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Electric spectroscopy of vortex states and dynamics in magnetic disks
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Spin-polarized radio frequency (RF) currents and RF-Oersted fields resonantly excite a magnetic vortex core
confined in a micron-scale soft magnetic disk. In this study, we measured the rectifying voltage spectra caused
by the anisotropic magnetoresistance oscillation due to the gyration of the vortex with different polarity and
chirality. The measured spectra are presented such that we can determine the vortex properties and strength of
the spin torques and Oersted field accurately and directly through analytical calculation.
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I. INTRODUCTION

Currently, there is significant interest in the physical
properties of artificial mesoscopic magnets with a confined
structure. While considerable attention has been devoted to
transport properties, because of their applications in magnetic
storage devices and magnetic sensors, the radio frequency (RF)
response of these systems has also garnered interest. Studies of
the ferromagnetic resonance (FMR) spectrum provide a rich
source of information on fundamental magnetic properties,
including the unique anisotropies and internal magnetization
dynamics of mesoscopic magnets. The RF oscillation of
magnetization has been recently observed in single-patterned
ferromagnetic film, as well as in metallic multilayers; more-
over, several investigations have been conducted to clarify the
magnetic dynamics and realize potential applications, such
as microwave detectors and oscillators.1–5 In these systems,
spin waves are considered responsible for phase-locking
microwave oscillators and for rectification of RF currents
passed through ferromagnetic microwave guides.

In particular, rectification provides highly sensitive detec-
tion of the information and dynamics of microscopic spin
structure. The spin-polarized current passing through twisted
magnetic structures, such as giant magnetoresistance devices,
and a magnetic domain wall gives rise to a torque on the
local magnetization vectors. This torque is called the spin
transfer torque, which originates from the transfer of spin
angular momentum from the conduction electron spin to
local magnetization. This effect allows for direct and local
manipulation of magnetization and is a promising writing
mechanism for new nonvolatile memories. Spin transfer torque
originates from the conduction electron spin that follows local
magnetization through s-d interaction; however, the driving
torque consists of not only the spin transfer torque but also the
Oersted field. A precise measurement of the contribution of
torques is necessary to manipulate magnetization. We find that
the rectifying spectra can precisely detect the vortex dynamics.
The measurement spectra allow us to determine the vortex
properties, as well as the strength of the driving torques, accu-
rately and directly through developed analytical calculation.

A vortex in a micron- or nanostructured magnetic thin-film
element forms when the in-plane magnetization curls around a

vortex core. The vortex core magnetization turns out of the
plane to minimize the exchange energy.6,7 When a vortex
confined in a disk is driven out of an equilibrium state by either
a magnetic field or a spin-polarized current, the vortex core
gyrates around its equilibrium position.8–10 This soliton-like
motion of the magnetic vortex attracts considerable attention
in the physics of magnetic materials.

The magnetic vortex is characterized by two binary prop-
erties: a chirality (clockwise or counterclockwise direction
[C = ±1] of the in-plane rotating magnetization) and a
polarity (up or down direction [P = ±1] of the vortex core
magnetization). As a result, there are four different ground
states of the vortex.11–13 Thus, an understanding of the stability
and dynamical behavior of the magnetic vortex, as well as
a way to electrically detect the vortex states, is a major
requirement for developing magnetic data storage technology.

In this study, we develop a theory of vortex dynamics,
including the contributions of the spin torque and the Oersted
field, and demonstrate the electrical detection of both the
polarity and the chirality of the vortex in an Fe19Ni81 disk
using a current-induced rectifying effect.14

This paper is organized as follows. In Sec. II, the analytical
model is described. We develop the analytical model concern-
ing the rectifying spectrum based on the magnetoresitance
oscillation from the vortex core gyration through the simulta-
neous application of the static field and the RF current and field.
The experimental setup is presented in Sec. III. Section IV
describes the experimental results of the rectifying spectra
measured in the disks. Additionally, we explain the analysis
of the rectifying spectra and the detection of the polarity
and chirality of the vortex. We focus on their characteristic
dependencies on the direction of the static field and the RF
current and field. In Sec. V, the conclusions are summarized.

II. THEORETICAL MODEL

The vortex motion and rectifying voltage can be calculated
using the following analytical model. First, the total energy in
a magnetic disk is calculated in Sec. A. Second, the trajectory
of the vortex core position r is derived in Sec. B. Third,
the temporal variation of the anisotropic magnetoresistance
(AMR) originated by the trajectory is calculated in Sec. C.
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FIG. 1. (Color online) Schematic image of the coordinate system
in the disk. xd = (xd, yd) and ρ = xd − r = (ρ, ϕ) are the Cartesian
coordinate system and polar coordinate system, respectively. The
origin of the former system is the center of the disk, whereas that
of the latter is the vortex core. r is the vortex core position in the
Cartesian coordinate system. ∂(disk) indicates the side area of the
disk.

A. Potential energy

The energy U in the magnetic disk consists of the Zeeman,
magnetostatic, and exchange energies. In this section, we
analytically calculate these energies.

We begin by calculating the Zeeman energy in the disk. The
Zeeman energy of the vortex or antivortex confined in the disk
was calculated by Krüger et al.15,16 Based on the computation

from this study, we calculated the Zeeman energy of the vortex
in a circular disk using the approximation to the second order
of the vortex core position r. The following model derives the
magnetization M in the circular disk:

M = M(xd − r)

= M(ρ)

= CMs

(
sin ϕ

− cos ϕ

)

= CMs

⎛
⎝ yd−y√

(xd−x)2+(yd−y)2

− xd−x√
(xd−x)2+(yd−y)2

⎞
⎠ . (1)

Here, the coordinate systems xd = (xd, yd), r = (x, y),
and ρ = xd − r = (ρ, ϕ) are defined as shown in Fig. 1.
xd denotes the Cartesian coordinate system whose origin is
the center of the disk, whereas ρ is defined by the coordinate
system whose origin is the vortex core position. r is the vortex
core position in the Cartesian coordinate system. C and Ms are
chirality and saturation magnetization, respectively. Variation
of magnetization with z-direction was neglected to simplify
the problem. In addition, we neglected the core magnetization
because it is too small to influence the system energy.

Taking into account Eq. (1), the Zeeman energy in circular
disk UZ is calculated as

UZ = −
∫

disk
M · Hd3xd

= −CMsL

∫
disk

Hx(yd − y) − Hy(xd − x)√
(xd − x)2 + (yd − y)2

d2xd, (2)

where H = (Hx , Hy) and L are the external field and thickness
of the disk, respectively. We calculated the Taylor series for
the vortex core position r in Eq. (2) and truncated it after the
second order. Then, we obtain

UZ
∼= −CMsL

∫
disk

d2xd

{
x ·

(
∂

∂x

Hx(yd − y) − Hy(xd − x)√
(xd − x)2 + (yd − y)2

)∣∣∣∣∣
x=0,y=0

+ y ·
(

∂

∂y

Hx(yd − y) − Hy(xd − x)√
(xd − x)2 + (yd − y)2

)∣∣∣∣∣
x=0,y=0

⎫⎬
⎭

= πCMsLrdisk(Hxy − Hyx)

≡ q · (H × r), (3)

where

q = Cq0ez = πCMsLrdiskez (4)

defines the stiffness coefficient vector. Here, rdisk is the radius
of disk, and ei (i = x, y, z) indicates the unit vector. Using the
Zeeman energy described by Eq. (3), the force on the vortex
core is calculated as follows:

−∂UZ

∂ r
= − ∂

∂ r
(q · (H × r)).

= −q × H (5)

This result is in agreement with Krüger’s result.
Next, to elucidate the calculation of the magnetostatic

energy in the circular disk, we consider Taylor approximation

for the vortex core position r and truncate the Taylor series after
the second order. When the vortex core is driven by an in-plane
external field, the magnetic poles appear on the side of the disk
shown in Fig. 1. The magnetic poles generate a demagnetizing
field, and as a result, a restoring force is exerted on the vortex
core. After calculating the demagnetizing field, we obtain the
total magnetostatic energy in the disk for the magnetization
distribution described by Eq. (1) and the demagnetizing field.
The density of magnetic poles Mp on the side of the disk is
calculated as

Mp(θ ) = CMs
(yd − y) cos θ − xd sin θ√

x2
d + (yd − y)2

. (6)
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Here, θ indicates the angle with respect to the x-axis:
θ = tan−1(yd/xd). Considering only the case in which the
vortex core moves in the y direction because of the rotational
symmetry in the circular disk, the demagnetizing field Hd at
the center of the disk is calculated as

H d =
∫

∂(disk)
−Mp(θ ′)

4πμ0

x′
d

r3
disk

d2x ′
d. (7)

Here, ∂(disk) indicates the side area of the disk as shown in
Fig. 1. Using the calculation for second-order r, the demagne-
tizing field described by Eq. (7) is approximately reduced to

H d
∼= CMsL

4πμ0r
2
disk

yex . (8)

By expanding Eq. (1), we derive the magnetization M to
the first-order of the radius r as follows:

M ∼= CMs

rd
(ydex − xdey) − CMs

r3
d

(
x2

d ex + xdydey

)
y. (9)

Here, we define rd = (xd
2 + yd

2)1/2. Substituting Eqs. (8)
and (9) into the following equation:

Um = −
∫

disk

1

2
M · H dd

3xd, (10)

we obtain

Um = πM2
s L2

8μ0rdisk
y2

≡ 1

2
κmy2 (11)

Here, we define the effective stiffness coefficient as the
following:

κm = πM2
s L2

4μ0rdisk
. (12)

Finally, we consider the exchange energy given by the
gradient of the magnetization in Eq. (1). The exchange energy
is given by

Uex =
∫

disk
− A

M2
s

M�Md3xd

= A

∫
disk

d3xd

ρ2
, (13)

where A is the exchange stiffness coefficient. Unfortunately,
the density of the exchange energy in Eq. (13) diverges to
infinity at the center of the vortex core. Thus, we consider
only the exchange energy contribution through the magnetic
structure near the side of the disk. We consider and calculate
the exchange energy in detail. Figure 2 shows the schematic
image of the disk and magnetization. The gray area indicates
the circular disk. The dotted area indicates the magnetization
distribution; the center of this area is the vortex core. The
exchange energy is equal to the integral in the disk (the gray
area); however, this area includes the singular point (vortex
core). Furthermore, this exchange energy is equal to (the
integral after the vortex core shifts) − (the integral before
it shifts). That is, it is equal to (the gray blank area) − (the
white dotted area) in Fig. 2, because the gray dotted area
is a common area between the area before and after the
vortex core is displaced. Therefore, the exchange energy is

FIG. 2. Schematic image of the disk and magnetization distri-
bution. The gray area indicates the circular disk. The dotted area
indicates the magnetization structure of the vortex; the center of this
area is the vortex core.

given by

Uex = A

∫
δ(disk)

d3xd

ρ2

= AL

∫ rdisk

−rdisk

dxd

{∫ −
√

r2
disk−x2

d +y

−
√

r2
disk−x2

d

dyd
1

x2
d + (yd − y)2

−
∫ √

r2
disk−x2

d +y

√
r2

disk−x2
d

dyd
1

x2
d + (yd − y)2

}

∼= −ALy2

r2
disk

∫ rdisk

−rdisk

dxd

2
√

r2
disk − x2

d

r2
disk

= −πAL

r2
disk

y2

≡ −1

2
κexy

2. (14)

Here, δ(disk) indicates the (gray blank) − (white dotted)
area in Fig. 2. We approximate the exchange energy with the
calculation to the second-order vortex core position r. Here,
introducing the effective stiffness coefficient with

κex = 2πAL

r2
disk

, (15)

we summarize the restoring force given by

U (r) = Um + Uex

= 1

2
κ r2. (16)

Here, the effective stiffness coefficient is defined as

κ = κm − κex

= πM2
s L2

4μ0rdisk
− 2πAL

r2
disk

. (17)
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Equation (17) indicates that the restoring force that consists
of the magnetostatic energy and the exchange energy is
in a competitive relationship. In the micron-scale disk, the
exchange force is negligibly smaller than the magnetostatic
force. For κm > κex, the vortex core is confined in the disk,
whereas for κm < κex, the vortex is driven out of the disk. At
κm = κex, the critical thickness Lc for the boundary between
the vortex state and single domain state is calculated by

Lc = 8μ0A

M2
s rdisk

. (18)

Equation (18) corresponds to Hoffmann’s result without the
following factor:17–19

1

π2

{
ln

(
rdisk

a
+ 1

)
+ γe

}
∼ 0.86. (19)

Here, a and γe are the lattice constant (∼3 Å in Ni81Fe19)
and the Euler constant (∼0.5772).17 The inconsistency be-
tween our result Eq. (18) and Hoffmann’s exact solution is due
to the approximation of the energy to the second-order vortex
core position r.

Finally, combined with the Zeeman, magnetostatic, and
exchange energies, the potential energy in the system is given
by

U (r) = 1

2
κ r2 + q · (H × r). (20)

B. Position of the vortex core

In this section, we examine the vortex dynamics in the
circular disk under the application of the external static field
Hext, RF spin torque u, and RF-Oersted field heiωt ey . For
the analytical calculations, we begin with the modified Thiele
equation including the spin torque term20,21

G(P ) × (u − ṙ) = −δU

δr
− αD ṙ + βDu, (21)

where G(P ) = −PG0ez = −P 2πLMs
γ

ez is the gyrovector. u is
the spin torque interaction term of the current and the magne-
tization, which is given by u = u0e

iωt ex = μBp(−Jeiωt )
eMs

ex and
is proportional to the current density J, Bohr magneton μB,
and spin polarization ratio p with electron charge e. Here, we
assumed that the current is injected to the x-axis. α is the
Gilbert damping constant, β is the nonadiabatic contribution

to the spin-transfer torque, and D is the diagonal element
of the damping tensor, which is given by D = G0

2 ln( rdisk
ξ

)

with vortex core radius ξ .22 U denotes the potential energy
given by Eq. (20) with stiffness coefficients described by
Eqs. (4) and (17). The magnetic field H is given by H =
Hext + Re{heiωt ey}. The external field Hext = (Hx, Hy) is
applied in the disk plane. h is the amplitude of the RF-Oersted
field generated by the RF current flowing through the disk and
electrode.

We assumed the vortex core position to be written in the
following form:21

r =
(

x

y

)
=

(
x0 + Re{Xeiωt }
y0 + Re{Y eiωt }

)
. (22)

Here, x0 and y0 are the equilibrium position of the vortex core
in the static magnetic field. X and Y are the complex oscillation
amplitudes. Substituting Eq. (22) into Eq. (21), we obtain the
following equation:

iω

(
αD −G0P

G0P αD

)(
X

Y

)
eiωt + κ

(
x0 + Xeiωt

y0 + Y eiωt

)

=
(

Cq0(Hy + heiωt ) + βDu0eiωt

G0Pu0eiωt − Cq0Hx

)
. (23)

For the zero-RF current, namely J = 0, all terms concerned
with the oscillation that correspond to the RF spin torque u,
RF-Oersted field h, and oscillation amplitude X are removed.
Therefore, by setting J = u0 = h = X = Y = 0 in Eq. (23), we
obtain the equilibrium position:(

x0

y0

)
= Cq0

κ

(
Hy

−Hx

)
. (24)

Substituting Eq. (24) into Eq. (23), we obtain the new equation
describing the vortex dynamics:(

κ + iωαD −iωG0P

iωG0P κ + iωαD

) (
X

Y

)
=

(
Cq0h + βDu0

G0Pu0

)
.

(25)

Calculating Eq. (25), we obtain the oscillation amplitude of
the vortex core,

(
X

Y

)
=

(
X′ + iX′′

P (Y ′ + iY ′′)

)
, (26)

with

X′(ω) = u0
β̃κ̃

(
ω2

γ − ω2
) + (1 + α̃β̃)α∗ω2

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
} + h

Cq̃0
{
κ̃
(
ω2

γ − ω2
) + α∗α̃ω2

}
(1 + α̃2)

{(
ω2

γ − ω2
)2 + (α∗ω)2

}
X′′(ω) = u0ω

−β̃κ̃α∗ + (1 + α̃β̃)
(
ω2

γ − ω2
)

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
} + hω

Cq̃0
{ − κ̃α∗ + α̃

(
ω2

γ − ω2
)}

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
}

(27)

Y ′(ω) = u0
κ̃
(
ω2

γ − ω2
) + (α̃ − β̃)α∗ω2

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
} − h

Cq̃0α∗ω2

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
}

Y ′′(ω) = u0ω
−κ̃α∗ + (α̃ − β̃)

(
ω2

γ − ω2
)

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
} − hω

Cq̃0
(
ω2

γ − ω2
)

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
} .
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Here, X′ ( X′′) and Y′ ( Y′′) are the x and y component of the
real part (imaginary part) of the oscillation amplitude of the
vortex core position, respectively. Additionally, we introduce
the following reduced parameters to simplify the notation:21

α̃ = α
D

G0
, β̃ = β

D

G0
, κ̃ = κ

G0
,

(28)

q̃0 = q0

G0
, α∗ = 2α̃κ̃

1 + α̃2
, ωγ = κ̃√

1 + α̃2
.

As seen in Eq. (26), the polarity P is included only in the y
component. This is because the polarity-dependent gyroforce
G(P ) × u in Eq. (21) points in the direction of the y-axis.
Finally, the vortex core position is described by Eqs. (22),
(24), (26), and (27).

C. Rectifying spectra

The electrical resistance arising from the AMR effect in
the Fe19Ni81 disk depends on the position of the vortex
core. When the direction of the electric current is parallel

to the magnetization, magnetoresistance increases. On the
other hand, magnetoresistance decreases when the direction
of the current is perpendicular to the magnetization. Figure 3
shows the relationship between the vortex core position and
the resistance. The resistance decreases with movement of
the vortex core in the direction of the current (± x direction),
as shown in Figs. 3(a) and 3(b), whereas it increases with
movement of the vortex core in the direction perpendicular to
the current (±y direction), as shown in Figs. 3(c) and 3(d).
Thus, we approximate the disk resistance near the center of
the disk by the equation23

R = R0 − ax (x − xR)2 + ay (y − yR)2 . (29)

Here, x and y is the vortex core position. xR and yR is the
center of the electrode gap; the detail of the electrode position
is presented in Secs. III and IV. Proportionality constants
are defined as ax and ay . R0 is the resistance for x = xR ,
y = yR . Substituting Eq. (22) into Eq. (29), resistance R is
given by

R(t) = R0 − ax{(x0 − xR)2 + X′2 cos2 ωt + X2 sin2 ωt + 2(x0 − xR)X′ cos ωt − 2X′X′′ cos ωt sin ωt − 2(x0 − xR)X′′ sin ωt}
+ ay{(y0 − yR)2 + Y ′2 cos2 ωt + Y ′′2 sin2 ωt + 2P (y0 − yR)Y ′ cos ωt − 2Y ′Y ′′ cos ωt sin ωt − 2P (y0 − yR)Y ′′ sin ωt}.

(30)

Considering Ohm’s law with RF current I = I0exp(iωt), we calculate

V (t) = I (t)R(t)

= I0R0 cos ωt − axI0{(x0 − xR)2 cos ωt + X′2 cos3 ωt + X′′2 cos ωt sin2 ωt + 2(x0 − xR)X′ cos2 ωt

− 2X′X′′ cos2 ωt sin ωt − 2(x0 − xR)X′′ cos ωt sin ωt} + ayI0{(y0 − yR)2 cos ωt + Y ′2 cos3 ωt + Y ′′2 cos ωt sin2 ωt

+ 2P (y0 − yR)Y ′ cos2 ωt − 2Y ′Y ′′ cos2 ωt sin ωt − 2P (y0 − yR)Y ′′ cos ωt sin ωt}. (31)

Using the trigonometric formula, we derive the direct current (DC) component of the rectifying voltage as the following:

Vdc = (V (t))dc

= −axI0(x0 − xR)X′ + ayI0P (y0 − yR)Y ′. (32)

Finally, substituting Eqs. (24) and (27) into Eq. (32), we obtain

Vdc = I0a

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
} ×

{
− q̃0

κ̃
CHyu0

{
β̃κ̃

(
ω2

γ − ω2
) + α∗(1 + α̃β̃)ω2

} − q̃2
0

κ̃
Hyh

{
κ̃
(
ω2

γ − ω2
)

+α∗α̃ω2
} + xRu0

{
β̃κ̃

(
ω2

γ − ω2
) + α∗(1 + α̃β̃)ω2

} + xRq̃0Ch
{
κ̃
(
ω2

γ − ω2
) + α∗α̃ω2

} − yRPu0

× {
κ̃
(
ω2

γ − ω2
) + (α̃ − β̃)α∗ω2

} + yRq̃0CPhα∗ω2 − q̃0

κ̃
CPHxu0

{
κ̃
(
ω2

γ − ω2
) + (α̃ − β̃)α∗ω2

} + q̃2
0

κ̃
PHxhα∗ω2

}
.

(33)

Here, considering that the proportionality constant ax

and ay are on the same value because of the rotational
symmetry in the circular disk, we assume ax ∼ ay ≡ a. To
reproduce the rectifying spectra, we use the physical values
described in Table I, such as the injected power, radius, and
thickness. The Oersted field induced by the RF current is
calculated using the equivalent circuit model and finite element

method that we coded. First, to estimate the Oersted field, we
analytically calculated the distribution of current density in the
electrode using the parameter RF power W = 5.0 × 10−5 W.
Second, the Oersted field is derived from Biot–Savart’s law,
reflecting the sample shape. The numerical grid size is
1 × 1 × 1 nm3. After calculation of the Oersted field and
current density in the system, we estimate the respective
force from the Oersted field q0h and the spin torque G0u0.
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FIG. 3. (Color online) Schematic images of the domain in the
magnetic disk and electric current. The resistance in (a) and (b) are
smaller than those in (c) and (d).

In comparison, the ratio between the Oersted field and spin
torque is

qh : Gu0 ∼ 8 : 1. (34)

This result indicates that the contribution of the RF-Oersted
field is more dominant than the spin torque in this system with
a micron-scale radius. Considering that the RF-Oersted field
dominantly drives the vortex core dynamics in Eq. (33), we
approximate the rectifying spectrum in the following form:

Vdc = − I0aq̃2
0h

(
ω2

γ − ω2
)

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
}Hy

+ I0a
q̃2

0
κ̃

hα∗ω2

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
}PHx. (35)

The first term is proportional to the y component of the
external field. This spectrum shape correlates with the disper-
sion function. The second term is proportional to the polarity
and the x component of the external field. This spectrum shape
corresponds to the Lorentzian function. According to Eq. (35),
it is possible to detect the sign of the polarity by the application

TABLE I. Estimated values of the physical quantity set in our
experiment.

Physical quantity Symbol Value

Power W 5.0×10−5 W
Disk radius rdisk 1.5×10−6 m
Thickness L 3×10−8 m
Electrical resistance R 5×101 �

Saturation magnetization M 1.2 T
Vortex core radius ξ 5 nm
Gilbert damping constant α 0.01
Nonadiabatic spin torque24–26 β 0.02
Resonant frequency ωγ /2π 8×107 Hz
Electrode shift (x-axis) xR 2.9×10−7 m
Electrode shift (y-axis) yR 2.6×10−7 m
Proportionality constant a 3.6×1010 � /m2

of the static field in the x direction. For detection of chirality,
we focus on the external field dependence of the spectrum
amplitude. The asymmetric electrode structure enables us to
detect chirality even if the contribution of the spin torque
is negligible because the current I0 and the proportionality
constant of AMR a are dependent on the chirality and electrode
structure (the detail is explained in Sec. IV). Therefore, we
can detect both polarity and chirality by using Eq. (35) and
fabricating the system with the asymmetric electrode.

III. EXPERIMENTAL SETUP

Schematic images of the measurement circuit and the
magnetic disk are shown in Fig. 4. An Fe19Ni81 disk with
a diameter of 3 μm and a thickness of 30 nm was patterned
directly onto a polished MgO substrate by means of electron-
beam lithography and the lift-off technique. We designed the
circular disk with two tags on both sides; this shape enabled
us to control the vortex polarity and chirality, as shown in
Figs. 5(a) and 5(b). The polarity was controlled by the magnetic
field of 5 kOe normal to the plane,27 and the chirality was
controlled by the in-plane saturation magnetic field along a
magnetization reversal process.28 To control the polarity and
chirality simultaneously, we obliquely applied the magnetic
field of 5 kOe to the sample with a tilt angle θ = 10◦, as shown
in Fig. 5(c).

The coplanar waveguide structure made from Au (80 nm)/
Cr (5 nm) was connected to the disk, and the center conductive
strip line was placed on the disk.29,30 Here, the center of the
electrode gap shifted to the +x direction, as shown in Fig. 6.
A sinusoidal continuous-wave RF current with a power of
5.0 × 10−5 W was subsequently injected into the disk by a
signal generator in the frequency range from 50 to 150 MHz.
A rectified DC voltage between the electrodes was measured
via a bias tee, which separates the DC and RF components
of the current. The coordinate system used in this study is
also shown in Fig. 3. An external field was applied in the
range of −50 to 50 Oe and was inclined at an angle ϕ with

FIG. 4. (Color online) Schematic image of the measurement
circuit and magnetic disk.
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FIG. 5. (Color online) Schematic images of polarity- and
chirality-controlled magnetic disks. (a) Polarity-control method for
applying a magnetic field of 5 kOe normal to the plane. (b) Chirality-
control method for applying an in-plane saturation magnetic field.
Two tags of the circular disk nucleate a chirality-controlled vortex
core. (c) The method for applying an in-plane and out-of-plane
magnetic field simultaneously. We apply a magnetic field of 5 kOe
to the sample on the brazen oblique foundation. The tilt angle
θ = 10◦.

respect to the x-axis. Here, the Hall electrode was not used.
All measurements were performed at room temperature. The
sense of direction of the static field is defined as positive along
the +x (+y) direction. For clarity, the measured spectra are
shifted vertically.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 7 shows the external field dependence of the
rectifying voltage spectra at the angle ϕ = 0◦ for (P, C) = (+1,
−1) and (−1, −1), respectively. Above H = +9 Oe, the spectra
for P = +1 are convex upward, whereas the spectra for P =
−1 are convex downward. In contrast, below H = −10 Oe,
the spectra for P = +1 are convex downward, whereas the
spectra for P = −1 are convex upward. The result shown
in Fig. 7 indicates that the sign of the rectifying spectra is
dependent on the direction of the static field and polarity. To
understand the physical mechanism, we focus on the amplitude
of the spectra with respect to the sign of the polarity and field.

Figures 8(a) and 8(b) shows the amplitude of the rectifying
voltage at P = +1 and −1, respectively. The amplitude

FIG. 6. (Color online) Atomic force microscope (AFM) image of
the disk and electrode. White dot indicates an outline of the magnetic
disk.

Vpeak is defined by sum of the maximum value Vmax and the
minimum value Vmin of the rectifying voltage, namely Vpeak =
Vmax+Vmin. The amplitude is proportional to the external field
H, when H is small. Comparing the result shown in Fig. 8(a)
with that in Fig. 8(b), we notice that the field dependence of

FIG. 7. (Color online) Polarity and external field dependencies of
rectifying voltage spectra. The red line (blue line) is the spectra for
P = +1 (−1).
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FIG. 8. (Color online) Amplitude of the rectifying voltage spec-
tra. (a) P = + 1. (b) P = −1.

Vpeak for the vortex with (P, C) = (+1, −1) shows the opposite
behavior with respect to the other vortex states with (P, C) =
(−1, −1). The gradient depends on the polarity (solid line in
Fig. 8). This result is in good agreement with the analytical
result expected from the second term in Eq. (35). Therefore,
the field dependence of the spectrum depends on polarity; as
a result, it enables us to know the sign of polarity.23

Next, to detect chirality, we measured the rectifying spectra
in the field at an angle ϕ = 90◦. Figures 9(a) and 9(b) show
the external field dependence of the rectifying voltage spectra
for (P, C) = (−1, +1) and (−1, −1), respectively. As shown in
Fig. 9(a), we were only able to detect the resonant signals
from the vortex gyration above the field H = −9 Oe. In
contrast, the resonant signals were only observed below the

FIG. 9. (Color online) Chirality and external field dependencies
of rectifying voltage spectra. (a) C = + 1 (b) C = −1.

FIG. 10. (Color online) Thin line indicates the rectifying voltage
spectrum at H = 28 Oe. Thick line indicates the fitting function using
Eq. (36). (a) The external field is applied to the x-axis. (b) The external
field is applied to the y-axis.

field H = 9 Oe, as shown in Fig. 9(b). The asymmetry in
the external field dependence is explained as follows. When
the static field is applied in the direction ϕ = 90◦, the vortex
core position displaces in the x direction. The rectifying spectra
were only observed while the vortex core gyrates in the gap
of the electrodes. When the vortex core displaces under the
electrodes, the rectifying spectra disappear. When the center
of the electrode gap is shifted to the x direction from the center
of the disk (xR > 0 in Eq. (29)), this asymmetrical electrode
position had an effect on the asymmetrical external field
dependence of the rectifying voltage in Fig. 9. If symmetric
electrodes come into contact with the disk, the symmetric field
dependence of the rectifying spectra can be observed. When
the external field is applied to the +y direction with clockwise
chirality, the vortex core moves to the +x direction and the
rectifying voltage can be detected, as shown in Fig. 9(a).
On the other hand, when the external field is applied in the
+y direction with counterclockwise chirality, the vortex core
moves to the −x direction and the rectifying voltage vanishes,
as shown in Fig. 9(b), because the vortex core displaces under
the electrode.

We estimate the amplitude of the Lorentzian function and
dispersion function using the following fitting function:

y = 2A
(
ω2

γ − ω2
) + B(α∗/ωγ )ω2(

ω2
γ − ω2

)2 + (α∗ω)2
. (36)

Here, A and B are the contribution of the dispersion and
Lorentzian functions. Figures 10(a) and 10(b) shows the
rectifying voltage and fitting function in the external field
of +28 Oe for φ = 0◦ and 90◦, respectively. As shown in
Fig. 10(a), the ratio between A and B is A : B = −1 : 75 at
φ = 0◦. This result indicates that the Lorentzian function is
dominant at φ = 0◦. In contrast, at φ = 90◦, the ratio between
A and B is A : B = −11 : 1, as shown in Fig. 10(b). This result
indicates that the dispersion function has a strong influence
on the spectrum shape at φ = 90◦. If the driving force of the
Oersted field is negligibly small compared with the spin torque,
we can approximate the rectifying spectrum using Eq. (33) in
the following form:

Vdc = − I0ax
q̃0

κ̃
α∗u0ω

2

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
}CHy

− I0ayq̃0u0
(
ω2

γ − ω2
)

(1 + α̃2)
{(

ω2
γ − ω2

)2 + (α∗ω)2
}CPHx. (37)
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The first term is proportional to the chirality and the
y component of the external field, whose spectrum shape
is similar to the Lorentzian function. The second term is
proportional to the chirality, polarity, and x component of
the external field. This spectrum shape corresponds to the
dispersion function. The spectrum shape in Eq. (37) is different
from Eq. (35) and is not in agreement with the experiment.
This result indicates that the driving force of the Oersted field
is dominant. These fittings using Eq. (36) based on Eq. (33)
not only lead to the detection of polarity and chirality but also
are important in distinguishing the respective contribution of
driving torques.

V. CONCLUSION

This study offered a highly sensitive electric detection of
the vortex core dynamics in an Fe19Ni81 disk with different
polarity and chirality. We demonstrated the dependence of
rectifying voltage spectra excited by the RF current on the
external field for φ = 0◦ and φ = 90◦, respectively. The

vortex polarity and chirality can be determined by both the
spectrum shape and the field dependence of rectifying spectra.
These experimental spectra are in good agreement with our
analytical model. In addition, the curve fitting based on the
analytical calculation enabled us to distinguish the individ-
ual contributions of the driving torques. Our experimental
result provides a way to detect the vortex states by using
current-induced rectifying effect. Our study has presented a
new clue to help understand vortex dynamics and develop
magnetic memory or logic devices concerned with the vortex
core.

ACKNOWLEDGMENT

We thank Y. Kasatani, K. Hosono, and J. Shibata for
their valuable discussions. This work is partly supported by
JST CREST, MEXT Grants-in-Aid for Scientific Research
in a Priority Area and a JSPS Grants-in-Aid for Scientific
Research. A.Y. also acknowledges support from the JST
PRESTO program.

*minori510@live.jp
†yamaguch@phys.keio.ac.jp, aki-yamaguchi@aist.go.jp
‡nozaki@phys.keio.ac.jp
1A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara,
K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and S. Yuasa,
Nature 438, 339 (2005).

2J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov,
R. A. Buhrman, and D. C. Ralph, Phys. Rev. Lett. 96, 227601
(2006).

3S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J.
Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature (London)
425, 380 (2003).

4W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J. Silva,
Phys. Rev. Lett. 92, 027201 (2004).

5S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, and
J. A. Katine, Nature (London) 437, 389 (2005).

6A. Wachowiak, J. Wiebe, M. Bode, O. Pietzsch, M. Morgenstern,
and R. Wiesendanger, Science 298, 577 (2002).

7T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science
289, 930 (2000).

8B. A. Ivanov and C. E. Zaspel, J. Appl. Phys. 95, 7444 (2004).
9K. Yu. Guslienko, W. Scholz, R. W. Chantrell, and V. Novosad,
Phys. Rev. B 71, 144407 (2005).
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