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Two scenarios of spin-transfer switching and criteria for the corresponding threshold currents
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It is useful to classify the spin-transfer switching events according to the scenarios of equilibrium
destabilization: a local transformation or an equilibrium merging. We derive an invariant expression for the
critical current of local transformation, discuss the critical current of merging, and consider the competition of
the two scenarios. The critical current of saddle-point stabilization is also derived. Our results provide a intuitive
picture for the behavior of spin-transfer devices, allowing one to make qualitative predictions and understand the
limitations of some frequently used approximations.
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I. INTRODUCTION

High-density electric currents induce magnetization motion
and switching in nanosize metallic wires containing alter-
nating ferromagnetic and nonmagnetic layers (Fig. 1). This
phenomenon is finding important applications in computer
memory and logic devices. Switching is caused by the spin-
transfer torque τ st

1,2 which depends on the magnitude and spin
polarization of current, material parameters, and geometry of
the device. Once the spin torque τ st is found from experiment
or theory, the magnetization dynamics can be obtained by
solving the Landau-Lifshitz-Gilbert (LLG) equation. A simple
but often sufficiently accurate approximation is the macrospin
model that assumes uniform magnetization of the layer
M(r,t) = Mn(t), where M is the saturation magnetization
value and n is a unit vector. In this case the LLG equation
reads

ṅ =
[
− ∂ε

∂n
× n

]
+ τ st (n) + α[n × ṅ], (1)

where ε(n) = (γ /M)E(n), E is the magnetic energy per unit
volume, γ is the gyromagnetic ratio, and α is the Gilbert
damping constant. The spin-transfer torque is proportional to
electric current, τst ∼ I .

At I = 0 vector n assumes an equilibrium position neq(0)
at a minimum of magnetic energy. A nonzero current has two
effects: First, the spin torque gradually shifts the equilibrium
away from its original position neq(0) → neq(I ). Second, a
stable equilibrium may abruptly turn unstable at a critical
current Ic. Such local loss of stability will cause a magnetic
switching2 to another stable state. Local destabilization is,
however, not the only process leading to switching. As will
be discussed below, another scenario involves a collision and
disappearance of two equilibria as they shift toward each other
in response to the increasing spin torque. In this paper we
obtain new results for the critical current in local and merging
scenarios and discuss situations where the two mechanisms
compete with each other.

Various stabilization and destabilization scenarios are well
understood for general dynamic systems in terms of the
bifurcation theory.3 However, in the spin-transfer literature
the usage of this language did not become a common
practice. In part this happened because the critical current

can be found without establishing the exact scenario of
the stability change. Consider, for example, a computation
of the destabilization current Ic for a given stable equilibrium.
The LLG equation is linearized near the point neq(I ), resulting
in a system of two coupled linear differential equations
for small deviations. The stability of the equilibrium is
determined by the eigenvalues λ1,2(I ) of the corresponding
2 × 2 matrix. When the inequalities Re[λ1,2] < 0 are satisfied,
the equilibrium is stable. If the real part of either eigenvalue
changes its sign as the current is increased, the equilibrium
becomes unstable. The critical current can be determined from

Re[λ(Ic)] = 0. (2)

Equation (2) is applicable for any destabilization scenario.
But, as we show below, knowing the actual scenario one
can qualitatively understand the parameters determining
the critical currents and predict the qualitative behavior
of the spin-transfer device above and below the current
threshold.

Sections II and III of the paper discuss the local and
merging scenarios, derive expressions for the critical currents,
and consider examples of device operation. In Sec. IV the
competition between the two scenarios is considered. There
we show how our method can provide a qualitative picture of
the device with several switching possibilities.

II. LOCAL CHANGE OF STABILITY

A. Motivation

In the absence of the current, the equilibrium neq(0)
corresponds to a local minimum of the energy. It is a stable
focus with two complex conjugated eigenvalues λ2 = λ∗

1. Both
of them have a negative real part which is a consequence
of the positive damping α > 0. (For zero damping the
LLG equation describes conservative dynamics with purely
imaginary values of λ1,2.) To find Ic from the condition (2)
one generally has to calculate two complex eigenvalues as
a function of current. This calculation should, in particu-
lar, account for the displacement of the equilibrium point
caused by the spin torque. The procedure is mathematically
clear but does not have an obvious physical interpretation.
The conventional intuition, stating that the energy minima

064422-11098-0121/2011/84(6)/064422(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.064422


INTI SODEMANN AND YA. B. BAZALIY PHYSICAL REVIEW B 84, 064422 (2011)

I

current source

non-magnetic wire

static magnetic layer

non-magnetic spacer
dynamic
magnetic
layer

s n

FIG. 1. Spin-transfer device with a static spin polarizer (fixed
layer) and a dynamic magnet (free layer).

should be stable and the energy maxima and saddle points
should be unstable, breaks down in the presence of the spin
torque.

There is, however, one case where the physics of the process
is well understood, namely the case of collinear geometry,
where the spin polarization of the current is parallel to the
equilibrium direction neq(0) (see, e.g., Ref. 4). Here the spin
torque points opposite to the dissipation torque and directly
competes with it. For the collinear geometry the effect of
spin transfer is described by an additional “negative damping”
αst < 0 that should be added to the original positive damping
α. As soon as the total damping αeff = α + αst changes its
sign, the equilibrium becomes unstable. The novel negative
damping αst introduced in the collinear case is proportional
to the spin-torque magnitude, which is, in turn, proportional
to the current |αst | ∼ |τ st | = AswI . The coefficient Asw gives
a measure of the effectiveness of the current in destabilizing
the equilibrium: The larger it is, the smaller the critical current
will be.

The existence of a single number Asw characterizing the
“switching ability” of the current greatly simplifies the under-
standing of switching in the collinear geometry. Historically
it was often implicitly assumed that the ratio |τ st |/I will also
play the role of switching ability for an arbitrary angle between
neq and spin polarization. This view, in particular, predicted
that a sharp difference should exist between the destabilization
of collinear and noncollinear equilibria because the spin torque
is necessarily small near a collinear equilibrium [in this case
τ st (neq) = 0] but can have a finite value near a noncollinear
one. The noncollinear equilibria were thus thought to have
much lower critical currents. Actual calculations using the
LLG linearization method, as well as experiments, did not
confirm this prediction and it was argued4 that the critical
current should generally depend not just on |τ st | but also on
its derivatives.

One can ask whether it is at all possible to have a
single “switching ability” parameter Asw characterizing the
effectiveness of the current-induced destabilization in a general
noncollinear geometry. Here we show that such a parameter
can be indeed introduced for extremum (minimum or max-
imum) energy points and in some cases for energy saddle
points, and find explicit expressions for it.

B. Invariant criterion, switching ability, and critical circles

The LLG equation (1) can be equivalently written as

(1 + α2) ṅ = F(n) ≡ τ (n) + αn × τ (n), (3)

where τ = τ c + τ st and τ c = −[(∂ε/∂n) × n] is the conser-
vative part of the torque due to magnetic anisotropy energy and
external magnetic field. Both torques τ c and τ st are tangent to
the unit sphere.

The equilibrium magnetization orientations neq satisfy
τ (neq) = 0. Their stability can be investigated by linearizing
the equation of motion. In standard spherical coordinates (φ,θ )
one decomposes F = Fφeφ + Fθeθ in terms of the unit vectors
eφ , eθ pointing along the coordinate lines and obtains(

˙δφ

δ̇θ

)
=

⎛
⎝ 1

sin θ
∂Fφ

∂φ
1

sin θ
∂Fφ

∂θ

∂F θ

∂φ
∂F θ

∂θ

⎞
⎠(

δφ

δθ

)
= D̂

(
δφ

δθ

)
. (4)

Stability of an equilibrium requires both eigenvalues of the
“dynamic matrix” D̂ to have negative real parts. For a 2 × 2
matrix this is equivalent to the conditions (see Appendix A)

TrD̂(neq) < 0, det D̂(neq) > 0. (5)

We will call the above a “trace condition” and a “determinant
condition.”

The dynamic matrix D̂ is not covariant with respect to the
change of spherical coordinates, and its trace and determinant
depend on the coordinate choice. Let us introduce a related
matrix of covariant derivatives

D̂cov =
⎛
⎝ 1

sin θ
∂Fφ

∂φ
+ cos θ

sin θ
F θ 1

sin θ
∂Fφ

∂θ

∂F θ

∂φ
− cos θFφ ∂F θ

∂θ

⎞
⎠.

The trace of D̂cov is an invariant quantity equal to

TrD̂cov = divF = 1

sin θ

[
∂

∂θ

(
sin θF θ

) + ∂Fφ

∂φ

]
,

where divF is understood as the divergence of the vector field
F(n) on the surface of a unit sphere. Crucially, at equilibrium
points the original and the invariant dynamic matrices are
equal, D̂ = D̂cov, and we can use TrD̂cov < 0 and det D̂cov > 0
instead of (5). In particular, an invariant condition divF < 0
replaces the trace condition.

The trace condition describes the local destabilization or
stabilization of the equilibria corresponding to the energy
extrema (minima and maxima). In those cases det D̂ > 0, and
the stability change is due to the sign change of TrD̂ = divF.

Using the relation between F and τ and notation divF =
∇ · F, we find

∇ · F = ∇ · τ − α[∇ × τ ] · n, (6)

where [∇ × τ ] · n = −[∂τθ/∂φ − ∂(sin θτφ)/∂θ ]/ sin θ is the
curl of the field τ on the surface of the sphere.

The general expression for the spin-torque created by a
polarizer pointing along the unit vector s reads5

τ st (n,I ) = ωI g(n · s) [n × (s × n)] ≡ ωI fst (n). (7)

Here ωI = (γ /M)(h̄I/2eV ) is the rescaled current, where V

is the magnetic layer volume, e is the electron charge, and
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g(n · s) is the efficiency factor.6 In the last form of spin torque
we have explicitly separated the overall proportionality to the
current from the angular dependence fst (n). Importantly, the
conservative torque is divergence free,

∇ · τ c = 0,

and the spin-transfer torque is curl free,

[∇ × τ st ] · n = 0.

Using these properties we get

∇ · F = ∇ · τ st − α∇ × τ c = ωI ∇ · fst − α∇2ε. (8)

By changing the current, one can control the sign and
magnitude of the first term and produce the sign change
of the whole expression. We see that the switching ability
Asw = ∇ · fst exists and is determined by the divergence of
the quantity fst (n) characterizing the angular dependence of
the spin torque.

Additionally, equation (8) shows that the condition divF =
0 can be viewed as a limiting case of the condition for
the existence of a precession state (PS). A precession cycle
is characterized by the integral condition

∮
(τ st · e⊥)dl =

α
∮

(∇ε · e⊥)dl, where e⊥ is a unit vector perpendicular to
the cycle trajectory and tangent to the sphere, and the integrals
are taken along the cycle.7–9 This integral condition reflects
the balance of incoming and dissipated energy. As the size
of the cycle tends to zero, Eq. (8) is recovered from the
integral condition. In terms of the bifurcation theory3 local
destabilization of the minimum points is the Hopf bifurcation
which normally produces a small stable precession cycle
around the destabilized equilibrium.

Consider now the experimentally relevant case of small
Gilbert damping, α � 1. Expression (8) shows that the critical
current satisfies Ic ∝ α and hence will be also small. Therefore
at I = Ic the equilibrium point neq(Ic) = neq(0) + �n will be
close to neq (0) with �n ∝ Ic ∝ α. Expanding (8) up to linear
terms in α we get an approximate stability condition

ωI ∇ · fst |neq (0) � α∇2ε|neq (0) (9)

with equality achieved at the critical current.5 Importantly, all
quantities in (9) are evaluated at the unperturbed equilibrium
point neq(0). In comparison, using conditions (5) one needs6,12

to perform an explicit calculation of neq(Ic) even in the case
of the first-order expansion in α. This situation is discussed in
more detail in Appendix B.

According to Eq. (9) the critical current is given by

ωIc = α
∇2ε|neq (0)

Asw

. (10)

In this formula the influences of the magnetic energy and of
the spin torque on the critical current are completely separated.
The former determines the equilibrium point neq(0) and the
value of the numerator, and the latter is responsible for the
switching ability standing in the denominator. For example, if
one would rotate the polarizer s keeping the energy ε constant,
the critical current would change according to the dependence
of Asw on the angle between s and neq(0).
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FIG. 2. Angular dependence of the spin-torque divergence. Effi-
ciency factor is taken in the Slonczewski form. Inset: Absolute value
of spin torque. Curves for different spin polarizations P are shown.

We now derive a useful expression for the switching ability
Asw = ∇ · fst . For τ st given by Eq. (7) one gets

∇ · fst = − 1

sin ϑ

d

dϑ
[g(cos ϑ) sin2 ϑ], (11)

where ϑ is the angle between s and n. Representative graphs
of ∇ · fst (ϑ) are shown in Fig. 2 for the Slonczewski form2 of
g(ϑ). We observe the following:

(a) The angular dependence of the divergence ∇ · τ st (ϑ)
differs substantially from that of |τ st |(ϑ). In particular, the
divergence is not necessarily small in the collinear con-
figurations ϑ = 0,π and the destabilization of noncollinear
equilibria may actually require larger currents than those
needed for the collinear cases.

(b) The switching ability Asw = ∇ · fst vanishes at a critical
angle ϑ∗ [Fig. 2]. Equation (10) predicts infinite critical current
for the equilibrium points lying on the “critical circle”
(CC) defined by ϑ(φ,θ ) = ϑ∗ [more precisely,
the approximation (9) breaks down at CC and Ic is just
large]. The critical circle divides the unit sphere into two
parts. Spin-transfer torque destabilizes the energy extrema in
one of them (which one depends on the current direction),
while in the other it makes them more stable.

(c) The signs of Ic are opposite for equilibria located
on different sides of a CC. This circumstance is especially
relevant when one considers different models of g(ϑ). For
example in the Slonczewski case ϑ∗ depends on the spin
polarization P and varies from ϑ∗(P=0) � π/2 to ϑ∗(P=1) = π .
In contrast, for a popular approximation g = const, one has
ϑ∗ = π/2 independently of P . The difference between the two
models becomes crucial for an equilibrium located between the
respective CCs: A given current would have a stabilizing effect
in one model, and destabilizing in another.

(d) In the collinear geometry ϑ = 0,π and the spin-torque
divergence (11) is reduced to 2g(0) and 2g(π ), respectively.
Thus in these cases Asw is indeed proportional to the
spin-torque magnitude, in accord with the physical picture
presented in Sec. II A.

C. Examples

Let us now show how the notions of switching ability
and critical circles allow one to understand qualitatively
the behavior of various devices. Note that expression (10)
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is ultimately based on the smallness of the equilibrium
displacement for α � 1 and ωI � ωIc. This property allows
one to classify each equilibrium by its position neq(0) at zero
current. In this spirit we will refer to the finite current equilibria
neq(I ) as energy minima and maxima. We will consider typical
nanopillars10 with an (x,y) easy plane and an easy axis ν||x̂,
so that

ε = 1
2ωp(nẑ)2 − 1

2ωa(nν)2 − γ (H · n),

where ωp and ωa < ωp are the easy plane and easy axis
anisotropy constants. Nanopillar devices differ in the direc-
tions of applied field H and spin polarizer s.

1. Example 1

First, let the external magnetic field H||ŷ be applied in the
easy plane, perpendicular to ν, and the polarizer be directed
along the easy axis, s||ν (Fig. 3). In the absence of applied
field the energy minima M1 and M2 are located at ±ν. As
the field is turned on, the minima move along the equator
toward the saddle point L, and finally merge with it when
the field reaches the easy axis anisotropy value HA = ωa/γ .
For this case the spin-transfer switching diagrams in the plane
of parameters (H,I ) were calculated in Refs. 11 and 12. The
diagrams for a generic efficiency function g(ϑ) [Fig. 3(a)] and
for the special case of g = const [Fig. 3(b)] are found to be
qualitatively different, with the former diagram displaying the
“anomalous” region [Fig. 3(a)] where both critical currents
are negative. In our approach the occurrence of an “anomaly”
is naturally explained by the fact that the minimum point
M1(H ) crosses the critical circle at H = H∗. After the crossing
both equilibria are found on the same side of CC and are
destabilized by the current of the same direction. For g = const
the critical angle is ϑ∗ = π/2 and the minima never cross
the critical circle; hence the anomalous region is absent. The

s
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ν s

H

ν

critical circles

(a) g = g(ϑ) (b) g = const
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FIG. 3. Critical circles and the “anomalous” stabilization region.
Upper panels: Collinear device with s||ν||x̂ and H ||ŷ. The energy
minimum points M1 and M2 move with increasing H as shown by
the arrows. Critical circles shown for (a) generic g(ϑ) and (b) g =
const. Lower panels: Switching diagrams. In the regions M1 and M2

one equilibrium is stable, in B both are stable, and in P both are
unstable.

τst (ϑ) dependence produced by the g = const approximation
is qualitatively similar to the actual one. Nevertheless, it does
not lead to the correct qualitative picture of switching when
the equilibria of interest are close to the actual critical circle.

2. Example 2

The previous example discussed spin-transfer destabiliza-
tion of an energy minimum. Equation (9) can also describe the
opposite process of an energy-maximum stabilization. At an
energy-maximum point the Laplacian satisfies ∇2ε < 0, so the
term ωI ∇ · fst has to become sufficiently negative to stabilize
the equilibrium. The critical value of ωI is again determined
from Eq. (10). Stabilization of the energy maximum was first
discussed in Ref. 13 for a simple anisotropy. In the nanopillar
case such a stabilization was studied in Ref. 6 in the case of
external field and spin polarization directed along the easy
axis, H||ν, s||ν. It was found that the stabilization current
diverges and changes its sign at a particular field H∗. The
reason for this peculiar dependence was not understood at
the time. With the present insight the picture becomes clear.
The energy-maximum point is shifted by the changing mag-
netic field and crosses the critical circle at H = H∗. This
crossing naturally explains the behavior of the corresponding
critical current.6

3. Example 3

Sensitivity to the g(θ ) angular dependence turns out to be
of crucial importance for the interpretation of the “spin-flip
transistor” precession experiment.14 The spin-flip transistor is
a nanopillar with s||ŷ. Calculations19,20 performed with the
assumption g = const found that in this configuration the
precession state is forbidden at zero magnetic field, but can
exist in an external field H||ŷ if it is directed antiparallel to
s. At the same time the precession state was experimentally
observed at H = 0.14 Based on the theory of Refs. 19 and 20
this result was interpreted as an indication that an additional
“fieldlike” term had to be introduced in Eq. (7).

Within the framework of our analysis, the absence of PS
states at zero field is due to the fact that at g = const and
H = 0 the energy minima M1,2 are located on the critical
circle [Fig. 4(a)] and cannot be destabilized. The antiparallel
field is required to shift the minimum points away from CC.
However, for general g(ϑ), the minimum points are away from
CC even at H = 0 [Fig. 4(b)]. They can be locally destabilized,

s
H

M1

M2 L
ν

CC

s

M1

M2 L
ν

CC

(a) g = const, H = 0 (b) g = g(ϑ), H = 0

FIG. 4. Spin-flip transistor geometry. (a) For g = const local
destabilization of the energy minima requires external field H to shift
M1,2 away from the critical circle (marked CC). (b) For g = g(ϑ) the
minima are away from CC even at H = 0.
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producing PS states by Hopf bifurcation without any fieldlike
terms.18 The lesson of this example is that the H = 0 results of
Refs. 19 and 20 are sensitive to the angular dependence g(ϑ)
in a manner that would be hard to foresee without the notion
of a critical circle.

4. Example 4

To further demonstrate the power of the analysis based
on Eqs. (9) and (11), consider the experiment15 performed
on a nanopillar device with an unusual “wavy” τst (ϑ)
dependence.16,17 As Fig. 5(a) shows, in this case there are
two critical circles, CC1 and CC2, defined by the angles
ϑ∗1,2. At zero external field the energy minima M1,2 fall
into the regions of the same sign of ∇ · τ st and can be
destabilized simultaneously, producing a precession cycle.15

With increasing current, the cycle gradually approaches the
energy-maximum point X. Eventually spin transfer stabilizes
that point6 by closing the contour on it.15

Here the notion of critical circles suggests an experiment
capable of providing additional evidence for the “wavy” τst (ϑ)
dependence. If an H||ŷ field is applied to the nanopillar
[Fig. 5(b)], the energy minima M1,2 are shifted toward the
saddle point L. Since ϑ∗1 and ϑ∗2 are not necessarily symmetric
with respect to π/2, there will be an interval of fields where M1

has already crossed CC1 and moved into the middle region,
while M2 remains in the left region. In this interval ∇ · τ st

has opposite signs for M1,2 and normal switching between
M1 and M2 will be possible. Further increase of H will put
both minimum points into the middle region, where they will
be again destabilized by the same current direction. However,
now the same current direction will also destabilize X, so the
evolution of the PS state will be different from the H = 0
case.18

III. EQUILIBRIUM MERGING

Let us now turn to the question of saddle-point stabilization.
In the absence of current these points are unstable with
detD̂I=0 < 0, so their stabilization requires a change of sign
of detD̂.

An example of saddle-point stabilization is provided by
a spin-flip transistor in zero field where the spin torque
attracts n to the saddle point and eventually stabilizes L.19,20

Notably, this stabilization is accompanied by a simultaneous
discontinuous change in the nature of two other equilibria: The

s
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M2 L

ν

)b()a(
X

CC2
CC1π

τst
divτst

ϑ

0

ϑ 1*ϑ 2*

FIG. 5. (a) “Wavy” τst (ϑ) dependence (Ref. 15) (solid line) and
corresponding ∇ · τst (dashed line). (b) Critical circles CC1,2 and
positions of minimum points M1,2 at an intermediate value of the
field H . The energy-maximum point is X.
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M2
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ν
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M2
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ν

(a) (b)

(c) (e)(d)

FIG. 6. (a) Spin-flip transistor: s ⊥ ẑ, s ⊥ ν, H||s. The dashed
lines show how the positions of the equilibria M1 and M2 change
with increasing current and merge with the saddle L. (b) General
in-plane directions of s and H. The saddle merges with one of the
minima, while the other one asymptotically approaches s. (c)–(e)
Transformation of the field F during the merging of a saddle with two
foci in case (a).

minimum points M1,2 loose their stability at the same critical
current that makes L stable.19

The spin-flip transistor device at zero field has high
symmetry. To get more intuition about the stabilization of
saddles we first study what happens when the symmetry is
reduced by an application of the magnetic field parallel to the
spin polarization vector, H||s||ŷ. If the field is directed parallel
to s (note the difference with the antiparallel case discussed in
Sec. II C, example 3), the current leads to a significant deviation
of the minima M1,2 from their initial positions [Fig. 6(a)].
The minimum points M1,2 approach L and merge with it at
the critical current, forming a stable center. The saddle-point
stabilization still happens through a process involving several
equilibrium points.

We start by explaining why those simultaneous transforma-
tions are not a coincidence. In the examples above the saddle
point is stabilized by conversion into a stable center. However,
as topological defects of the vector field F, saddles and
centers differ in the winding number21 which is a topological
characteristic equal to n = −1 for a saddle and n = 1 for a
center or focus. Since the total winding number is conserved
according to the Poincaré index theorem, a saddle point cannot
be transformed into a center locally. The saddle-to-center
transformation has to either proceed via merging with other
defects, or be accompanied by a simultaneous change of nature
of the far-away equilibria. For example, Figs. 6(c)–6(e) show
an allowed merger with two focus points, each of which has
n = 1.

An even better insight comes from considering a generic
case of H and s pointing in the arbitrary in-plane directions
[Fig. 6(b)]. Here the saddle point L merges with one of the
minima which leads to the disappearance of both equilibria. In
the meantime the other minimum approaches s. Merging of a
saddle point and focus point (n = 1) is allowed by the winding-
number conservation. In fact, the bifurcation theory3 shows
that it is the most general case called a saddle-node bifurcation.
As a result, the saddle point is normally not stabilized but rather
destroyed in a collision with an energy-extremum point.

Note that another equilibrium destroyed in such a collision
can be a stable one. In this case its disappearance will lead
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to a switching event. A saddle-node bifurcation constitutes a
separate switching mechanism, complementary to the local
destabilization discussed in Sec. II. Here the critical current
can in principle be determined by applying the condition
det D̂ = 0. However, as we have seen in the spin-flip transistor
example, in this case the deviation of neq(I ) from neq(0) is
large. Thus one first has to calculate the actual position neq(I )
and then find the determinant det D̂(neq(I )). As a result, it is
more practical to detect the switching moment by searching
for the equilibrium collision event, without even applying the
linear-stability analysis.

Returning to the stabilization of a saddle point, we see
that it happens only in special circumstances, for example in
an important special case when s is pointing exactly into the
saddle L. In such a geometry L remains an equilibrium for an
arbitrarily large current and thus cannot disappear in a saddle-
node bifurcation. This restriction produces a transcritical
bifurcation3 where the energy extremum and the saddle
exchange their nature in a collision. The bifurcation diagram
[Fig. 7(a)] gives the positions of the colliding equilibria as
a function of applied current. It is seen how the previously
unstable saddle point becomes a stable center (or focus) above
the critical current value.

Sometimes, e.g., in the case of a spin-flip transistor with
magnetic field H||s [Fig. 6(a)], a more rare fork bifurcation is
produced due to additional symmetries. A very rare nonlocal
bifurcation exhibited by the spin-flip transistor at H = 0 can
only occur in devices of exceptionally high symmetry.

In the case of perfect transcritical bifurcation with s pointing
into the saddle point a simple formula can be derived for a
critical current from the condition det D̂(Ic) = 0. First, using
expression (3) for F one can show that

det D̂ = (1 + α2) det D̂|α=0. (12)

The value of the determinant at α = 0 includes, of course, both
the conservative D̂c and the spin transfer D̂st contributions
to the dynamic matrix. The critical current condition obtains
the form

det(D̂c|α=0 + D̂st |α=0) = 0. (13)

In the present case of s = neq the derivation is more transparent
if one uses special coordinates instead of employing the gen-
eral expressions (4). Pointing axis ẑ of the polar angle system
along s we naturally introduce coordinates x = sin θ cos φ and
y = sin θ sin φ with the equilibrium point at (x,y) = (0,0).

φ

I

φ

I

φ

I

)c()a( (b)

FIG. 7. Transcritical bifurcation diagram shows the positions of
the two colliding equilibria as a function of current [only one angle
φ(I ) is shown for clarity]. Solid lines, stable equilibrium; dashed
lines, unstable equilibrium. (a) Perfect bifurcation with s pointing
exactly into the saddle point. (b), (c) Imperfect bifurcations realized
for s pointing close to the saddle point.

Using the second-order expansion of the energy in small
displacements

ε = ε(0) + 1
2εxxx

2 + εxyxy + 1
2εyyx

2,

we find

D̂c|α=0 =
∣∣∣∣−εxy −εyy

εxx εxy

∣∣∣∣ .
For the spin-transfer contribution one gets

D̂st |α=0 = −ωI

∣∣∣∣g(0) 0
0 g(0)

∣∣∣∣ .
Using these matrices in the condition (13) we find the critical
current of the saddle-point stabilization to be

ωI =
√

−detD̂|I=0,α=0

g(0)
. (14)

This result can be alternatively understood as follows. The
conservative torque alone creates a saddle point with eigenval-
ues λ1 > 0 and λ2 < 0. It repels n from the equilibrium along
the λ1 eigenvector and attracts it along the λ2 eigenvector.
The spin-transfer torque alone creates a stable center with two
equal eigenvalues λ1,2 = −ωIg(0) < 0. It equally attracts n to
the equilibrium along all directions. When the two are added,
the equilibrium will be stable if the spin torque exceeds the
conservative torque along the most repulsive direction, i.e.,
along the λ1 eigenvector. Thus the condition of stabilization
reads ωIg(0) = λ1. The conservative torque is not arbitrary,
but derived from a potential ε. As a result, the eigenvalues of
D̂c satisfy λ1 = −λ2. Now one can express λ1 =

√
− det D̂c =√

− det D̂|I=0,α=0 and recover formula (14).
For a small misalignment of s and L an abrupt saddle-center

transformation is replaced by a crossover in a small interval of
currents. This is guaranteed by the fact that at low current the
saddle point has to remain near s and at large current a stable
equilibrium near s is inevitably produced by the increasing
attraction of n to s. The crossover can happen in two ways
[Figs. 7(b) and 7(c)]. Case (b) is a generic destruction and
creation of the saddle-center pair. Case (c) is formally not a
bifurcation, but looks like one for all practical purposes if the
misalignment is small. Formula (14) remains a good estimate
for the crossover current, although to get the full picture of the
imperfect bifurcation one has to follow the positions of both
equilibria in the region of their anomalous approach to each
other.

IV. COMPETITION BETWEEN THE TWO
DESTABILIZATION SCENARIOS

As discussed in Sec. III, local destabilization of an energy
minimum and merging with a saddle point are the two
alternative switching mechanisms. We know from Sec. II
that the critical current of local destabilization is proportional
to a small parameter α. The critical current of merging,
determined from det D̂(Ic) = 0, is independent of α due to the
relationship (12). Physically, local destabilization results from
a competition of the negative damping brought by the spin
torque with the small positive Gilbert damping. In contrast,
equilibrium merging results from the competition between
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the spin torque and restoring anisotropy torques determined
by the energy ε. Therefore in a generic situation the current
threshold of merging should be much higher that that of local
destabilization. Exceptions to this rule may occur in two cases:
first, if the energy landscape ε has special directions where the
restoring torque is anomalously small, allowing spin torque to
cause large displacement at a current comparable to the critical
current of local destabilization; second, if the equilibrium is
located close to the critical circle and according to Eq. (10) its
local destabilization threshold becomes very high.

The energy landscape of a nanopillar device has a special
direction for ωa � ωp. In this case the states with n in the
easy plane have almost the same energy and even a small
external torque can potentially cause a large equilibrium
displacement along the equator of the unit sphere. Consider the
“magnetic fan” experiment22 where the polarizer is directed
perpendicular to the easy plane, s||ẑ (Fig. 8). In this geometry
the spin torque indeed shifts both the minima and the saddle
point along the equator until the saddle L merges with M1

[Fig. 8(a)]. The g = const approximation is special since the
critical circle coincides with the equator. The minimum cannot
be destabilized locally since it stays on the critical circle all
the time until it merges with a saddle. After the merging
event, the system jumps to a precession cycle of large size,
called an out-of-plane precession (OPP). In a model with
angle-dependent g(ϑ) the energy minimum points are away
from the critical circle. Thus a competing scenario is allowed:
Point M1 can be locally destabilized before it encounters point
L. In this case a small precession cycle around M1, called
an in-plane precession (IPP), will be produced [Fig. 8(b)].18

Which of the two destabilization events comes first depends on
the parameters of the system. Note that this example is special
for both reasons discussed in the previous paragraph: There
is a special direction, and the equilibrium may be close to the
critical circle.

The critical current of local destabilization can be obtained
from Eq. (10). For n on the equator one can estimate

∇2ε = ωp

(
1 + O

(
ωa

ωp

))
,

∇ · fst = −g′(π/2) ,

which gives a critical current

ωI (IPP ) ≈ −α
ωp

g′(π/2)
. (15)

(a) g = const

s

M1L
CC

OPP

M2

s

M1L

CC

IPPM2

(b) g = g(ϑ)

νν

FIG. 8. “Magnetic fan” geometry. (a) At g = const point M1 stays
on CC until it collides with L, creating a large “OPP cycle” (dotted
line). (b) At g = g(ϑ) M1 is away from CC. Its local destabilization
can create a small “IPP cycle.”

The critical current of merging can be estimated as follows.
Both the saddle and the minimum stay on the equator
where the spin torque is given by τ st = −ωIg(π/2)eθ and
the conservative torque equals τ c = ωa cos φ sin φ eθ . The
positions of the M1 and L points are determined from the
torque balance equation

ωa cos φ sin φ − ωIg(π/2) = 0.

From this one finds that points M1 and L merge at

ωI (OPP ) = ωa

2g(π/2)
. (16)

At the opposite current ωI = −ωI (OPP ) the minimum M1

merges with the another saddle point, L′, located opposite
to L.

Equations (15) and (16) show that for

ωa

ωp

∼ α
2g(π/2)

g′(π/2)

the critical currents of the local and merging destabilization
can be of the same order, and the competition between
the two destabilization scenarios is possible. Note that the
local destabilization can happen only at one sign of the
current [assuming g′(π/2) > 0, the IPP critical current is
negative]. The merging destabilization happens at both current
directions.

These properties lead to the following prediction. If
ωI (OPP ) < |ωI (IPP )|, the system switches to the OPP preces-
sion for both current directions. If an opposite inequality holds,
a switch to the IPP precession will be observed for one current
direction, and a switch to an OPP direction will happen for the
opposite current direction. Using Slonczewski’s g and experi-
mental parameters of Ref. 22 we find ωI (OPP )/ωI (IPP ) ≈ 0.1,
which yields an OPP cycle scenario in accord with experiment.
If the easy axis anisotropy ωa is increased, for example by
making the free layer in the shape of an elongated ellipse,
a regime of ωI (OPP ) > |ωI (IPP )| will be reached, and the
OPP or IPP cycles will be created depending on the current
direction.

Another way of creating a competition between the local
destabilization and merging is to tilt the polarizer direction
s away from the ẑ axis (Fig. 9). In this case both equilibria
are away from the critical circle even in the g = const
approximation. One of them always falls into the local
destabilization region and may produce a small-size IPP
cycle above the critical current. Similar to the case of the
magnetic fan (Fig. 8), both equilibria will be shifted by spin

s

M1L

CC

M2

ν

FIG. 9. Tilted polarizer geometry. The minimum points M1,2 are
away from CC and can be destabilized locally.
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torque, and will eventually merge with the saddle points. The
competition between the local destabilization and merging
destabilization is now controlled by the polarizer tilt angle.
This qualitative approach should be very useful for developing
a physical understanding of the rich switching diagrams23–25

obtained for the tilted polarizer case by conventional
methods.

V. CONCLUSIONS

We have discussed two scenarios of stabilization and
destabilization of equilibrium magnetization directions by the
spin-transfer torque. Equilibrium points can either change
their stability locally or experience a collision with the other
equilibrium points.

In the case of a local scenario the destabilization of the
energy minima and the stabilization of the energy maxima
are symmetric processes described by the same invariant
criterion [Eqs. (8), (9), and (10)]. The ability of current to
destabilize the energy minima or stabilize the energy maxima
is determined by a single figure of merit, the switching ability
which is equal to the divergence of the spin torque ∇ · τ st ,
and can be expressed through the spin-transfer efficiency
coefficient g(ϑ) [Eq. (11)]. Our invariant stability criterion is
particularly simple and useful in the limit of small α when the
displacements of equilibria caused by spin torque are small.
In this case the unit sphere turns out to be divided into the
regions of stabilization and destabilization separated by the
critical circles. A good approximation for the efficiency g(ϑ)
should accurately reproduce the position of the critical circle.
For example, the often used approximation g = const fails
not only for exotic “wavy” functions g(ϑ), but also when
it introduces a significant error into the the critical circle
location.

In the case of the merging scenario, the displacements of
equilibria under the influence of spin torque are normally large
and do not depend on the value of α. As a result, it may be
easier to detect the destabilization events by following the
current-dependent positions of the equilibria, rather than by
applying the linear-stability criteria. Merging regularly leads to
a destabilization of a minimum, but does not normally stabilize
the saddle points. An important exception happens when the
polarizer points in the saddle-point direction. In this case an
expression (14) for the stabilization current is derived.

The critical currents I local
c in the local scenario are propor-

tional to the small Gilbert damping α and are normally much
smaller than the critical currents I

merge
c in the merging scenario.

In exceptional cases a competition between the two scenarios
can take place. This happens either when there is a special
direction with small restoring anisotropy torque an I

merge
c is

lowered, or when the point is close to the critical circle and
I local
c is raised. When present, the competition leads to rich

switching diagrams.
Overall, our approach allows one to develop a qualitative

picture of spin-transfer switching in complicated devices. By
considering a range of examples we have shown that the
method explains previously known results and makes a number
of interesting new predictions.
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APPENDIX A: EIGENVALUES OF A 2 × 2 MATRIX

For an arbitrary dynamic matrix D̂ given by

D̂ =
∣∣∣a b

c d

∣∣∣
the eigenvalues are obtained from the equation

(λ − a)(λ − b) − bc = 0

or equivalently

λ2 − λTrD̂ + det D̂ = 0.

This gives

λ1,2 = TrD̂

2
±

√(
TrD̂

2

)2

− det D̂ . (A1)

The eigenvalues depend on just two combinations of the matrix
elements, TrD̂ and det D̂. Using the expressions (A1) the
domains of different equilibrium types can be found on the
parameter plane as shown in Fig. 10. The areas of stable
equilibria are shown in gray and occupy the upper left quadrant
ReD̂ < 0, det D̂ > 0.

APPENDIX B: INVARIANT CRITERIA IN THE LIMIT
OF SMALL DAMPING

Equation (8) for the critical current reads

Tr[D̂cov] = −α∇2ε|neq (I ) + ωI ∇ · fst |neq (I ) = 0.

The two terms on the left-hand side come from the conservative
and spin-transfer torques. This condition can be also written
down in terms of the original dynamic matrix as Tr[D̂] =
0. Since the trace operation is linear, a separation into the
contributions from the conservative and spin-transfer torques

focus
(stable)

Tr[D]

det[D]

focus
(unstable)

center
(stable)

center
(unstable)

saddle  point

FIG. 10. Equilibrium stability diagram on a plane of trace and
determinant of the dynamic matrix. Domain of stability shown in
gray consists of stable center domain (real eigenvalues λ1,2 < 0)
and stable focus domain (complex conjugated eigenvalues with
Reλ < 0). Domain of equilibrium instability consists of unstable
center domain (real eigenvalues λ1,2 > 0), unstable focus domain
(complex conjugated eigenvalues with Reλ > 0), and the domain of
saddle points (real eigenvalues with opposite signs).
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is also possible:

Tr[D̂] = Tr[D̂c] + Tr[D̂st ].

Here matrix Dc comes from the τ c + α[n × τ c] part of F, and
Dst comes from the τ st + α[n × τ st ] part. We will explicitly
show the proportionality of Dst to the current by writing
D̂st = ωI d̂st .

At small current values the equilibrium displacement dn =
neq(I ) − neq(0) is small, dn ∼ ωI , and one can expand near
neq(0). Expansions of the conditions using D̂cov and D̂ up to
the first order in ωI give respectively

−α∇2ε|0 − α
∂∇2ε

∂n

∣∣∣∣
0

dn + ωI ∇ · fst |0 = 0

and

Tr[D̂c]|0 + ∂Tr[D̂c]

∂n

∣∣∣∣
0

dn + ωI Tr[d̂st ]|0 = 0,

where subscript “0” means the the expression was evaluated
at neq(0).

The first terms in both conditions represent the values of
Tr[D̂cov] and Tr[D̂] at zero current equilibrium. Since D̂cov and
D̂ coincide at an equilibrium point, these terms are equal to
each other. In contrast, the second terms are substantially dif-
ferent: In the upper condition the second term is proportional to
the product αωI , while in the lower condition the second term
is proportional to ωI alone. This is why for small α the second
term can be dropped from the upper condition, but has to be
kept in the lower one. The third terms are both proportional to
ωI but ∇ · fst |0 and Tr[d̂st ]|0 are not necessarily equal to each
other. Overall, the first condition with neglected second term,
i.e., Eq. (9),

−α∇2ε|0 + ωI ∇ · fst |0 = 0,

and the second condition with all three terms give the critical
current value with the same accuracy.
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