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Spontaneous magnetization of an ideal ferromagnet: Beyond Dyson’s analysis
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Using the low-energy effective field theory for magnons, we systematically evaluate the partition function
of the O(3) ferromagnet up to three loops. Dyson, in his pioneering microscopic analysis of the Heisenberg
model, showed that the spin-wave interaction starts manifesting itself in the low-temperature expansion of the
spontaneous magnetization of an ideal ferromagnet only at order T 4. Although several authors tried to go beyond
Dyson’s result, to the best of our knowledge, a fully systematic and rigorous investigation of higher-order
terms induced by the spin-wave interaction has never been achieved. As we demonstrate in the present paper,
it is straightforward to evaluate the partition function of an ideal ferromagnet beyond Dyson’s analysis, using
effective Lagrangian techniques. In particular, we show that the next-to-leading contribution to the spontaneous
magnetization resulting from the spin-wave interaction already sets in at order T 9/2—in contrast to all claims
that have appeared before in the literature. Remarkably, the corresponding coefficient is completely determined
by the leading-order effective Lagrangian and is thus independent of the anisotropies of the cubic lattice. We also
consider even higher-order corrections and thereby solve—once and for all—the question of how the spin-wave
interaction in an ideal ferromagnet manifests itself in the spontaneous magnetization beyond the Dyson term.
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I. INTRODUCTION

In a landmark paper on the description of ferromagnets
at low temperatures,1 Bloch introduced the concept of spin
waves and identified them as the relevant low-energy degrees
of freedom. As an immediate application, he evaluated
the leading coefficient in the low-temperature expansion of
the spontaneous magnetization: this term, corresponding to
noninteracting magnons, is of order T 3/2. As is well-known,
various authors subsequently tried to find the leading term in
this series originating from the spin-wave interaction, ending
up with conflicting results: corrections to Bloch’s law both
of order T 7/4 and T 2 were found.2–5 The situation remained
rather unclear until Dyson, in his pioneering analysis of the
thermodynamic behavior of an ideal ferromagnet,6 showed
that the previous results were wrong altogether and that the
spin-wave interaction in the spontaneous magnetization starts
manifesting itself only at order T 4.

Dyson’s motivation was the apparent contradiction between
the various results published in the literature. He successfully
solved this paradox by setting up a fairly complicated math-
ematical machinery—in his own words6: “The method of the
present paper settled the disagreement by showing that both
calculations were wrong.” In fact, as Dyson states in Ref. 6,
a third calculation existed that was also in contradiction with
the other two.

Within the past few decades, several articles have appeared
dealing with the structure of the series for the spontaneous
magnetization beyond the Dyson term. Various authors, using
different methods, have given their account on what the
temperature power of the next-to-leading order term due to
the spin-wave interaction should be and how the general
structure of the series beyond Dyson should look like. Not all
of these results that have appeared in the literature over time,
however, as we discuss in more detail later on, are consistent
with one another. Our main motivation is thus reminiscent of
Dyson’s, namely, to determine which one of these calculations
yields the correct low-temperature expansion for the sponta-
neous magnetization of an ideal ferromagnet.

Due to its mathematical rigor, Dyson’s calculation is not
easy to understand and the perturbative scheme developed for
the evaluation of the partition function is fairly complicated.
Indeed, after Dyson’s analysis, many authors tried to reproduce
and rederive his result with alternative methods in a more
accessible manner.7–17 Among these references we would
like to point out the paper by Zittartz,11 about which Dyson
comments, “Zittartz replaced my cumbersome mathematics
by a simple and elegant construction.”18

Dyson’s analysis and the present work are restricted to the
low-temperature regime of the ferromagnet. After Dyson’s
publication, many articles appeared dealing with the problem
of describing the thermodynamic properties of ferromagnets in
the whole temperature range, i.e., at low temperatures, around
the critical temperature Tc, and at high temperatures.19–37

While these investigations, based on a variety of approaches
and methods, correctly reproduced the terms originating from
noninteracting magnons at low temperatures, a spurious term
of order T 3 appeared in the low-temperature expansion of the
ferromagnet. The occurrence of this term is related to what
Dyson called the kinematical interaction.

Now the kinematical interaction arises due to the transition
from physical spin waves to ideal spin waves, which obey Bose
statistics—details can be found in Ref. 6. It is this kinematical
interaction that complicates the analysis considerably. While
the effect of the kinematical interaction is negligible at low
temperatures, it becomes crucial as the temperature increases.
In particular, the origin of the spurious term of order T 3

in the spontaneous magnetization was readily identified by
the authors of the articles cited above: it emerges due to
an improper treatment of the kinematical interaction by the
Green’s function decoupling method or by the random phase
approximation theory. On may say that the spurious term of
order T 3 was the price one had to pay for formulating an
approximate theory attempted to describe the thermodynamics
of the ferromagnet in the whole temperature range.

While all these studies were performed within the frame-
work of microscopic or phenomenological theories based on
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the Heisenberg model, in the present work, we will follow
another approach which has the virtue of being completely
systematic and model-independent: the method of effective
Lagrangians. Within the effective Lagrangian framework, the
structure of the low-temperature expansion of the spontaneous
magnetization was analyzed in Ref. 38 up to order T 4 and
Dyson’s series was reproduced in a straightforward manner.
In the effective language, as we will see, this corresponds to
including Feynman diagrams for the partition function up to
two loops. The effective analysis also readily demonstrated that
there is no interaction term of order T 3 in the low-temperature
series of the spontaneous magnetization.

In the present work, we go beyond Dyson’s analysis and
explicitly calculate the effect of the spin-wave interaction
beyond T 4 in the spontaneous magnetization of an ideal
ferromagnet. To the best of our knowledge, this is the first
time that the structure of this power series is given in a fully
systematic and rigorous way. Going beyond Dyson’s analysis
then means that, in the effective Lagrangian framework, we
have to consider Feynman diagrams up to three-loop order
in the perturbative expansion of the partition function. As
it turns out, in the spontaneous magnetization of an ideal
ferromagnet, the next-to-leading interaction term already sets
in at order T 9/2—remarkably, the corresponding coefficient
is completely determined by the two low-energy coupling
constants of the leading-order effective Lagrangian L2

eff . It
does not involve any higher-order effective constants from
L4

eff where the anisotropies of the cubic lattice start showing
up.

Although several authors have also discussed the structure
of temperature powers beyond the T 4 term, their conclusions
are in contradiction with the systematic effective field-theory
approach and therefore erroneous. In particular, to the best of
our knowledge, none of the existing calculations ended up with
an interaction term of order T 9/2, which in fact represents the
leading correction to Dyson’s result.

Within the effective Lagrangian framework, we then ana-
lyze the general structure of even higher-order corrections in
the spontaneous magnetization originating from the spin-wave
interaction and show that these are of order T 5,T 11/2,T 6, . . .—
again contradicting earlier calculations that have appeared in
the literature.

The effective Lagrangian method is based on an analysis
of the symmetry properties of the underlying theory, i.e.,
the Heisenberg model in our case, and can universally be
applied to systems with a spontaneously broken symmetry.
It is formulated in terms of Goldstone boson fields, which
represent the dominant low-energy degrees of freedom. The
effective Lagrangian method is very well established in particle
physics, where the low-energy effective theory for quantum
chromodynamics—chiral perturbation theory—has been con-
structed a long time ago.39,40 There, we are dealing with a
spontaneously broken chiral symmetry and the corresponding
Goldstone bosons are the pseudoscalar mesons. Spontaneous
symmetry breaking is also a common phenomenon in con-
densed matter physics and the effective Lagrangian method
has in fact been transferred to this domain41: Magnons and
phonons, e.g., are the Goldstone bosons resulting from a spon-
taneously broken spin rotation symmetry O(3) → O(2) and
a spontaneously broken translation symmetry, respectively. In

particular, the leading-order effective Lagrangian for the O(3)
ferromagnet was constructed in Ref. 41, and the extension to
higher orders in the derivative expansion was performed in
Refs. 38 and 42.

The paper is organized as follows. Since the systematic
effective Lagrangian method is still not very well known within
the condensed matter community, in Sec. II we give a brief
outline of the method, having in mind the ferromagnet as
specific system. In Sec. III A, we briefly review the evaluation
of the partition function of an ideal ferromagnet up to order T 5.
We then go beyond Dyson’s analysis and extend the evaluation
to order T 11/2 in Sec. III B. While the renormalization up
to order T 5 is straightforward, the handling of ultraviolet
divergences at order T 11/2 is more involved and is considered
in detail in Sec. IV. The low-temperature expansion of the
partition function and various thermodynamic quantities is
given in Sec. V. Our main result—the low-temperature series
for the spontaneous magnetization of an ideal ferromagnet
beyond Dyson’s analysis—is presented in Sec. VI. Here,
we also compare our results with the condensed matter
literature. Finally, our conclusions are presented in Sec. VII.
Additional information on the effective Lagrangian method
for the nonexpert reader may be found in Appendix A. Details
on the numerical evaluation of a specific three-loop graph are
discussed in Appendix B.

We would like to provide the interested reader with a list
of publications that deal with applications of the effective
Lagrangian method to condensed matter systems. Applications
to systems exhibiting collective magnetic behavior include
spin-wave scattering processes,43 spin-wave mediated non-
reciprocal effects in antiferromagnets,44 antiferromagnets at
finite volume45–48 and finite temperature,49,50 spin waves in
canted phases,51 and antiferromagnets in two dimensions
doped with charge carriers.52–57 Further applications include
phonons,58 SO(5) invariance and high-Tc-superconductivity,59

as well as supersolids.60 Pedagogic introductions to the
effective Lagrangian method may be found in Refs. 61– 67.

In particular, we would like to point out that in a re-
cent article on an analytically solvable microscopic model
for a hole-doped ferromagnet in 1 + 1 dimensions,68

the correctness of the effective field theory approach was
demonstrated by comparing the effective theory predictions
with the microscopic calculation. Likewise, in a series of
high-accuracy investigations of the antiferromagnetic spin- 1

2
quantum Heisenberg model on a square lattice using the loop-
cluster algorithm,69–72 the Monte Carlo data were confronted
with the analytic predictions of magnon chiral perturbation
theory and the low-energy constants were extracted with
permille accuracy. All these tests unambiguously demonstrate
that the effective Lagrangian approach provides a rigorous
and systematic derivative expansion for both ferromagnetic
and antiferromagnetic systems.

II. SYSTEMATIC LOW-ENERGY EFFECTIVE FIELD
THEORY FOR FERROMAGNETIC MAGNONS

The effective Lagrangian method is based on a symmetry
analysis of the underlying system. In the present section and
in Sec. III A, an overview of the method is given. Still, the
nonexpert reader may find it helpful to consult Appendix A,
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where additional information on the effective Lagrangian
method is provided.

In the present case we study ferromagnets, which are
described by the Heisenberg model. Nevertheless, the effective
field-theory predictions are model-independent and universal,
as they are valid for any system displaying the same symme-
tries as the Heisenberg ferromagnet. Microscopic details of the
system are taken into account through a few low-energy cou-
pling constants in the effective Lagrangian. Symmetry does not
fix the actual numerical values of these couplings—in general,
these have to be determined experimentally or in a numerical
simulation of the underlying model. Symmetry, however, does
unambiguously determine the derivative structure of the terms
in the effective Lagrangian.

The most important symmetry in the present case is the
spontaneously broken spin rotation symmetry: Whereas the
Heisenberg model,

H0 = −J
∑
n.n.

�Sm · �Sn, J = const., (2.1)

is invariant under global O(3) spin rotations, the ground state of
the ferromagnet (J > 0) is invariant under the subgroup O(2)
only. According to the nonrelativistic Goldstone theorem,73–77

we then have one type of spin-wave excitation—or one magnon
particle—in the low-energy spectrum of the ferromagnet
which obeys a quadratic dispersion relation.

The interaction between an external constant magnetic field
�H = (0,0,H ),H > 0 and the spin degrees of freedom is taken

into account through the Zeeman term. In the corresponding
extension of the Heisenberg model,

H = H0 − μ
∑

n

�Sn · �H, (2.2)

the magnetic field couples to the vector of the total spin.
The above Hamiltonian, defined on a cubic lattice with
purely isotropic exchange coupling between nearest neighbors,
represents what Dyson called ideal ferromagnet.

Apart from internal symmetries, we also have to consider
the various space-time symmetries. Compared to particle
physics where we have Lorentz invariance, the situation
is more complicated in condensed matter physics, because
the center of mass system represents a preferred frame of
reference. Moreover, the crystal lattice singles out preferred
directions, such that the effective Lagrangian need not be
rotationally invariant. In the case of cubic geometry, however,
it has been shown that the anisotropies of the lattice start
manifesting themselves at higher orders of the derivative
expansion47—the leading-order effective Lagrangian is thus
invariant under space rotations. Moreover, as the effective
analysis refers to large wavelengths, it does not resolve
the microscopic structure of the crystal: the system appears
homogeneous and the effective Lagrangian is also invariant
under translations.

The idea underlying the construction of effective La-
grangians is straightforward78: One writes down the most
general expression consistent with the space-time symme-
tries and the internal, spontaneously broken symmetry G of
the underlying system in terms of Goldstone boson fields
Ua(x),a = 1, . . ., dim(G)-dim(H), where the group H refers
to the symmetry group of the ground state. The effective

Lagrangian then consists of a string of terms involving an
increasing number of derivatives or, equivalently, amounts to
an expansion in powers of the momentum. Furthermore, the
effective Lagrangian method allows us to systematically take
into account interactions that explicitly break the symmetry G
of the underlying model, provided that they can be treated
as perturbations. In the present case, we will include a
weak external magnetic field �H .

For the O(3) ferromagnet, the leading-order effective
Lagrangian is of order p2 and takes the form41

L2
eff = �

εab∂0U
aUb

1 + U 3
+ �μHU 3 − 1

2
F 2∂rU

i∂rU
i. (2.3)

The two real components of the magnon field, Ua(a = 1,2),
are the first two components of the three-dimensional unit
vector Ui = (Ua,U 3), which transforms with the vector repre-
sentation of the rotation group. While the structure of the above
terms is unambiguously determined by the symmetries of the
underlying theory, at this order, we have two a priori unknown
low-energy constants: the spontaneous magnetization � and
the constant F . The above Lagrangian leads to quadratic
dispersion relation

ω(�k) = γ �k2 + O(|�k|4), γ ≡ F 2

�
, (2.4)

obeyed by ferromagnetic magnons. It is important to note that
one temporal derivative (∂0) is on the same footing as two
spatial derivatives (∂r∂r )—in the derivative expansion, two
powers of momentum thus count as only one power of energy
or temperature: k2 ∝ ω,T .

Dyson evaluated the low-temperature expansion of the
spontaneous magnetization up to terms of order T 4 or,
equivalently, the partition function up to order T 5. This then
means that, in the effective Lagrangian framework, we have to
consider the expansion of the partition function up to order p10.
This calculation was performed in Ref. 38. In the present work,
we go one step further and consider the expansion beyond
Dyson’s analysis, taking into account diagrams of order p11.
As it turns out, the corresponding contributions lead to a
spin-wave interaction term of order T 9/2 in the spontaneous
magnetization.

The effective Lagrangian method provides us with a
simultaneous expansion of physical quantities in powers of
the momenta and of the external fields. The essential point
is that, to a given order in the low-energy expansion, only a
finite number of effective coupling constants and only a finite
number of graphs contribute. The leading terms stem from
tree graphs, whereas loop graphs only manifest themselves at
higher orders in the derivative expansion.39 So the question
arises as to what order in the effective expansion we have to
go—i.e., how many derivatives in the effective Lagrangian we
have to include and how many loops we have to consider—if
we want to evaluate the partition function of a ferromagnet up
to order p11.

While loops are suppressed by two momentum powers in a
Lorentz-invariant framework, it was shown in Ref. 38 that loop
corrections involving ferromagnetic magnons are suppressed
by three momentum powers. Note that we are considering the
case of four space-time dimensions. If one lowers the spatial
dimension, loops are less suppressed: Loops for ferromagnetic
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FIG. 1. Feynman graphs related to the low-temperature expansion
of the partition function for a ferromagnet up to order p10 in dimension
d = 3 + 1. The numbers attached to the vertices refer to the piece
of the effective Lagrangian they come from. Vertices associated with
the leading term L2

eff are denoted by a dot. Note that ferromagnetic
loops are suppressed by three-momentum powers in d = 3 + 1.

magnons in d = 2 + 1, e.g., are suppressed by two momentum
powers only. Up to order p10, as depicted in Fig. 1, we thus have
to consider graphs which involve two loops at most and have to
take into account pieces of the effective Lagrangian involving
up to six derivatives. At order p11, as depicted in Fig. 2, three-
loop graphs start to show up. At the same time we also have two
one-loop graphs that involve vertices from higher-order pieces
of the effective Lagrangian: Diagram 11d contains a vertex
from L8

eff , while diagram 11e contains insertions from L4
eff

and L6
eff . These five graphs represent the additional diagrams

we have to evaluate when we go one step beyond Dyson’s
analysis.

We now address the question regarding the explicit structure
of the pieces L4

eff , L6
eff , and L8

eff . First of all, note that there
are no contributions to the effective Lagrangian leading to
odd momentum powers: The pieces L3

eff,L5
eff, . . . necessarily

involve terms with an odd number of space derivatives like

cabcεrst ∂rU
a∂sU

b∂tU
c, (2.5)

which are excluded by parity—parity is a discrete symmetry
of the underlying Heisenberg model that has to be respected
by the effective Lagrangian.

The next-to-leading order Lagrangian is thus of order p4.
It contains terms with two time derivatives, terms with one

11e

46

11d

8

11c

11b11a

FIG. 2. Feynman graphs related to the low-temperature expansion
of the partition function for a ferromagnet at order p11 in dimension
d = 3 + 1. The numbers attached to the vertices refer to the piece
of the effective Lagrangian they come from. Vertices associated with
the leading term L2

eff are denoted by a dot.

time and two space derivatives, and terms with four space
derivatives. The time derivatives along with the magnetic field,
however, can be eliminated with the equation of motion, such
that L4

eff takes the form38

L4
eff = l1(∂rU

i∂rU
i)

2 + l2(∂rU
i∂sU

i)
2 + l3�Ui�Ui, (2.6)

where � denotes the Laplace operator in three dimensions.
The next-to-leading order effective Lagrangian hence involves
the three effective coupling constants l1,l2, and l3.

An inspection of the diagrams in Figs. 1 and 2 reveals that
insertions from L6

eff and L8
eff only appear in one-loop graphs:

the only terms we need are thus quadratic in the magnon field.
Eliminating again time derivatives and terms involving the
magnetic field, the pieces relevant for our calculation are

L6
eff = c1U

i�3Ui, L8
eff = d1U

i�4Ui. (2.7)

We conclude this section with a remark concerning effects
induced by the anisotropy of the lattice. Regarding the
cubic lattice, we have mentioned that the anisotropies start
manifesting themselves at the four-derivative level: the pieces
L4

eff , L6
eff , and L8

eff indeed contain additional terms—not
displayed in Eqs. (2.6) and (2.7)—which are not invariant
under space rotations but still invariant under the discrete
rotation and reflexion symmetries of the cubic lattice, such
as ∑

s=1,2,3

∂s∂sU
i∂s∂sU

i. (2.8)

In the present analysis, however, we neglect these extra terms
and assume space rotation invariance up to order p8. The
conclusions of the present paper regarding the manifestation
of the spin-wave interaction in the partition function are
not affected by this idealization: According to Fig. 2, the
interaction contribution beyond Dyson is determined by the
three-loop graphs of order p11: These graphs only involve
the leading-order Lagrangian L2

eff , which is perfectly invariant
under space rotations.

III. EVALUATION OF THE PARTITION FUNCTION

The low-temperature expansion of the partition function for
the O(3) ferromagnet was evaluated in Ref. 38 up to order p10.
In Sec. III A, we briefly review some essential features of that
calculation. In Sec. III B, we then extend the evaluation of the
partition function to order p11. For a review of the effective
Lagrangian method at nonzero temperature, the interested
reader may consult Ref. 79. For a general review of field theory
at finite temperature, see Refs. 80–82.

A. Evaluation up to order p10

In finite-temperature field theory, the partition function is
represented as a Euclidean functional integral

Tr[exp(−H/T )] =
∫

[dU ] exp

(
−

∫
T
d4xLeff

)
. (3.1)

The integration is performed over all field configurations that
are periodic in the Euclidean time direction, U (�x,x4 + β) =
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U (�x,x4) with β ≡ 1/T . The periodicity condition imposed on
the magnon fields also reflects itself in the thermal propagator

G(x) =
∞∑

n=−∞
�(�x,x4 + nβ), (3.2)

where �(x) is the Euclidean propagator at zero temperature,

�(x) =
∫

dk4d
3k

(2π )4

ei�k�x−ik4x4

γ �k2 − ik4 + μH

= 
(x4)
∫

d3k

(2π )3
ei�k�x−γ �k2x4−μHx4 . (3.3)

An explicit representation for the thermal propagator, dimen-
sionally regularized in the spatial dimension ds , is

G(x) = 1

(2π )ds

(
π

γ

) ds
2

∞∑
n=−∞

1

x
ds
2

n

exp− �x2

4γ xn
−μHxn 
(xn),

(3.4)

with

xn ≡ x4 + nβ. (3.5)

We restrict ourselves to the infinite volume limit and evaluate
the free energy density z, defined by

z = −T lim
L→∞

L−3 ln[Tr exp(−H/T )]. (3.6)

In the evaluation of the various Feynman diagrams, we will
repeatedly be dealing with thermal propagators (and space
derivatives thereof), which have to be evaluated at the origin.
It is convenient to introduce the following notation,

G1 ≡ [G(x)]x=0, G� ≡ [�G(x)]x=0,
(3.7)

G�n ≡ [�nG(x)]x=0,

where � represents the Laplace operator in the spatial
dimensions—no confusion should occur with �(x), which
denotes the zero-temperature propagator.

The quantities G1, G�, as well as thermal propagators
involving higher-order space derivatives, are split into a finite
piece, which is temperature dependent, and a divergent piece,
which is temperature independent,

G1 = GT
1 + G0

1, G� = GT
� + G0

�. (3.8)

The explicit expressions can be found in Ref. 38 and will not
be given here. Rather, we would like to point out two important
observations, which lead to a substantial simplification of the
renormalization procedure. First, the temperature-independent
pieces G0

1,G
0
�, . . . are all related to momentum integrals of the

form∫
dds k(�k2)m exp

[ − γ x4�k2 − x4μH
]

m = 0,1,2, . . . , (3.9)

which are proportional to

exp[−x4μH ]

(γ x4)m+ ds
2

�

(
m + ds

2

)
. (3.10)

In dimensional regularization, these expressions vanish alto-
gether: G0

1,G
0
�, and zero-temperature propagators involving

higher-order space derivatives do not contribute in the limit
ds → 3.

The second observation concerns the fact that, up to order
p10, the individual contributions to the free energy density
from the various diagrams factorize into products of thermal
propagators (involving space derivatives or derivatives with
respect to the magnetic field), which all have to be evaluated
at the origin. As an example, consider the two-loop graph 10a,
which yields the contribution

z10a = − 2

3�2
(8l1 + 6l2 + 5l3)G�G� − 2l3

�2
G1G�2 . (3.11)

According to the first observation regarding dimensional
regularization, it is then clear that in the two products of ther-
mal propagators above only the fully temperature-dependent
pieces—GT

�GT
� and GT

1 GT
�2 —are nonzero, whereas any other

terms involving temperature-independent pieces of propa-
gators vanish identically. We thus conclude that, using di-
mensional regularization, the renormalization of the partition
function up to order p10 is quite trivial. As we will see in the
next subsection, the renormalization at the three-loop level, on
the other hand, is more complicated but still perfectly feasible
within the effective field theory framework.

Without going into more details (the interested reader may
consult Ref. 38), we present the final result for the free energy
density of the O(3) ferromagnet up to order p10:

z = −�μH − 1

8π
3
2 γ

3
2

T
5
2

∞∑
n=1

e−μHnβ

n
5
2

− 15l3

16π
3
2 �γ

7
2

T
7
2

∞∑
n=1

e−μHnβ

n
7
2

− 105

32π
3
2 �γ

9
2

(
9l2

3

2γ�
− c1

)
T

9
2

∞∑
n=1

e−μHnβ

n
9
2

− 3(8l1 + 6l2 + 5l3)

128π3�2γ 5
T 5

{ ∞∑
n=1

e−μHnβ

n
5
2

}2

+O(T
11
2 ). (3.12)

The first term in this series does not depend on temperature
and originates from the tree graph 2 (see Fig. 1). The
terms which involve half-integer powers of the temperature—
T 5/2,T 7/2, and T 9/2, respectively—arise from the one-loop
graphs displayed in Fig. 1. They all contribute to the free
energy density of noninteracting magnons. Remarkably, up
to order p10, there is only one term in the above series—the
contribution of order T 5 coming from the two-loop graphs 10a
and 10b—which is due to the magnon-magnon interaction.

In particular, there is no term of order T 4 in the above
series for the free energy density: The two-loop graph 8, which
would be the only candidate to yield such a contribution,
is proportional to single space derivatives of the thermal
propagator evaluated at the origin:

z8 ∝ [∂rG(x)]x=0[∂rG(x)]x=0 = 0. (3.13)

This contribution vanishes due to space rotation invariance of
the leading-order effective Lagrangian.
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B. Evaluation at order p11

According to Fig. 2, we have a total of five diagrams at
order p11. We first consider the two one-loop graphs, which
involve vertices from L4

eff , L6
eff , and L8

eff . For graph 11d we
obtain

z11d = −2d1

�
G�4 , (3.14)

yielding the temperature-dependent contribution

zT
11d = − 945d1

64π
3
2 �γ

11
2

T
11
2

∞∑
n=1

e−μHnβ

n
11
2

. (3.15)

Graph 11e is proportional to an integral over the torus T =
Rds × S1, with circle S1 defined by −β/2 � x4 � β/2, and
involves a product of two thermal propagators,

z11e = −4l3c1

�2

∫
T
dds+1x�2G(x)�3G(−x). (3.16)

This integral, however, can be reduced to an expression
involving one propagator only, using the relation38[

�(m+n) ∂G(x)

∂(μH )

]
x=0

= −
∫
T
dds+1y�mG(−y)�nG(y).

(3.17)

We then end up with

z11e = 4l3c1

�2

[
�5 ∂G(x)

∂(μH )

]
x=0

. (3.18)

Accordingly, the temperature-dependent part of graph 11e
reads

zT
11e = 10395l3c1

64π
3
2 �2γ

13
2

T
11
2

∞∑
n=1

e−μHnβ

n
11
2

. (3.19)

We now turn to the three-loop graphs—note that they
exclusively contain vertices from the leading-order Lagrangian
L2

eff . Graph 11a factorizes into a product of three thermal
propagators (and space derivatives thereof), to be evaluated
at the origin,

z11a = −F 2

�3
G�(G1)2. (3.20)

The subsequent three-loop graph 11b, remarkably, does not
contribute to the partition function,

z11b = 0. (3.21)

As it was the case for the two-loop graph 8, the three-loop
graph 11b is identically zero.

Finally, for the cateye graph 11c, we get

z11c = − F 4

2�4
J + F 2

�3
G�(G1)2. (3.22)

The expression J stands for the following integral over the
torus involving a product of four thermal propagators:

J =
∫
T
dds+1x∂rG∂rG∂sG̃∂sG̃, (3.23)

where we have used the notation

G = G(x), G̃ = G(−x). (3.24)

Note that the second term in (3.22) cancels the contribution
from graph 11a, such that the overall contribution from the
three-loop graphs is the one proportional to the integral J .
Remarkably, unlike all other pieces in the free energy density
up to order p11, this quantity is not just a product of thermal
propagators (or derivatives thereof) to be evaluated at the
origin. The remaining task will be the renormalization and the
numerical evaluation of this integral, which contains a total of
four infinite sums. In the next section and in Appendix B, we
address this problem in detail.

Leaving aside these technical issues for a moment, we note
that the cateye graph of order p11 will lead to a term of order
T 11/2 in the free energy density,

J ∝ T
11
2 . (3.25)

Hence, the spin-wave interaction in the low-temperature series
of the free energy density—beyond Dyson’s T 5-term—already
manifests itself at order T 11/2. It is remarkable that this
contribution is exclusively determined by the symmetries of
the leading-order effective Lagrangian L2

eff , which involves
the two couplings � and F—the spin-wave interaction at this
order is not affected by the anisotropies of the cubic lattice.

IV. RENORMALIZATION OF THE CATEYE GRAPH

Using dimensional regularization, it was straightforward to
extract the finite pieces in the partition function up to two-loop
order p10. The renormalization of the three-loop graph 11c, on
the other hand, is more involved. We will follow the procedure
outlined in Ref. 83, where the same graph was considered in
the context of a Lorentz-invariant effective field theory.

To analyze the integral

J =
∫

T
dds+1x∂rG∂rG∂sG̃∂sG̃

in the limit ds → 3, we split the thermal propagator into two
pieces

G(x) = GT (x) + �(x). (4.1)

The ultraviolet singularities are contained in the zero-
temperature propagator �(x), whereas the temperature-
dependent part GT (x) is finite as ds → 3. Note that, if we
restrict ourselves to the origin, we reproduce the first relation
of Eq. (3.8).

Inserting the above decomposition into the integral J , we
end up with nine terms that can be grouped into the following
six classes—for simplicity we do not display the derivatives:

A : GT (x)GT (x)GT (−x)GT (−x),

B : �(x)GT (x)GT (−x)GT (−x),

GT (x)GT (x)�(−x)GT (−x),

C : �2(x)GT (−x)GT (−x),GT (x)GT (x)�2(−x), (4.2)

D : �(x)GT (x)�(−x)GT (−x),

E : �2(x)�(−x)GT (−x),�(x)GT (x)�2(−x),

F : �2(x)�2(−x).

Terms of the classes D,E, and F vanish identically since the
product �(x)�(−x) of zero-temperature propagators involves
the combination 
(x4)
(−x4). The maximum number of 
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functions a given term can contain—in order not to be zero—is
two. Moreover, the arguments of the two 
 functions have to
coincide as it is the case with the terms of class C. We thus
have to consider the cases A,B, and C.

The integral over the torus involving contributions of
classes A and B,∫

T
dds+1x

(
∂rG

T ∂rG
T ∂sG̃

T ∂sG̃
T + 4∂r�∂rG

T ∂sG̃
T ∂sG̃

T
)
,

(4.3)

converges at ds = 3.
Terms of class C, however, do lead to an ultraviolet-

divergent integral. Consider, e.g., the term

∂r�(x)∂r�(x)∂sG
T (−x)∂sG

T (−x), (4.4)

where we now have displayed the derivatives. For the zero-
temperature piece ∂r�(x) we have

∂r�(x) ∝ xr

x4
5
2

exp

[
− �x2

4γ x4

]
. (4.5)

The Taylor series of the function ∂sG
T (−x), evaluated at the

origin, starts with a term linear in �x,

∂sG
T (−x) = ∂αsG

T (−x)|x=0x
α + O(�x3). (4.6)

Inserting this term into Eq. (4.4), we end up with the following
contribution in J ,

J ∝
∫

d3xdx4

( �x
x4

5
2

)2

e−�x2/2γ x4 �x2 ∝
∫

dx4
1

x4
3
2

, (4.7)

which is singular in the ultraviolet. On the other hand, one
readily checks that this term in fact is the only one that has
to be subtracted: The cubic Taylor term in the expansion of
∂sG̃

T , Eq. (4.6), already leads to a convergent contribution to
the integral J . We now discuss the renormalization procedure
in detail, along the lines of Ref. 83, which we adapt to
nonrelativistic kinematics.

We first cut out a sphere S of radius |S| � β/2 around the
origin and decompose the integral involving the contributions
of class C according to∫

T
dds+1x∂r�∂r�∂sG̃

T ∂sG̃
T

=
∫
S
dds+1x∂r�∂r�∂sG̃

T ∂sG̃
T

+
∫

T \S
dds+1x∂r�∂r�∂sG̃

T ∂sG̃
T . (4.8)

The integral over the complement T \ S of the sphere is not
singular in the limit ds → 3. In the integral over the sphere,
which is divergent, we subtract the singular term discussed
above, arriving at∫

S
dds+1x∂r�(x)∂r�(x)∂sG

T (−x)∂sG
T (−x)

=
∫
S
dds+1x∂r�(x)∂r�(x)Qss(x)

+
∫
S
dds+1x∂r�(x)∂r�(x)

× ∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ, (4.9)

where the quantity Qss(x) is defined as

Qss(x) = ∂sG
T (−x)∂sG

T (−x)

−∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ. (4.10)

Whereas in Eq. (4.9) the first integral on the right hand side now
is convergent, the second integral does contain the ultraviolet
singularity. The last step in the isolation of this singularity
consists in decomposing the respective integral as follows:∫

S
dds+1x∂r�(x)∂r�(x)∂αsG

T (−x)|x=0∂βsG
T (−x)|x=0x

αxβ

=
∫
R
dds+1x∂r�(x)∂r�(x)∂αsG

T (−x)|x=0

× ∂βsG
T (−x)|x=0x

αxβ

−
∫
R\S

dds+1x∂r�(x)∂r�(x)∂αsG
T (−x)|x=0

× ∂βsG
T (−x)|x=0x

αxβ. (4.11)

The UV singularity is contained in the integral over all
Euclidean space, which can be cast into the form∫

R
dds+1x∂r�(x)∂r�(x)∂αsG

T (−x)|x=0∂βsG
T (−x)|x=0

×xαxβ = ds(ds + 2)

23ds+5π
3ds

2 γ
3ds+4

2

T ds+2(μH )
ds−2

2

×
{ ∞∑

n=1

e−μHnβ

n
ds+2

2

}2

�

(
1 − ds

2

)
. (4.12)

In the limit ds → 3, the above regularized expression is finite
and takes the value

− 15

8192π4γ
13
2

T
11
2
√

σ

{ ∞∑
n=1

e−σn

n
5
2

}2

, (4.13)

where we have defined the dimensionless quantity σ as

σ = μHβ = μH

T
. (4.14)

Collecting the various contributions, we arrive at the
following representation for the renormalized integral J̄ :

J̄ =
∫
T
d4x

(
∂rG

T ∂rG
T ∂sG̃

T ∂sG̃
T + 4∂r�∂rG

T ∂sG̃
T ∂sG̃

T
)

+ 2
∫
T \S

d4x∂r�∂r�∂sG̃
T ∂sG̃

T + 2
∫
S
d4x∂r�∂r�Qss

− 2
∫
R\S

d4x∂r�∂r�∂αsG
T (−x)|x=0∂βsG

T (−x)|x=0x
αxβ

− 15

4096π4γ
13
2

T
11
2
√

σ

{ ∞∑
n=1

e−σn

n
5
2

}2

. (4.15)

Note that all terms therein are well-defined at the physical
dimension ds = 3.

Since the various integrands only depend on the variables
r = |�x| and t = x4, the integrals become, in fact, two-
dimensional,

d4x = 4πr2drdt, (4.16)
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j(
σ)

FIG. 3. The function j (σ ), where σ is the dimensionless param-
eter σ = μH/T .

and the numerical evaluation of the integral J̄ is straightfor-
ward. A very welcome consistency check on the numerics is
provided by the fact that the result must be independent of
the radius of the sphere S. While more details concerning the
numerical evaluation can be found in Appendix B, in the next
section we discuss the result for the function J̄ = J̄ (σ ). In
particular, we consider the limit σ → 0, which is needed for
the evaluation of the spontaneous magnetization.

V. THERMODYNAMICS OF THE IDEAL FERROMAGNET

For dimensional reasons, the renormalized integral J̄ can
be written as

J̄ (σ ) = T
11
2
j (σ )

γ
13
2

, σ = μH

T
, γ = F 2

�
, (5.1)

where the quantity j (σ ) is a dimensionless function. A graph
is provided in Fig. 3.

In the limit σ → 0, the function can be parametrized by

j (σ ) = j1 + j2σ + O(σ 3/2). (5.2)

The coefficients j1 and j2 are pure numbers given by

j1 = 1.07 × 10−5, j2 = −8 × 10−5. (5.3)

It should be noted that, in the limit σ → 0, the last two
contributions in Eq. (4.15) contain terms involving the square
root

√
σ . Since they have opposite signs, however, they cancel

each other.
With the above representation for the quantity j (σ ), the

final result for the low-temperature expansion of free energy
density for the ideal ferromagnet up to order p11 takes the form

z = −�μH − 1

8π
3
2 γ

3
2

T
5
2

∞∑
n=1

e−μHnβ

n
5
2

− 15l3

16π
3
2 �γ

7
2

T
7
2

∞∑
n=1

e−μHnβ

n
7
2

− 105

32π
3
2 �γ

9
2

(
9l2

3

2�γ
− c1

)
T

9
2

∞∑
n=1

e−μHnβ

n
9
2

− 3(8l1 + 6l2 + 5l3)

128π3�2γ 5
T 5

{ ∞∑
n=1

e−μHnβ

n
5
2

}2

− 945d1

64π
3
2 �γ

11
2

T
11
2

∞∑
n=1

e−μHnβ

n
11
2

+ 10395l3c1

64π
3
2 �2γ

13
2

T
11
2

∞∑
n=1

e−μHnβ

n
11
2

− 1

2�2γ
9
2

j (μHβ)T
11
2 + O(T 6). (5.4)

Because the system is homogeneous, the pressure can be
obtained from the temperature-dependent part of the free
energy density,

P = z0 − z. (5.5)

Accordingly, up to order p11, the low-temperature series for
the pressure reads

P = h0T
5
2 + h1T

7
2 + h2T

9
2 + h3T

5 + h4T
11
2 + O(T 6), (5.6)

where the coefficients hi are given by

h0 = 1

8π
3
2 γ

3
2

∞∑
n=1

e−μHnβ

n
5
2

,

h1 = 15l3

16π
3
2 �γ

7
2

∞∑
n=1

e−μHnβ

n
7
2

,

h2 = 105

32π
3
2 �γ

9
2

(
9l2

3

2�γ
− c1

) ∞∑
n=1

e−μHnβ

n
9
2

, (5.7)

h3 = 3(8l1 + 6l2 + 5l3)

128π3�2γ 5

{ ∞∑
n=1

e−μHnβ

n
5
2

}2

,

h4 = 945

64π
3
2 �γ

11
2

(
d1 − 11l3c1

�γ

) ∞∑
n=1

e−μHnβ

n
11
2

+ 1

2�2γ
9
2

j.

In the limit σ = μH/T → 0, these coefficients become
temperature independent and the sums reduce to Riemann zeta
functions,

h̃0 = 1

8π
3
2 γ

3
2

ζ

(
5

2

)
,

h̃1 = 15l3

16π
3
2 �γ

7
2

ζ

(
7

2

)
,

h̃2 = 105

32π
3
2 �γ

9
2

(
9l2

3

2�γ
− c1

)
ζ

(
9

2

)
, (5.8)

h̃3 = 3(8l1 + 6l2 + 5l3)

128π3�2γ 5
ζ 2

(
5

2

)
,

h̃4 = 945

64π
3
2 �γ

11
2

(
d1 − 11l3c1

�γ

)
ζ

(
11

2

)
+ 1

2�2γ
9
2

j1.

The spin-wave interaction manifests itself in the last two
terms involving the coefficients h̃3 and h̃4. The contribution
proportional to five powers of the temperature in the pressure
is the famous Dyson term. In the effective theory, it originates
from the two-loop graphs 10a and 10b of Fig. 1. Our main new
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result concerns the manifestation of the spin-wave interaction
beyond Dyson: the leading correction in the pressure is of
order T 11/2. It is contained in the last term of the coefficient
h̃4 and stems from the three-loop graph 11c.

Note that all other contributions in the pressure up to order
p11 originate from one-loop graphs—those graphs describe
noninteracting magnons and merely modify the dispersion
relation. In the above series for the pressure, they involve
half-integer powers of the temperature: T 5/2,T 7/2,T 9/2, and
T 11/2.

We have to point out that the sign of the Dyson term of
order T 5 is not determined by the symmetries—the low-energy
constants l1,l2, and l3 appearing in the coefficient h̃3 may
take positive or negative values, depending on the specific
underlying model. For the present case of the Heisenberg
model, however, Dyson has derived an explicit microscopic
expression for h̃3. As it turns out, for all three types of
cubic lattices, this coefficient is positive, leading to a positive
contribution to the pressure. We thus conclude that the spin-
wave interaction in the ideal ferromagnet is repulsive at low
temperatures.

Remarkably, while the sign of the coefficient of order T 5 is
not determined within the effective theory framework, the sign
of the coefficient of the subsequent interaction contribution
of order T 11/2 is unambiguously fixed: the last term in h̃4

only involves the coupling constants of the leading-order
effective LagrangianL2

eff and the coefficient j1, which is a pure
number—the conditions imposed by symmetry are thus very
restrictive here. Since the numerical value of j1 is positive, the
corresponding contribution to the pressure is positive as well,
enhancing thus the weak repulsive interaction between spin
waves at low temperatures.

Finally, let us consider the low-temperature series for the
energy density u, for the entropy density s, and for the heat
capacity cV of the O(3) ferromagnet. They are readily worked
out from the thermodynamic relations

s = ∂P

∂T
, u = T s − P, cV = ∂u

∂T
= T

∂s

∂T
. (5.9)

In the limit σ → 0, we obtain

u = 3
2 h̃0T

5
2 + 5

2 h̃1T
7
2 + 7

2 h̃2T
9
2 + 4h̃3T

5

+ 9
2 h̃4T

11
2 + O(T 6),

s = 5
2 h̃0T

3
2 + 7

2 h̃1T
5
2 + 9

2 h̃2T
7
2 + 5h̃3T

4

+ 11
2 h̃4T

9
2 + O(T 5), (5.10)

cV = 15
4 h̃0T

3
2 + 35

4 h̃1T
5
2 + 63

4 h̃2T
7
2 + 20h̃3T

4

+ 99
4 h̃4T

9
2 + O(T 5).

Again, the correction to Dyson’s result is contained in
the respective last terms in the above series involving the
coefficient h̃4.

VI. SPONTANEOUS MAGNETIZATION: EFFECTIVE
FRAMEWORK VERSUS CONDENSED MATTER

LITERATURE

We now turn to the discussion of the general structure of the
low-temperature series for the spontaneous magnetization of
the ideal ferromagnet. While this problem has attracted more
than a hundred authors over the past few decades, to the best
of our knowledge, a rigorous and fully systematic calculation
of higher-order corrections to the Dyson term has never been
achieved. Before we review the relevant results in the literature,
let us analyze the problem within the systematic effective field
theory framework.

With the expression for the free energy density (5.4), the
low-temperature expansion for the spontaneous magnetization

�(T ) = − lim
H→0

∂z

∂(μH )
(6.1)

of the O(3) ferromagnet, up to order T 9/2, takes the form

�(T )

�
= 1 − α0T

3
2 − α1T

5
2 − α2T

7
2

−α3T
4 − α4T

9
2 + O(T 5). (6.2)

The coefficients αi are independent of the temperature and
given by

α0 = 1

8π
3
2 �γ

3
2

ζ

(
3

2

)
,

α1 = 15l3

16π
3
2 �2γ

7
2

ζ

(
5

2

)
,

α2 = 105

32π
3
2 �2γ

9
2

(
9l2

3

2�γ
− c1

)
ζ

(
7

2

)
, (6.3)

α3 = 3(8l1 + 6l2 + 5l3)

64π3�3γ 5
ζ

(
5

2

)
ζ

(
3

2

)
,

α4 = 945

64π
3
2 �2γ

11
2

(
d1 − 11l3c1

�γ

)
ζ

(
9

2

)
− 1

2�3γ
9
2

j2.

Up to order T 4, we reproduce Dyson’s series—this calculation
was presented in detail in Ref. 38. In the effective Lagrangian
framework, the famous interaction term of order T 4 in
the spontaneous magnetization originates from the two-loop
graphs 10a and 10b, which involve vertices from the next-to-
leading order Lagrangian L4

eff . Note that there is no interaction
term of order T 3 in the above series.

Our main new result concerns the leading correction to
Dyson’s term, which originates from the three-loop graph
11c. The correction in the spontaneous magnetization is of
order T 9/2. Remarkably, the corresponding coefficient—the
last term in α4—does not involve any higher-order low-energy
constants. It only involves � and F , as well as the coefficient
j2, which is a pure number determined by the symmetries of
the underlying Heisenberg model. Since the coefficient j2 is
negative, this contribution has the same sign as the Dyson
coefficient α3. The effect of the three-loop contribution is thus
to enhance the weak spin-wave interaction found by Dyson.

Apart from these two interaction terms of order T 4 and T 9/2,
respectively, all other temperature-dependent contributions
to the spontaneous magnetization originate from one-loop
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graphs, which describe noninteracting magnons. They merely
modify the dispersion relation or—as Dyson expressed it6—
they merely arise “from the discreteness of the lattice, are easy
to calculate, and are not of any theoretical interest.” In the
above series for the spontaneous magnetization, they involve
half-integer powers of the temperature: T 3/2,T 5/2,T 7/2, and
T 9/2.

It should be pointed out that the contribution of order
T 9/2 contains two parts: The first term in the coefficient α4

is due to two one-loop graphs associated with noninteracting
magnons. The second term is due to a three-loop graph and
represents the dominant spin-wave interaction term beyond
Dyson. Note that the Dyson coefficient α3, on the other hand,
exclusively involves an interaction part.

Here comes the appropriate place to compare our re-
sults with the condensed matter literature. Indeed, several
authors—most notably, Dyson himself—also have discussed
the structure of the low-temperature series for the spontaneous
magnetization beyond order T 4. We make our comparison
along four lines of observations.

Our first observation is that all published calculations or
estimates of higher-order interaction terms6,84–86 apparently
failed to identify the dominant T 9/2-correction to the Dyson
term in the spontaneous magnetization.

The second observation is that there appears to be consensus
in the literature on how graphs related to the two-spin-
wave problem should manifest themselves beyond T 4. Dyson
classified his terms according to the quantity F , where F

is the number of independent particles which are concerned
in the interactions which the particular term describes.6 For
F = 2, which is referred to as the two-spin-wave problem in
Ref. 84, the corresponding corrections are expected to show
up at order T 5 according to Refs. 84– 86, hence, these authors
seem to agree on that the dominant correction to the Dyson
term should be of order T 5 in the spontaneous magnetization.
However, this claim is not correct—it is in contradiction with
the fully systematic effective field theory analysis which has
demonstrated that the dominant correction sets in at order T 9/2.

The third observation concerns the three-spin-wave prob-
lem, i.e., the effect of interaction terms with F = 3. Dyson
identified two such contributions—formulas (128) and (130)
in his second article of Ref. 6—and showed that in the
spontaneous magnetization these are of order T 13/2 and T 5,
respectively. In the article by Morita and Tanaka,84 however, it
is claimed that the three-spin-wave problem starts manifesting
itself at order T 13/2, missing thus the term of order T 5.

Finally, the fourth observation is that the only place in
the literature where a Feynman diagram displaying the cateye
structure of graph 11c seems to have appeared is in the
more recent article by Chang.85 However, he concludes that
interactions originating from such a diagram start showing
up only at order T 15/2 in the spontaneous magnetization. This
claim, again, is erroneous, as it contradicts the fully systematic
effective theory analysis, which has demonstrated that the
leading term originating from a cateye graph is of order T 9/2.

In view of the quite impressive collection of tempera-
ture powers established over the years, one may easily get
confused—after all, may some of these temperature powers,
again, merely be spurious? One would certainly like to gain
some deeper insight into the general structure of the low-

13a

4

12a

6

FIG. 4. Two Feynman graphs related to the low-temperature
expansion of the partition function for a ferromagnet at order p12 and
p13 in dimension d = 3 + 1. The numbers attached to the vertices
refer to the piece of the effective Lagrangian they come from. Note
that there are further Feynman graphs of order p12 and p13, which we
have not displayed.

temperature series for the spontaneous magnetization beyond
the leading correction to the Dyson term. Let us therefore
address the problem in a fully systematic way within the
effective field theory framework—first on the level of the free
energy density.

Indeed, it is quite easy to see that corrections due to the
spin-wave interaction continue to proceed in steps of T 1/2. In
Fig. 4, we have displayed some of the relevant higher-order
graphs, which contribute beyond order p11 or, equivalently,
beyond T 11/2. At order T 6 in the free energy density, the
two-loop graph 12a with an insertion from L6

eff contributes,
while at order T 13/2 the three-loop graph 13a with a vertex
from L4

eff is relevant.
We may classify the graphs of the effective theory according

to the number of loops they contain and discuss the various
contributions at the level of the spontaneous magnetization.
Interactions related to two-loop diagrams start manifesting
themselves through the Dyson term of order T 4 and then
proceed in integer steps of T —these are the two-loop graphs
with successive insertions from L4

eff,L6
eff,L8

eff, . . ., giving rise
to terms of order T 4,T 5,T 6, . . . in the spontaneous magnetiza-
tion. Interactions related to three-loop diagrams start showing
up at order T 9/2. They give rise to the dominant correction
to Dyson’s result, and then also proceed in steps of T —in
the effective theory these correspond to the three-loop graphs
with successive insertions from L2

eff,L4
eff,L6

eff, . . ., leading to
half-integer powers of the temperature: T 9/2,T 11/2,T 13/2, . . .

Four-loop interactions are expected to enter the game at
order T 6. They will continue contributing to the spontaneous
magnetization in ascending powers of T through terms of order
T 6,T 7,T 8, . . .

Accordingly, the low-temperature expansion for the spon-
taneous magnetization of the ideal ferromagnet exhibits the
following general structure:

�(T )

�
= 1 − α0T

3
2 − α1T

5
2 − α2T

7
2 − α3T4

−α4T
9
2 − α5T5 − α6T

11
2 + O(T6). (6.4)

Note that we have highlighted all terms that are related to
the spin-wave interaction. We thus realize that the various
published temperature powers as such are not in contradiction
with the effective field theory prediction—sooner or later, the
effective expansion will hit them all. The point is, however, that
there are two gaps in the multitude of published temperature
powers—interaction terms of order T 9/2 and T 11/2, to the best
of our knowledge, have never been identified.
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One may say that the effect of the spin-wave interaction on
the low-temperature series for the spontaneous magnetization
of an ideal ferromagnet is quite peculiar. On the one hand,
the interaction starts manifesting itself only at order T 4, i.e.,
far beyond the Bloch term of order T 3/2. On the other hand,
subsequent interaction corrections closely follow the term of
order T 4, starting with T 9/2 and then proceeding in steps of
T 1/2.

VII. CONCLUSIONS

The question of how the spin-wave interaction manifests
itself in the low-temperature expansion of the spontaneous
magnetization of an ideal ferromagnet has a long history.
Early attempts that ended up with temperature powers of order
T 7/4 and T 2 turned out to be wrong altogether, as shown
by Dyson’s rigorous analysis, which demonstrated that the
spin-wave interaction sets in only at order T 4.

After Dyson’s rather complicated analysis, there emerged
an active phase of research in which many authors tried to
derive the T 4 term in the spontaneous magnetization in a
more accessible manner. We also noted in the introductory
section that a spurious term of order T 3 in the spontaneous
magnetization appeared in those works that were devoted to
studying the thermodynamics of ferromagnets in the whole
temperature range.

We would like to stress that one of the virtues of the fully
systematic effective Lagrangian method is that it is based on
symmetry considerations. Indeed, the existence of Dyson’s T 4

term—and, at the same time, the absence of a T 3-term—is an
immediate consequence of the underlying symmetries inherent
in the ideal ferromagnet.

In his collection of selected papers that appeared in 1996,18

Dyson comments, “After 1966, the subject of spin-wave
interactions went into a long sleep.” Note that in 1966, Keffer’s
comprehensive review on spin waves appeared.35 Still, so it
seems, sporadically over time, the peaceful sleep has been
interrupted, as several authors were attracted by the problem
of what the general structure of the series for the spontaneous
magnetization of an ideal ferromagnet beyond the Dyson term
should look like. Remarkably, not all of the various findings are
consistent with one another. It was our motivation to solve this
paradox, making use of the systematic and model-independent
method of effective Lagrangians.

As we have demonstrated in the present study, it is rather
straightforward to go beyond Dyson’s analysis by considering
three-loop effects in the effective field theory. Still, the explicit
evaluation at order p11 is quite nontrivial, as it involves the
renormalization and subsequent numerical evaluation of a
three-loop graph, which is proportional to an integral over
a product of four thermal propagators, each one of them
involving an infinite sum. The corresponding interaction term
beyond Dyson is completely fixed by the symmetries of the
leading-order effective Lagrangian L2

eff—lattice anisotropies,
showing up at higher orders in the effective Lagrangian, do
not affect this result. What is quite remarkable is the fact
that all previous attempts to go beyond Dyson apparently
have failed to correctly identify this interaction term of
order T 9/2 in the spontaneous magnetization of an ideal
ferromagnet.

We have also discussed the origin and the structure of even
higher-order corrections in the low-temperature expansion of
the spontaneous magnetization, pointing out that they continue
to proceed in steps of T 1/2 beyond the contribution of order
T 9/2. Again, earlier attempts to gain insight into the general
structure of this series were incorrect.

The present study has thus solved—once and for all—
the problem of how the spin-wave interaction in an ideal
ferromagnet manifests itself in low-temperature expansion of
the spontaneous magnetization beyond the Dyson term.

Hopefully, we have convinced the reader that the ef-
fective Lagrangian technique does not merely consist in
rederiving known results or in rephrasing condensed matter
problems in another language—rather, in many cases as
in the present one, it clearly proves to be more powerful
than conventional condensed matter methods, allowing one
to go to higher orders of the low-temperature expansion in
a controlled and systematic manner. In view of the many
articles that have dealt with the problem of the manifestation
of the spin-wave interaction in an ideal ferromagnet at
low temperatures, it is quite striking how efficiently the
effective theory analysis settles this question in a conclusive
way.

We do not claim to have contributed to the actual experi-
mental situation—spin-wave interactions in a ferromagnet are
very weak. Above all, there are many interactions in addition to
the exchange interaction in a real ferromagnet, which would
also have to be accounted for in a more realistic approach.
While this would be perfectly feasible within the effective
Lagrangian framework, here we have restricted ourselves to
the simple model of the ideal ferromagnet—after all, it is for
this system where corrections to Dyson’s result have been
derived over the years.

Although there is no such object as a perfectly ideal ferro-
magnet in nature, still, the “clean” ideal ferromagnet could be
investigated in a numerical simulation of the Heisenberg model
and the existence of the T 9/2-term in the low-temperature
expansion of the spontaneous magnetization might be verified
this way.
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APPENDIX A: EFFECTIVE LAGRANGIAN METHOD

In this appendix we would like to provide the reader
not familiar with the effective Lagrangian technique with
additional information, hoping that—with the information
already given in Secs. II and III A—the paper will become
readily accessible to the condensed matter community.

Right at the beginning, we have to emphasize a crucial point
regarding the relation between the underlying theory and the
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effective theory. In the present case of the ferromagnet, the
underlying—or microscopic—theory is the Heisenberg model,

H0 = −J
∑
n.n.

�Sm · �Sn, J = const., (A1)

which is formulated in terms of the spin operators �S. In
the effective field theory, the relevant degrees of freedom
are the spin waves, which are described by the spontaneous
magnetization (order parameter) vector �U (see below). We will
now elaborate on the fact that no explicit equation exists that
connects the two rather different objects �S and �U appearing in
the underlying and the effective theory, respectively.

First, note that the situation is very different from the
more conventional approaches to the low-energy physics of
a ferromagnet: In Dyson’s analysis or in spin-wave theory,
e.g., one is faced with the problem to express the spin
operators of the Heisenberg model in terms of the bosonic
operators, which describe the magnons. This expansion of
spin operators in terms of bosonic operators can be done in a
variety of ways, e.g., by the Dyson-Maleev or the Holstein-
Primakoff transformation. These transformations thus provide
an immediate connection between the spin operators of the
Heisenberg model and the bosonic magnon operators, which
describe the low-energy physics.

The construction of the effective field theory for magnons
proceeds in a rather different manner. The only link between
the effective and the microscopic theory are the symmetries
inherent in the Heisenberg model. These symmetries are
inherited by the effective Lagrangian and constrain the
construction of the terms in the effective Lagrangian, which
is done in a systematic manner. However, within the effective
Lagrangian approach, one does not pretend to “derive” the
effective Lagrangian from the underlying Heisenberg model.
There is no equation where the spin operator �S appears on
the left-hand side and the effective field �U appears on the
right-hand side.

Rather, the construction of the effective Lagrangian is
based on locality, unitarity, as well as on a symmetry analysis
and thus involves a good portion of group theory. The
mathematical formalism was developed three decades ago in
the context of the strong interaction, where one deals with
a spontaneously broken chiral symmetry. The formalism was
transferred to condensed matter systems in Ref. 41 and applied
to describe spin waves of ferromagnets and antiferromagnets
as well as phonons in solids. In these cases, one deals
with a spontaneously broken spin rotation symmetry and a
spontaneously broken translation symmetry, respectively. In
particular, the quite involved group theoretical construction of
the leading order effective Lagrangian for the ferromagnet L2

eff
is presented in detail in that reference, such that here we just
focus on some essential aspects.

The effective theory is designed to describe the physics of
Goldstone bosons, which are the relevant degrees of freedom
at low energies or low temperatures. The Goldstone bosons
originate from the spontaneously broken global continuous
symmetry, which involves the two groups G and H: While G
is the symmetry of the underlying theory, H is the symmetry
of the ground state. In the present case of the ferromagnet, the
spin-rotation symmetry G = O(3) of the Heisenberg model is

spontaneously broken by the ground state of the ferromagnet,
which is invariant only under the subgroup H = O(2). The
Goldstone bosons in the present case are the spin waves or
magnons.

From a group-theoretical point of view, the Goldstone
boson fields U (x) live in the coset space G/H. Their trans-
formation properties are fully determined by the structure of
G and H. In the present case of the ferromagnet, the spin waves
or magnons live in the coset space O(3)/O(2), which may be
identified with the sphere S2. Accordingly, the magnon field
may be parameterized by a unit vector �U (x). The low-energy
physics of the ferromagnet can be completely described in
terms of the field �U (x), which represents the direction of the
local spontaneous magnetization—the order parameter of the
spontaneously broken spin rotation symmetry.

The number of real Goldstone bosons fields nGB , according
to the Goldstone theorem,73–77 is given by the difference
of the number of symmetry generators we have in the two
groups G and H: nGB = dim(G) − dim(H). In the present
case of the ferromagnet, we thus have two real spin-wave
fields, which we denote by U 1(x) and U 2(x) or, collectively,
by Ua(x) with a = 1,2. These spin-wave fields are the basic
degrees of freedom in our effective theory and correspond
to the fluctuations of the spontaneous magnetization vector
�U = Ui = (U 1,U 2,U 3), which is normalized to one, | �U | = 1.
In our convention, the spontaneous magnetization points along
the third axis, such that the ground state of the ferromagnet
is characterized by �U0 = (0,0,1). The two real spin-waves
fields, collected in the transverse directions U 1 U 2, represent
the fluctuations of the spontaneous magnetization vector �U
around the ground state.

Now that we have identified the basic degrees of freedom of
the effective theory—the two real spin-wave fields contained
in the magnetization vector �U—we want to systematically
construct the terms appearing in the effective Lagrangian. The
idea is simple: One writes down in a systematic manner all
terms which are invariant under the symmetries that have been
identified in the underlying Heisenberg model. The various
pieces in the effective Lagrangian can be organized according
to the number of space and time derivatives they contain.
Since we want to describe the spin-wave physics at low
energies, terms in the effective Lagrangian that contain only
a few derivatives are the dominant ones, while terms with
more derivatives are suppressed. This is what we mean by
systematic: organizing the terms in the effective Lagrangian
according to the number of derivatives (or magnetic fields, see
below) they contain.

Now, in nonrelativistic systems we have to distinguish
between space and time derivatives. Since in our analysis we
assume space rotation symmetry (the justification was given at
the end of Sec. II.), there are no terms with an odd number of
space derivatives in the effective Lagrangian. In fact, as derived
in detail in Ref. 41, the leading order effective Lagrangian
contains a term with one time (∂0) and a term with two space
(∂r∂r ) derivatives, as well as a term that involves the magnetic
field H and contains no derivative:

L2
eff = �

εab∂0U
aUb

1 + U 3
+ �μHU 3 − 1

2
F 2∂rU

i∂rU
i. (A2)
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It is important to note that, according to this equation, in the
systematic counting of derivatives, one time derivative (or one
insertion of the magnetic field) are thus on the same footing as
two space derivatives—they all are of order p2 in the derivative
expansion of the effective Lagrangian.

The effective action defined by the effective Lagrangian
through

Seff =
∫

d4xLeff (A3)

is invariant under the spin rotation symmetry O(3), under
parity as well as time reversal symmetry—it respects all the
symmetries inherent in the Heisenberg model and represents
the most general expression of order p2 involving the spin-
wave fields in �U = Ui one can write down.

The effective Lagrangian of the ferromagnet, in fact, is a
rather peculiar object: it is invariant under time-reversal and
under O(3) spin rotations only up to a total derivative (see
Ref. 41). The effective action, however, is perfectly invariant
under these symmetries, as well as under all other symme-
tries that have been identified in the underlying Heisenberg
model.

While the derivative structure of these terms is rigorously
determined by the symmetries of the Heisenberg model (again,
the detailed and rather involved group-theoretical construction
is presented in Ref. 41 and will not be repeated here), each
term comes with an effective constant which is not fixed by
symmetry. At leading order, we have two such constants, the
spontaneous magnetization � and the quantity F . The actual
values of effective constants in general may be obtained from
experiment, from numerical simulation, or, in some cases, from
a direct matching of physical quantities calculated both within
the effective and the underlying theory framework.

In order to see that this leading-order effective Lagrangian
correctly describes the low-energy physics of the ferromagnet,
we may derive the corresponding equation of motion, which
takes the form41

∂0U
a + εajkf

j

0 Uk + γ εajk�UjUk = 0,
(A4)

f
j

0 = μHδ
j

3 , γ ≡ F 2

�
.

Indeed, this is the familiar Landau-Lifshitz equation, which
describes the dynamics of ferromagnetic spin waves.87 The
corresponding dispersion relation amounts to

ω(�k) = γ �k2 + O(|�k|4), (A5)

taking the familiar quadratic form, characteristic of ferromag-
netic spin waves.

It is important to note that, according to the nonrelativistic
Goldstone theorem,73–77 there only exists one type of spin-
wave excitation—or one magnon particle—in the low-energy
spectrum of the ferromagnet. Indeed, the two real fields U 1(x)
and U 2(x) may be combined into one complex field,

u = U 1 + iU 2, (A6)

which describes the physical ferromagnetic magnon.
We now turn to a more detailed discussion of the Feynman

diagrams, which occur in the evaluation of the partition

function. The basic formula from which one derives the
Feynman diagrams is given by the path integral representation
of the partition function80–82

Tr[exp(−H/T )] =
∫

[dU ] exp

(
−

∫
T
d4xLeff

)
. (A7)

The integration extends over all magnon field configurations
that are periodic in the Euclidean time direction U (�x,x4 +
β) = U (�x,x4), with β ≡ 1/T .

In order to derive this basic formula, we start with
the functional integral representation of the time evolution
operator

〈U ′′ | exp(−iτH|U ′ 〉 =
∫

[dU ] exp

(
i

∫
d4xLeff

)
. (A8)

The integration extends over all field configurations U (�x,t),
interpolating between U (�x,0) = U

′
(�x) and U (�x,τ ) = U

′′
(�x).

To obtain the analogous integral representation of the op-
erator exp(−τH), one replaces the phase factor exp(iS)
with exp(−S̃), where S̃ is the effective action in Euclidean
space,

〈U ′′ | exp(−τH)|U ′ 〉 =
∫

[dU ] exp

(
−

∫
d4xL̃eff

)
. (A9)

The integration extends over the same field configurations as in
Eq. (A8). In order to obtain the Euclidean effective Lagrangian
from −Leff , one merely replaces the Minkowski space metric
gμν = (+ − −−) by −δμν .

Finally, to arrive at the trace of exp(−H/T ), one takes
a time interval of length 1/T , identifies U

′′
with U

′
, and

integrates over U
′
. The functional integral then extends over

all fields that are periodic in x4 and takes the form displayed
in Eq. (A7).

Temperature thus produces remarkably little change: to
obtain the partition function, one simply restricts the manifold
on which the Goldstone boson fields are living to a torus.
The effective Lagrangian remains unaffected—in particular,
the effective coupling constants are temperature independent.
Here, the essential point is that the boundary conditions in
the Euclidean time direction x4 are dictated by the trace that
defines the partition function.

The quantity Leff on the right hand side of Eq. (A7) is the
Euclidean form of the effective Lagrangian, which consists of
a string of terms:

Leff = L2
eff + L4

eff + L6
eff + L8

eff + O(p10), (A10)

involving an increasing number of space and time derivatives
as well as the magnetic field. As we have argued in Sec. II,
in our evaluation of the partition function we have to include
terms with up to eight space derivatives.

The virtue of the representation (A7) lies in the fact
that it can be evaluated perturbatively. To a given order in
the low-energy expansion, only a finite number of Feynman
graphs and a finite number of coupling constants contribute.
More precisely, the low-temperature expansion of the parti-
tion function is obtained by considering the fluctuations of
the spontaneous magnetization vector field �U = (U 1,U 2,U 3)
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around the ground state �U0 = (0,0,1), i.e., by expanding U 3

in powers of the spin-wave fluctuations Ua ,

U 3 = √
1 − UaUa = 1 − 1

2UaUa − 1
8UaUaUbUb − · · · .

(A11)

Inserting this expansion into formula (A7), one then generates
the Feynman diagrams illustrated in Figs. 1 and 2 of Sec. II.
At this point, the reader may find it helpful to also consult Ref.
81—in particular, chapter 3, where the generation of diagrams
is discussed. The leading contribution in the exponential of
the right-hand side of Eq. (A7) is of order p2 and originates
from L2

eff . It contains a term quadratic in the spin-wave
field Ua—with the appropriate derivatives and the magnetic
field displayed in Eq.(A2)—and describes free magnons.
The corresponding diagram for the partition function is the
one-loop diagram 5 of Fig. 1. Note that in Sec. II we have
argued that each loop in a Feynman diagram leads to a
suppression of p3—the one-loop diagram 5 is of order p5,
because it involves two derivatives (p2) and one loop (p3).

The remainder of the effective Lagrangian in the path
integral formula is treated as a perturbation. The Gaussian
integrals are evaluated in the standard manner,80–82 and one
arrives at a set of Feynman rules that differ from the zero-
temperature rules of the effective Lagrangian method only
in one respect: the periodicity condition imposed on the
magnon fields modifies the propagator. At finite temperature,
the propagator is given by

G(x) =
∞∑

n=−∞
�(�x,x4 + nβ), (A12)

where �(x) is the Euclidean propagator at zero temperature,

�(x) =
∫

dk4d
3k

(2π )4

ei�k�x−ik4x4

γ �k2 − ik4 + μH
. (A13)

The lines connecting the various vertices occurring in the
Feynman diagrams stand for the Euclidean thermal propagator
Eq. (A12).

The numbers attached to the vertices in the Feynman
diagrams refer to the piece of the effective Lagrangian they
come from. Vertices associated with the leading-order effective
Lagrangian L2

eff we have denoted by a dot. The dot in diagram
10b of Fig. 1, e.g., means that we are considering an insertion
from L2

eff , which contains terms with two space derivatives,
terms with one time derivative as well as terms involving
the magnetic field and no derivative. Note also that we need
all such expressions that involve a total of four magnon
fields Ua , as required by the topology of the diagram (four
lines connected to the vertex). In the same diagram 10b, we
have another vertex that involves the next-to-leading order
Lagrangian L4

eff . Here, all terms involve four space derivatives.
As we have argued in Sec. II, terms with time derivatives
or terms involving the magnetic field can be eliminated with
the equation of motion, such that L4

eff takes the simple form
given in Eq. (2.6) exhibiting space derivatives only. Moreover,
we need all expressions originating from L4

eff that contain a
total of two magnon fields, according to the topology of the
diagram 10b.

In the evaluation of the partition function, throughout this
work, we have used the path integral formalism where the
quantity �U (x) is a classical field. Still, the field may be
quantized and the Greens function of the magnon particle
expressed by bosonic operators via

〈0|T {u(�x,x4)u†(�y,y4)}|0〉 = 2

�
�(x − y). (A14)

The magnon field operators u and u† have been constructed in
Ref. 43 and are given by

u(x) =
√

2

�

∫
d3k

(2π )3 a(�k)e−ikx,

(A15)

u(x)† =
√

2

�

∫
d3k

(2π )3 a(�k)
†
eikx .

Again, the above Greens function corresponds to the prop-
agation of the physical magnon particle, described by
the complex operators u = U 1 + iU 2 and u† = U 1 − iU 2,
respectively. The bosonic operators a† and a are the
creation and annihilation operators of the ferromagnetic
magnon.

APPENDIX B: NUMERICAL EVALUATION OF THE
CATEYE GRAPH

To numerically evaluate the integral J̄ defined in Eq. (4.15),
we introduce the dimensionless variables η and ξ ,

η = T x4, ξ = 1

2

√
T

γ
|�x|. (B1)

In the integrals over the torus that involve quartic and
triple sums—the first two terms in Eq. (4.15)—we first
integrate over all three-dimensional space, ending up with one-
dimensional integrals in the variable η. For the quartic sum we
obtain∫

T
d4x∂rG

T (x)∂rG
T (x)∂sG

T (−x)∂sG
T (−x)

= 15

2048π9/2γ 13/2
T

11
2

∫ 1/2

−1/2
dη

∞∑
n1...n4=1

e−σ (n1+n2+n3+n4)

×Q(η,n1,n2,n3,n4), Q(η,n1,n2,n3,n4)

=
(

1
η+n1

+ 1
η+n2

+ 1
−η+n3

+ 1
−η+n4

)−7/2

((η + n1)(η + n2)(−η + n3)(−η + n4))5/2
, (B2)

while for the triple sum we get∫
T
d4x∂r�(x)∂rG

T (x)∂sG
T (−x)∂sG

T (−x)

= 15

2048π9/2γ 13/2
T

11
2

∫ 1/2

0
dη

∞∑
n2...n4=1

e−σ (n2+n3+n4)

×Q(η,0,n2,n3,n4), Q(η,0,n2,n3,n4)

=
(

1
η

+ 1
η+n2

+ 1
−η+n3

+ 1
−η+n4

)−7/2

(η(η + n2)(−η + n3)(−η + n4))5/2
, (B3)
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with

σ ≡ μH

T
, γ ≡ F 2

�
. (B4)

Note that for the triple sums the integration over η only extends
over the interval [0, 1

2 ], due to the 
 function contained in the
zero-temperature propagator �(x).

The quantities Q(η,n1,n2,n3,n4) and Q(η,0,n2,n3,n4) de-
pend in a nontrivial manner on the summation variables. The
slowest convergence for the entire expressions Eq. (B2) and
Eq. (B3) is observed for the case σ = 0, where no expo-
nential damping occurs. We have performed the numerical
summation in a “Cartesian” way. We first define the vector
�Ni = (n1,n2,n2,n4). The first partial sum S1 in the quartic

series simply corresponds to the combination �N1 = (1,1,1,1)
of indices. The second partial sum S2 then contains all
combinations of indices in the vector �N2 with at least one index
equal to two: (2,1,1,1), . . . ,(2,2,2,2), etc. For large values
of i and for σ = 0, the partial sums Si converge according
to 1/Si

5/2. Proceeding in an analogous manner for the triple
sums, one obtains the same asymptotic behavior.

Expressions suitable for the numerical evaluation of the
remaining three integrals of Eq. (4.15) involving double sums
are ∫

T \S
d4x∂r�(x)∂r�(x)∂sG

T (−x)∂sG
T (−x)

= 1

128π5γ 13/2
T

11
2

∫ S

0
dη

∫ ∞
√

S2−η2
dξξ 6

×
∞∑

n1,n2=1

e−σ (n1+n2) P (ξ,η,n1,n2),

P (ξ,η,n1,n2) = e
−ξ 2

(
2
η
+ 1

−η+n1
+ 1

−η+n2

)

{η2(−η + n1)(−η + n2)}5/2
,

(B5)

∫
S
d4x∂r�(x)∂r�(x)Qss(x)

= 1

128π5γ 13/2
T

11
2

∫ S

0
dη

∫ √
S2−η2

0
dξξ 6

×
∞∑

n1,n2=1

e−σ (n1+n2+2η) Q(ξ,η,n1,n2,σ ), (B6)

with

Q(ξ,η,n1,n2,σ ) = e
−ξ 2

(
2
η
+ 1

−η+n1
+ 1

−η+n2

)

×
e2ησ

{(−η+n1)(−η+n2)}5/2 − e
ξ2
(

1−η+n1
+ 1−η+n2

)
n

5/2
1 n

5/2
2

η5
,

(B7)

and, finally,∫
R\S

d4x∂r�(x)∂r�(x)∂sαGT (−x)|x=0x
α

× ∂sβGT (−x)|x=0x
β = 1

128π5γ 13/2
T

11
2

∫ ∞

S

dη

∫ ∞

0
dξξ 6

×
∞∑

n1,n2=1

e−σ (n1+n2+2η) R(ξ,η,n1,n2)

+ 1

128π5γ 13/2
T

11
2

∫ S

0
dη

∫ ∞
√

S2−η2
dξξ 6

×
∞∑

n1,n2=1

e−σ (n1+n2+2η) R(ξ,η,n1,n2),

R(ξ,η,n1,n2) = e−2ξ 2/η

{η2n1n2}5/2
. (B8)

It is understood that in the above integrals the radius of the
sphere is chosen as S = 1

2 . For large values of i and for σ =
0, the partial sums Si related to the above three expressions
involving double sums also converge according to 1/Si

5/2.

1F. Bloch, Z. Phys. 61, 206 (1930).
2H. A. Kramers, Commun. Kamerlingh. Onnes. Lab. Univ. Leiden.
Suppl. 22, 83 (1936).

3W. Opechowski, Physica (Amsterdam) 4, 715 (1937).
4M. R. Schafroth, Proc. Phys. Soc. London A 67, 33 (1954).
5J. van Kranendonk, Physica (Amsterdam) 21, 81 (1955); 21, 749
(1955); 21, 925 (1955).

6F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230 (1956).
7T. Morita, Prog. Theor. Phys. 20, 614 (1958).
8T. Oguchi, Phys. Rev. 117, 117 (1960).
9F. Keffer and R. Loudon, J. Appl. Phys. (Suppl.) 32, 2S (1961).

10J. Szaniecki, Acta Phys. Polon. 20, 983 (1961).
11J. Zittartz, Z. Phys. 184, 506 (1965).
12D. C. Wallace, Phys. Rev. 153, 547 (1967).
13V. G. Vaks, A. I. Larkin, and S. A. Pikin, Sov. Phys. JETP 26, 188

(1968).
14J. F. Cooke and H. H. Hahn, Phys. Rev. B 1, 1243 (1970).
15J. Szaniecki, J. Phys. C 7, 4113 (1974).

16D. H. Yang and Y. Wang, Phys. Rev. B 12, 1057 (1975).
17E. Rastelli and P. A. Lindgard, J. Phys. C 12, 1899 (1979).
18F. Dyson, Selected Papers of Freeman Dyson with Commentary

(American Mathematical Society, 1996).
19I. Mannari, Prog. Theor. Phys. 19, 201 (1958).
20R. Brout and H. Haken, Bull. Am. Phys. Soc. 5, 148 (1960).
21F. Englert, Phys. Rev. Lett. 5, 102 (1960).
22D. N. Zubarev, Sov. Phys. Usp. 3, 320 (1960).
23R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962).
24R. A. Tahir-Kheli, Phys. Rev. 132, 689 (1963).
25R. B. Stinchcombe, G. Horwitz, F. Englert, and R. Brout, Phys. Rev.

130, 155 (1963).
26H. B. Callen, Phys. Rev. 130, 890 (1963).
27T. Oguchi and A. Honma, J. Appl. Phys. 34, 1153 (1963).
28A. Kühnel, J. Phys. C 2, 711 (1969).
29R. A. Tahir-Kheli, Phys. Rev. B 1, 3163 (1970).
30M. D. Coutinho Filho and I. P. Fittipaldi, Phys. Rev. B 7, 4941

(1973).

064414-15

http://dx.doi.org/10.1007/BF01339661
http://dx.doi.org/10.1016/S0031-8914(37)80170-6
http://dx.doi.org/10.1088/0370-1298/67/1/306
http://dx.doi.org/10.1016/S0031-8914(54)90594-7
http://dx.doi.org/10.1016/S0031-8914(55)91888-7
http://dx.doi.org/10.1016/S0031-8914(55)91888-7
http://dx.doi.org/10.1016/S0031-8914(55)92950-5
http://dx.doi.org/10.1103/PhysRev.102.1217
http://dx.doi.org/10.1103/PhysRev.102.1230
http://dx.doi.org/10.1143/PTP.20.614
http://dx.doi.org/10.1103/PhysRev.117.117
http://dx.doi.org/10.1063/1.2000447
http://dx.doi.org/10.1007/BF01380593
http://dx.doi.org/10.1103/PhysRev.153.547
http://dx.doi.org/10.1103/PhysRevB.1.1243
http://dx.doi.org/10.1088/0022-3719/7/22/016
http://dx.doi.org/10.1103/PhysRevB.12.1057
http://dx.doi.org/10.1088/0022-3719/12/10/021
http://dx.doi.org/10.1143/PTP.19.201
http://dx.doi.org/10.1103/PhysRevLett.5.102
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
http://dx.doi.org/10.1103/PhysRev.127.88
http://dx.doi.org/10.1103/PhysRev.132.689
http://dx.doi.org/10.1103/PhysRev.130.155
http://dx.doi.org/10.1103/PhysRev.130.155
http://dx.doi.org/10.1103/PhysRev.130.890
http://dx.doi.org/10.1063/1.1729412
http://dx.doi.org/10.1088/0022-3719/2/4/315
http://dx.doi.org/10.1103/PhysRevB.1.3163
http://dx.doi.org/10.1103/PhysRevB.7.4941
http://dx.doi.org/10.1103/PhysRevB.7.4941


CHRISTOPH P. HOFMANN PHYSICAL REVIEW B 84, 064414 (2011)

31A. Kumar and A. K. Gupta, Phys. Rev. B 28, 3968 (1983).
32R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 95 (1962).
33I. Ortenburger, Phys. Rev. 136, A1374 (1964).
34T. Morita and T. Tanaka, Phys. Rev. 137, A648 (1965); 138, A1403

(1965).
35F. Keffer, “Spin Waves,” in Encyclopedia of Physics—

Ferromagnetism, edited by S. Flügge and H. P. J. Wijn (Springer,
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