term of Eq. (12).

Magnetic fields generated by the x component of the ac
current density do not have a x component and thus do not
contribute to the induction of fictitious volume charges. On
the other hand, magnetic fields from the y current component
have a x component thus contribute to the induction of the
fictitious volume charges, but do not have a y component.
Therefore the strength of the fictitious volume charge source,
shown as the first term in the RHS of Eq. (25), can be written
by using Eq. (20) as

χ
∂hex

∂x
= −χ

∂hez,y

∂z
, (82)

where �he,y is the excitation field from the y current component,
not the total excitation field distribution. This equation means
that the strength of the fictitious volume charge source is

proportional to the field gradient along the z axis of the
magnetic field coming from the y component of the ac current
density.

Let us turn to the strength of the surface charge source
shown as the second term in the RHS of Eq. (25). This is
expanded as

P �he · �ez = iκhey + χhez. (83)

This equation shows that the strength of the surface charge
source is proportional to the field strength itself, and the
proportionality constant is of the same order of magnitude
as for the fictitious volume charge source.

In the beginning of the theory, it was assumed that the exci-
tation field sources are sufficiently far away from the magnetic
film such that the field distribution can be approximated as
uniform across the film thickness. This can be mathematically
expressed as ∂hei/∂z · s � hei (i = x,y,z). This condition
dictates that the fictitious volume charge sources are much
smaller than the surface charge sources except for some limited
points where the surface charge source vanishes.

If the metal layer is directly deposited on a magnetic film,
which is possible for magnetic insulators such as YIG, the field
gradient in the interior of the film can be sufficiently large that
the fictitious volume charge sources become comparable to
the surface charge sources. In this case, however, the above
assumption is of course no longer valid, thus the problem
becomes 3D, which significantly complicates the theory and
requires much more computation resources.

III. APPLICATION OF THE GREEN’S FUNCTION
TO RECONSTRUCTION OF THE SPATIAL MSSW

PROPAGATION PATTERNS

A. Experimental setup

We experimentally observed the spatial MSSW propagation
patterns using SRFMR-SKEM under three different cases, one
for 1D propagation along the direction perpendicular to the
bias field, and the other two for 2D diffraction patterns around
different irregularities. The experimental details are presented
in this subsection.

The details of SRFMR-SKEM apparatus have been pre-
sented elsewhere.20–22 We used two samples for these three
measurements. The configurations of the two samples are
shown in Fig. 5. These are 100-nm-thick Py coupons patterned
into a square size of 1 × 1 mm2. Magnetic properties are as
given in the calculation of the GFs. A coplanar waveguide
(CPW) with a total width of 18 μm and a center conductor
width of 3 μm is formed along the horizontal center line by
patterning a 750-nm-thick Cu layer separated from the Py layer
with a 540-nm-thick alumina layer. During measurement, a
dc bias field HB is applied along the CPW, and a continuous
sinusoidal current at a frequency f between 2 and 8 GHz is fed
to one side of the CPW. f and HB are set to satisfy ω > ωK

in order to selectively excite MSSWs. The SRFMR-SKEM
measures the polar Kerr rotation from the top surface of
the Py layer with an optical penetration depth δp estimated
as 15 nm.

Experiment 1 is the measurement of the 1D profile of the
dynamic magnetization along the y axis, which was already
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FIG. 5. (a) and (b) Top view of the two samples. (c) Cross
section of the layer structure of these samples. They consist of a
100-nm-thick Py coupon with a size of 1 × 1 mm2 and a coplanar
waveguide (CPW) with a total width of 18 μm and center conductor
width of 3 μm running along the horizontal center line. The CPW
was formed by patterning a 750-nm-thick Cu layer on top of a
540-nm-thick alumina layer. Sample 1 has a W patch at the center
that shorts the CPW. Sample 2 has the same structure, except for no
W patch. During measurement, a dc bias field is applied parallel to
the CPW. In experiment 1, the dynamic magnetization is measured
along the line perpendicular to the bias field on sample 2 while a
sinusoidal excitation current at f = 8 GHz is sent to the CPW. The
line in (b) clarifies the scanning orientation for this measurement. In
experiments 2 and 3, a sinusoidal excitation current at 2–8 GHz is
fed to the CPW, and the dynamic magnetization is acquired in the
rectangular area shown in samples 1 and 2, respectively. Also given
in this figure are coordinate definitions.

published in Ref. 21. An excitation current at f = 8 GHz is
sent to the CPW, and SRFMR-SKEM measures the amplitude
and phase of the dynamic magnetization along the centerline
of the Py coupon perpendicular to the CPW in sample 2. The
line in Fig. 5(b) clarifies the scanning orientation.

Experiments 2 and 3 are measurements of 2D diffraction
patterns of MSSWs created around different irregularities,
each of which were captured in samples 1 and 2, respectively.
For experiment 2, a tungsten (W) patch is deposited at the
center of sample 1 to shorten the CPW, so the excitation current
flows to the center and is reflected back at the W patch. Thus
MSSWs are excited along only the right half of the CPW.
The dynamic magnetization is captured in the rectangular area
around the W patch, shown in Fig. 5(a). In experiment 3,
sample 2 has the same CPW but without the W patch so that
the excitation current flows all the way through the CPW. The
dynamic magnetization is captured in the rectangular area near
the vertical edge shown in Fig. 5(b).

B. Experiment 1: Measurement and analysis of 1D spatial
distribution of propagating MSSWs

For the study of MSSWs, a 1D system invariant along the
bias field (x axis) is often of particular interest because MSSWs
predominantly propagate along the direction perpendicular to
the bias field (y axis). For this reason, we first applied the
GF obtained in this work to the analysis of experiment 1,
which excites MSSWs propagating along the y axis. Since
the characteristic decay length is much shorter than the lateral
size of the Py coupon, MSSWs excited by the CPW along the
horizontal centerline propagate in both positive and negative y

directions, and completely damp out before reaching the edges
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FIG. 6. Comparison of the experimentally observed and numeri-
cally calculated 1D spatial distribution of the dynamic magnetization
on a 1 mm × 1 mm Py coupon without a W patch (sample 2 in
Fig. 5) scanned along a line perpendicular to the bias field. Excitation
frequency is 8 GHz, and the bias field is 2.38 × 104 (A/m) for (a) and
4.94 × 104 (A/m) for (c), respectively. The bias field in the numerical
calculation is fitted to 2.53 × 104 (A/m) for (b) and 4.76 × 104 (A/m)
for (d) in order to match the wave number to the experimental result.
Three segments of bold lines at the bottom of each figure show the
position of the CPW. The arrow shown in the amplitude plot of (c)
and (d) indicates the cusp mentioned in the text.

of the coupon. Thus this measurement observes the decaying
plane MSSWs.

It is clear that sample 1 does not have any x component
of the excitation field, so the fictitious volume charge is not
present as mentioned above. Also, convolving the 2D GF with a
wave source distribution invariant along the x axis is equivalent
to simply taking the dc component along the x axis. Thus the
1D GF can be obtained by setting kx = 0 and performing the
iFT on Gm

S along the ky axis, i.e.,

Gm
MSSW(y) ≈ F−1

ky

[
�S0�

m
z0φ

i
σ (ky)

ε0

] ∣∣∣∣∣
kx=0

. (84)

This 1D GF is convolved with the wave source distribution
calculated from the CPW geometry. The comparison between
the experimentally observed and numerically calculated 1D
spatial distribution of the dynamic magnetization under two
different HB values is shown in Fig. 6. The value of HB

used in the numerical calculation is fitted to match the wave
number to the experimentally observed value and thus is
slightly different from HB used in the experiment. They
show in general very good agreement. The shape of the
plot is very similar between the experimental and numerical
results for both bias fields. Only a slight disagreement is
observed around the CPW in the amplitude profile for the
lower bias field (shorter wavelength), i.e., (a) and (b). This is
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considered to be due to inaccurate current distribution used
in the numerical calculation, which assumes a plane current
sheet evenly spreading out the entire CPW conductor. The
real current distribution may be somewhat different from this
assumption due to current crowding effect, capacitive coupling
between the CPW and the Py coupon, and so on, which alter
the wave source distribution, and consequently the amplitude
profile of the dynamic magnetization around the CPW. For
the higher bias field (longer wavelength), the agreement is
excellent for both the amplitude and phase plot as shown in
(c) and (d).

One peculiar feature revealed by this analysis is the sharp
cusp in the amplitude plot, which is pointed by an arrow
in (c) and (d). This appears only on one side of the two
gaps of the CPW, and this becomes more prominent as the
wavelength becomes “longer”. This behavior is opposite to the
well known field displacement nonreciprocity of the MSSW,
which becomes more prominent as the wavelength becomes
“shorter.”

The cause of this cusp is interpreted as follows. The source
distribution is obtained by first calculating the excitation field
using the first term of Eq. (12), then calculating Eq. (83). Ac-
cording to Eq. (83), the real and imaginary part is coming from
the z and y components of the excitation field, respectively,
thus these are phase shifted by 90◦ to each other. Consequently,
the excitation field is not linearly but elliptically polarized.
Because the CPW geometry is symmetric, so is the excitation
field distribution with respect to the x axis. This means that
the “helicity” of the elliptically polarized excitation field is
opposite between the negative and positive y region. The LL
equation, (5), says that the magnetic moment precesses in
only one helicity direction (clockwise direction). Thus the
coupling between the excitation field and the spin precession
is different between the negative and positive y region, and
becomes minimum if the helicity of the excitation field is
counterclockwise, and its ellipticity coincides with the inverse
of the ellipticity of the magnetization precession. In reality,
MSSWs propagate in both directions so wave interference
also comes into play to complicate the profile even further.

It is not easy to come up with an intuitive interpretation of
this cusp observed in both experimental and numerical results
without having the correct mathematical description of the
surface charge source term. The successful reproduction of
this cusp in the numerical calculation is considered one piece
of powerful evidence that proves the correctness of the theory
derived in this work.

C. Experiment 2: Measurement and analysis of 2D diffraction
pattern of MSSWs around the W patch

We carried out the measurements of 2D spatial distributions
of MSSWs around the W patch in experiment 2. As the first
step of the experiments, the spatial distribution of dynamic
magnetization was captured with varying the frequency and
amplitude of the excitation current, and the bias field. These
results showed first that the amplitude is proportional to the ex-
citation current, and second that the spatial distribution patterns
are solely determined by the wavelength of the MSSWs and
are independent of frequency.22 These observations indicate
the linearity of the system and the absence of exchange fields
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FIG. 7. Comparison of the experimentally observed and numer-
ically calculated diffraction patterns in experiment 2. The same
brightness scales as in Fig. 4 are used for both amplitude and
phase images. The W patch is located at (x,y) = (0,0) in the figure.
The experimental result was taken with HB = 5.07 × 104 A/m and
f = 8 GHz, and showed the wavelength along the y axis as 53.7 μm.
In the numerical calculation, HB was set to 4.73 × 104 A/m in order
to match the wavelength.

thus suggesting that the observed spatial distributions are
diffraction patterns of pure MSSWs.

In order to verify this interpretation, the spatial diffraction
patterns for these measurements were calculated by convolving
the GF for a lossy system derived in this work and the wave
source distribution in sample 1 using Eqs. (12) and (28). The
comparison between experimentally observed and numerically
calculated results is shown in Fig. 7. The experiment was done
with HB = 5.07 × 104 A/m and f = 8 GHz, and showed the
wavelength along the y axis as 53.7 μm. In the numerical
calculation, HB was fitted to 4.73 × 104 A/m in order to match
the wavelength. Both the amplitude and phase distributions
showed excellent agreement. In the amplitude distribution,
the decay of the MSSWs along the y axis agrees almost
perfectly, and an amplitude increase extending from the W
patch along the θg direction seen in the experimental result is
successfully reproduced in the numerical result, which reflects
the semicaustic beams due to focusing of MSSWs, shown in
Fig. 4(a).

D. Experiment 3: Measurement and analysis
of 2D diffraction pattern of MSSWs near
the edge perpendicular to the bias field

In order to calculate the diffraction patterns observed in
experiment 3, the boundary condition of the vertical edge must
be known. To the author’s knowledge, however, there has been
no past work that treated the behavior of MSWs reflected by an
edge perpendicular to the bias field. This is because the static
field distribution and the static domain structure are highly
inhomogeneous due to demagnetization fields coming from the
edge and an edge domain formed as a result of it. In this work,
a simple assumption was made that the vertical edge acts as a
strongly pinned boundary for MSSWs having a sufficiently
longer wavelength than the inhomogeneous region. Under
this assumption, the spatial distribution can be calculated by
assuming a mirror image of the wave source distribution and
integrating all waves coming from both the real and mirror
image wave source distributions.

The experimental and calculation results of experiment 3
are shown in Fig. 8. The parameters, such as HB and f , are the
same as for experiment 2. Again, the agreement is excellent
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FIG. 8. Comparison of the experimentally observed and numer-
ically calculated diffraction patterns in experiment 3. The same
brightness scales as in Fig. 4 are used for both amplitude and phase
images. The CPW enters beneath the sample at (x,y) = (0,0) in
the figure. The parameters, such as HB and f , are the same as for
experiment 2.

for both amplitude and phase. The numerical calculation
reproduced all major features of the experimentally observed
MSSW distribution, including the decay of MSSWs along the
y axis, amplitude increase along the θg direction, and the shape
of the phase distribution.

IV. CONCLUSION

We developed the 2D GF of MSSWs in real space and
the frequency domain, �m(�r,ω), and used it to calculate the

1D spatial propagation profiles and 2D diffraction patterns of
MSSWs. These numerical results showed excellent agreement
with the experimental results obtained by SRFMR-SKEM
over wide range of bias fields (equivalently wavelength) and
successfully reproduced all major features characteristic of
MSSWs, such as the strongly anisotropic propagation and
caustic beams along θg . In experiment 1, the agreement
is better for longer wavelengths, probably due to some
deviation of the excitation current distribution assumed in the
calculation from the real distribution. Regarding experiments
2 and 3, only one comparison between the experimental and
numerical results is presented for each experiment in this
paper. However, this comparison was made at other bias fields,
and they all showed as excellent agreement as in Figs. 7
and 8. These results strongly support the correctness of our
approach for deriving the GF presented in this work, and
prove the usefulness of the combination of the theoretical
and experimental techniques used in this work, i.e., the
GF and SRFMR-SKEM, for studying the spatial nature
of MSWs.
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