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The coherent generation and detection of acoustic phonons in a superlattice embedded in an optical microcavity
is theoretically analyzed. In this optical resonator, femtosecond light pulses can be spatially confined and
amplified. We show that the acoustic phonon generation is enhanced as the intensity of the incident electromagnetic
field is amplified in resonance with the optical microcavity. The detection process is also enhanced by the optical
resonator. In the case of real photoelastic constants the maximum sensitivity occurs when the probe wavelength
is tuned to where the derivative of the reflectivity has its maxima, at the optical cavity mode edges. We also
analyze the role of the imaginary part of the photoelastic constants of the structure in the generation and detection
processes. Finally, we study the enhancement efficiency of the microcavities when the coherent generation and
detection are optimized simultaneously; we estimate phonon signals up to six orders of magnitude higher than
the ones obtained with the superlattice without optical confinement.
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I. MOTIVATION

Acoustic phonon engineering in planar nanostructures
has developed great interest in recent years1 because of
its potential to improve the performance of electronic and
optoelectronic devices and the perspectives of studying novel
physical phenomena. Devices like phonon mirrors, cavities,
filters, and structures capable of mimicking phonon poten-
tials are a few examples of novel devices to manipulate
ultrahigh-frequency acoustic phonons.1–8 The conception of
structures where light, strain, and charge can be tailored
in the nanoscale9–16 results of particular technological in-
terest. Acoustic phonon dynamics in these nanostructures
have been studied using experimental techniques in the
spectral domain, such as Raman scattering, and in the time
domain, such as picosecond ultrasonics.5,16–19 One of the
main concerns in the design of novel applications using
acoustic phonons is the typically low signals obtained in
these experiments. To overcome this limitation in Raman
scattering (incoherent phonon generation), optical microcav-
ities have been used to reach signal enhancements of up
to 107 (Refs. 16,21–23). Raman scattering and picosecond
ultrasonics (coherent acoustic phonon generation) are sub-
ject to similar selection rules. The use of microcavities
in picosecond ultrasonics, although a stimulating challenge
due to the prospect of realizing a coherent monochro-
matic source of ultrahigh-frequency acoustic phonons, has
only recently been introduced and become a subject of
study.9,24,25 In this work we focus our attention on the
theoretical analysis of the coherent generation and detection
of acoustic phonons using optical monolithic microcavities.
Particularly, we analyze how an optical microcavity enhances
these coherent processes in a nanometric superlattice. This
superlattice acts as the coherent generator and detector of
high-frequency acoustic phonons,26 while the optical mi-
crocavity amplifies and confines the electric field in the
structure.9

Planar optical microcavities have been used to study the
modification of photonic lifetimes,28 parametric oscillations,29

Bose-Einstein condensation of cavity polaritons,30,31 polariton
lasers,32,33 and the amplification of Raman signals,21–23 just to
name a few. In this work we theoretically analyze the influence
of the photon confinement in the coherent phonon gener-
ation and detection. Ultrahigh-frequency coherent phonon
generation and detection has become a powerful tool in the
development and study of acoustic nanodevices with novel
functionalities.3,5,10,18,26,34,35 In bulk materials, superlattices,
and other nanometric multilayers the selection rules for the
generation of coherent acoustic phonons are different from
the ones determining their detection; this implies that the
efficiency to detect the generated phonons results decreased.
Optical microcavities fundamentally modify the electric field
distribution in the nanostructures and thus the selection rules
for both processes in such a way that the generation spectrum
exactly matches the detection spectrum. In this work we
show that the maximum enhancement for these processes
occurs at different wavelengths and we describe in detail
the experimental conditions that optimize each one of them.
We focus our attention on the signal enhancement and the
modification of the selection rules. We discuss the double
optical enhancement (DOE) conditions under which these
maximum enhancements can be reached simultaneously and
analyze the efficiency and enhancement factors achievable
with monolithic microcavities. Our results have potential
applications in the characterization of nanostructures and novel
materials and in the development of coherent and intense
hypersound sources for phonon lasers.10,36,37

The article is organized as follows: Sec. II introduces the
characteristics of the studied sample. The analysis of the
coherent phonon generation is presented in Sec. III. Section
IV is devoted to the detection of coherent acoustic phonons.
The modification of the selection rules as a function of the
detuning between the laser and the microcavity mode is studied
in Sec. V. Section VI presents an analysis of the DOE, where
simultaneous amplification of the generation and detection can
be achieved. Finally, in Sec. VII we present a discussion of the
results and the conclusions.
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II. SAMPLE DESIGN

Planar optical microcavities consist of two optical dis-
tributed Bragg reflectors (DBRs) and have been extensively
used in Raman scattering to amplify signals.27 High fi-
nesse microcavities are desired to get higher electromagnetic
fields. In pump-probe coherent phonon generation ultra-
short laser pulses are necessary,9 in opposition to Raman
scattering where cw lasers are used. Typically, the laser
pulse duration (τL) must be shorter than half an oscillation
period of the excited acoustic phonons (τph/2 = π/ωph),
in order to allow impulsive generation. Here ωph is the
angular frequency of the studied phonons. In an optical
microcavity, due to the light confinement, another mag-
nitude becomes relevant: the photonic lifetime (τcav). In
this case, the condition for the coherent phonon gener-
ation is

τph/2 � τL � τcav. (1)

The optical lifetime τcav is related to the finesse of the
microcavity (F ) by

τcav = ncLeff

c(1 − R)
= F

ω
, (2)

where nc, Leff , c, and R are the index of refraction and
effective length of the cavity spacer (given by the actual
thickness plus the penetration depth into the DBRs), the
speed of light, and the optical reflectivity of the mirrors,
respectively.29 Thus, in coherent generation experiments,
the finesse of the cavity results limited by the high-
est frequency of the studied phonons (ωph). It must be
noted that if the condition τL � τcav is not fulfilled, then
the laser bandwidth will be filtered by the microcavity
mode, and the pulse duration modified. In addition, the
dependence of the microcavity response as a function of
the laser wavelength would be masked by averaging ef-
fects. In other words, a finite duration of the laser pulse
must be considered to allow impulsive phonon generation
and detection. In what follows, we assume the spectral
width of the laser pulse to be smaller than the cav-
ity mode width, thus neglecting the laser pulse duration.
We point out, however, that in a real sample design the
relations between the phonon frequency, available laser
pulse duration, and microcavity finesse must be taken into
account.

In this work we analyze the coherent generation and
detection of THz phonons in an optical microcavity. A
schematic of the studied sample is shown in Fig. 1. The
top (bottom) DBR is composed of 7 (10) periods of
Ga0.8Al0.2As/AlAs 61.95/71.79 nm, corresponding to a (λl/4,
λl/4) sequence. Here λl is the resonant wavelength of the
microcavity. The asymmetry in the number of periods in
the top and bottom DBRs is to compensate for the dif-
ferent reflectivities of the air/sample and sample/substrate
interfaces. The optical mirrors enclose a superlattice (SL)
formed by 24.5 GaAs/AlAs periods of 7.24/2.86 nm, re-
spectively. The full SL constitutes a λl spacer of the
optical microcavity. The thickness of the layers forming
this spacer corresponds to a (3λs/4, λs/4) GaAs/AlAs
SL. Here λs is the phonon wavelength in each material,

FIG. 1. (Color online) Planar optical microcavity. (a) Schematic
of the sample. Two optical distributed Bragg reflectors enclose
a superlattice acting as an optical spacer. (b) Calculated optical
reflectivity of the microcavity. The stop band extends from 800 to
900 nm. A discrete mode can be observed at 850 nm. (c) Electric
field intensity distribution calculated for a wavelength λ = 850 nm,
in resonance with the optical cavity mode. The energy is localized in
the spacer of the optical microcavity. An index of refraction profile is
also included to facilitate the identification of the different materials.
The black region corresponds to the superlattice.

corresponding to a frequency of 0.5 THz. This thickness
relation optimizes the width of the first minigap at the
Brillouin zone center.17 Due to confinement effects, the
electronic transitions of the quantum wells result modi-
fied. In this work we neglect excitonic resonances in the
simulations.

The computation of the optical and acoustic reflectivities
and electric and strain fields was performed using standard
transfer matrix methods, taking into account the appropriate
boundary conditions.8 Standard values for the elastic, pho-
toelastic, and dielectric constants were used.38 In Fig. 1(b)
we show the calculated optical reflectivity of the microcavity.
Between 800 and 900 nm the stop band can be identified.
The optical mode is located at 850 nm and presents a full
width at half maximum of 5.4 nm. The electric field intensity
for a monochromatic wave tuned with the microcavity mode
is shown in Fig. 1(c); it presents an amplification of ∼40×
with respect to the field impinging on a GaAs bare substrate.
The finesse of the resonator (λ/�λ) is ∼160. An index of
refraction profile is also included in the plot to facilitate
the identification of the different materials. The black region
corresponds to the superlattice that acts as the cavity spacer
and as the coherent phonon generator and detector of the
structure.

III. COHERENT PHONON GENERATION

In this section we address the coherent acoustic phonon
generation in the optical resonator. To simulate the generation
process we consider a pure photoelastic mechanism only
operative at the SL. This approximation relies on the following
assumptions: (i) The optical microcavity mode falls in the
transparency region of the SL, but close to the excitonic
resonance;15 and (ii) the photoelastic constants of the materials
forming the DBRs are negligible since the gaps are well above
the laser energy. Using this approach, the amplitude (g) of the
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generated phononic displacement of frequency ω is calculated
as18,20

g(ω) =
∫

p(z)η(ω,z)|E(λ,z)|2dz, (3)

where z is the growth axis, p the photoelastic constant, η

the acoustic strain, E the laser electric field, and λ the laser
wavelength.

We first analyze the simple test case of a bare superlattice
on a GaAs substrate [Figs. 2(c) and 2(d)], and then we
study the case where the laser electric field is determined by
the optical confinement of the microcavity [Figs. 2(e) and
2(f)]. In the case of a simple superlattice grown on a GaAs
substrate, the modulus of the electric field is characterized by
an exponentially decaying function, where the decay constant
is related to the optical absorption. The spectrum calculated
using Eq. (3) is shown in Fig. 2(c). The acoustic reflectivity
(considering the superlattice embedded in a GaAs medium) is
shown in Fig. 2(a) to identify the relevant energies. In panel
(c), an intense peak at ≈500 GHz (labeled FS) is the most
relevant feature of the spectrum, and corresponds to phonons
with wave vector q = 0. These phonons are Raman active

FIG. 2. (Color online) Coherent phonon generation (left column)
and detection (right column). Panel (c) [(d)] Simulated coherent
phonon generation [detection] spectrum in a GaAs/AlAs superlattice
on a GaAs substrate. Panel (e) [(f)] Simulated coherent phonon
generation [detection] spectrum in a GaAs/AlAs superlattice em-
bedded in an optical microcavity, with the laser tuned with the optical
microcavity mode (edge of the optical microcavity mode). Panels
(a) and (b) show the simulated acoustic reflectivity to facilitate the
identification of the modes. BS and FS indicate acoustic modes
observed under backscattering and forward-scattering geometries in
Raman experiments.

under forward-scattering geometry.7,15 Neglecting the optical
absorption, the electric field square modulus can be described
as a constant and p(z) as a material dependent value. In that
case, Eq. (3) can be reduced to

g(ω) ∝
∫

p(z)η(ω,z)dz. (4)

This expression will be maximum when η(ω,z) presents a
periodicity identical to that of p(z) (i.e., for zone-center
acoustic phonons). When the superlattice is embedded in the
optical microcavity, the generation spectrum is essentially
different [Fig. 2(e)]. In our simulations the optical DBRs do
not actively participate in the light-matter interaction; that is,
we associate a null photoelastic constant to the mirrors, but
only through the spatial dependence of the laser electric field
in the optical spacer. The spectrum is characterized by three
peaks. The so-called FS peak, and two lateral peaks related to
extended vibrations in the superlattice [labeled BS in Fig. 2(e)].
To understand the origin of this modification it is necessary to
consider that, under optical resonance conditions, the electric
field in the spacer can be expressed as a stationary wave of the
form A(eikz + e−ikz), where k is the light wave vector and A

the amplitude. In this case, Eq. (3) takes the following form:

g(ω) = |A|2
∫

p(z)η(ω,z)[1 + cos(2kz)]dz, (5)

which can be reformulated as

g(ω) = |A|2
∫

p(z)η(ω,z)dz + |A|2
∫

p(z)η(ω,z)cos(2kz)dz.

(6)

The first term is identical to Eq. (4), while the second term gives
a finite contribution when q = 2k, resulting in two modes.
These modes are Raman active in backscattering geometry.
Thus, it can be seen that the optical microcavity changes the
selection rules for the generation process. In what follows
we analyze how the microcavity enhances the generation of
coherent acoustic phonons.

FIG. 3. (Color online) Calculated amplitude of the coherent
generation spectrum as a function of the laser wavelength and the
acoustic phonon frequency. (Top) Optical reflectivity of the sample.
(Left) Acoustic reflectivity (thick line) and generation spectrum (gray
thin line) calculated with a laser wavelength λ = 850 nm.
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Figure 3 shows an intensity plot of the generation spectrum
as a function of the optical wavelength and the phonon
energy calculated using Eq. (3). Darker regions indicate higher
phonon intensities. In the top panel we show the optical
reflectivity of the structure where the confined mode can be
identified at 850 nm. A high-reflectivity band can be observed
between 860 and 920 nm. Note that the optical reflectivity
is symmetric with respect to the center of the cavity mode.
In the left panel we show the acoustic reflectivity calculated
considering the superlattice embedded in a GaAs infinite
medium. For clarity reasons we include in the same panel
the calculated generated spectrum under the optical resonance
condition from Fig. 2(e) (λ = 850 nm). From this figure it
must be noted that (i) the maximum of the generated signal
is achieved when the laser is tuned with the cavity mode;
(ii) the generated spectrum consists of Brillouin zone center
excitations (q = 0 at 0.48 THz, indicated as FS in the figure)
and peaks related with q ∼ 2k at 0.45 and 0.53 THz (indicated
as BS in the figure); (iii) in the high-reflectivity band the gener-
ation intensity is negligible; and (iv) between 920 and 1000 nm
outside the stop band, where the optical reflectivity presents
strong variations with the wavelengths, there are oscillations
in the intensity and in the generated phononic bands. These
oscillations are originated by the phase matching between the
strain distribution, photoelastic profile, and electromagnetic
field inside the spacer. The latter is neither a plane wave nor a
stationary wave; thus, the generated spectrum is not a single FS
peak nor a triplet of two BS and one FS peaks. It is worth noting
that the maximum signal for the three main peaks is obtained
exactly when the laser is tuned with the optical microcavity
mode.

From Eq. (5), it can be noted that under optical resonance
conditions the intensity of the signal is proportional to the
maximum intensity of the electric field inside the cavity
spacer (|A2|). In Fig. 4 we plot the optical reflectivity [panels
(a) and (b)], |E|2 at the center of the microcavity spacer
[panels (c) and (d)], and the amplitude of the generated FS
peak [panels (e) and (f), black curve] as a function of the
laser wavelength considering pGaAs real. We also include
in gray the amplitude of the generated FS peak considering
pGaAs = i, where i is the imaginary unit. Panels (b), (d),
and (f) show a zoom around the optical microcavity mode.
Several features must be marked from this plot: (i) |E|2 and
the FS signal present a maximum at the microcavity mode
center; (ii) in the region of the stop band, included the cavity
mode, the FS amplitude mimics the behavior of |E|2; (iii)
in the stop band edge the FS signal presents oscillations that
are similar to but do not follow exactly |E|2; and (iv) the
generated intensity of the FS mode is independent of the
nature (real or imaginary) of the photoelastic constant. To
sum up, the best condition for the generation of coherent
acoustic phonons (both BS and FS) is achieved when the
laser is tuned with the optical microcavity, regardless of
the ratio of the real/imaginary parts of the photoelastic
constants.

The coherent phonon generation is qualitatively different
from the coherent detection process. In the next section we
will analyze in detail the detection of acoustic phonons using
an optical microcavity.

FIG. 4. (Color online) Coherent generation of zone center acous-
tic phonons. (a),(b) Optical reflectivity of the light resonator. (c),(d)
The calculated electric field intensity in the center of the optical
microcavity. (e),(f) Calculated intensity of the generated spectrum. In
black (gray) a structure where the photoelastic constant is purely real
(imaginary). Observe that the two curves present identical behaviors.

IV. COHERENT PHONON DETECTION

To study the detection process in an optical microcavity,
independently of the generation mechanism, we assume a
“white” phonon wave packet incident from the substrate side,
and we compute the optical reflectivity as a function of the
probe wavelength. To simulate the detection mechanism we
consider that acoustic phonons produce a change in the index
of refraction proportional to the strain (and to the photoelastic
constant) in the superlattice materials. This change in the index
of refraction induces a change in the optical reflectivity of the
whole structure. The change in the index of refraction (n)
induced by a phonon of frequency ω is calculated as

�n(z,ω) = ∂u(z,ω)

∂z

p(z)

2n0
. (7)

Taking into account the modified index of refraction defined as

n(z,ω) = n0(z) + �n(z,ω), (8)
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it is possible to calculate the perturbed reflectivity of the
sample |r(ω)|2. Then, the variation in reflectivity as a function
of the wavelength will be computed as

�R(λ,ω) = ||r0(λ)|2 − |r(λ,ω)|2|, (9)

where r0(λ) (r(λ)) is the unperturbed (perturbed) reflectivity.
The detected spectrum of coherent phonons in a simple

superlattice grown on a GaAs substrate is shown in Fig. 2(d).
Two principal peaks (indicated with BS) can be observed, and
are related to phonons with wave vector q = 2k, which are
Raman active in backscattering geometry. Note that the peak
that was observed in Fig. 2(c) is not present in this spectrum.
In other words, the superlattice generation spectrum does not
overlap its detection spectrum.40,41 In spite of this mismatch,
several experimental works reported the observation of the
three peaks (two BS and one FS). This is due to a relaxation of
the selection rules due to light absorption, finite size effects,
excitonic resonances, and possible light backreflections.41,42

However, in all these cases, the overlap between the generation
and detection spectra is far from perfect. As was previously
mentioned, the optical microcavity changes not only the
intensity of the electric field within the spacer but also its
spatial distribution, modifying also the detection selection
rules. In Fig. 2(f) we show the calculated detection spectrum
when the SL is embedded in the optical microcavity, with the
laser tuned with the edge of the optical microcavity mode. It
can be noted that three peaks are present, in coincidence with
the generation spectrum shown in Fig. 2(e). In the next section
we study this matching as a function of the laser wavelength.

In Fig. 5 we show the intensity map of the detected
spectrum of the same superlattice embedded in the optical
microcavity assuming a purely real photoelastic constant.
Again, a white-spectrum phonon pulse is assumed to be
incident from the substrate side. Darker regions represent
higher detection amplitudes. In the top panel we include the
calculated optical reflectivity of the microcavity and in the
left panel the acoustic reflectivity (thick line) and a detection
spectrum calculated for a probe wavelength λ = 851.6 nm
corresponding to a maximum of the signal intensity (gray
line). From the intensity map it can be noted that (i) there are
two dark bands around 850 nm where the detected spectrum
presents its maximum amplitude and a central band at 850
nm where the intensity is null; (ii) at these resonances there
is an intense peak at 0.48 THz, corresponding to an acoustic
excitation with q = 0 in addition to those expected at q = 2k

(0.45 and 0.53 GHz); (iii) the detected signal is negligible in
the stop band; and (iv) between 920 and 1000 nm a series of
weak signals can be observed associated with phonons with
q = 0 and q = 2k, whose relative intensities vary with the
probe wavelength.

The presence of two maxima around the optical cavity
mode can be explained considering that, according to the
proposed photoelastic model, acoustic phonons with frequency
ω modulate the refraction index of the microcavity spacer.
This variation induces a change in the reflectivity with the
same frequency, which at first order of approximations can
be associated with a displacement of the microcavity mode
around the unperturbed position. In the considered detection
model we evaluate this variation as a function of the laser

FIG. 5. (Color online) Calculated amplitude of the coherent
detection spectrum as a function of the laser wavelength and the
acoustic phonon frequency for a purely real photoelastic constant.
(Top) Optical reflectivity of the sample. (Left) Acoustic reflectivity
(thick line) and detection spectrum (gray thin line) calculated with a
laser wavelength λ = 851.6 nm.

wavelength. A differential change in the index of refraction
(or equivalently a change in the spacer thickness) originates a
differential change in the cavity mode position. This variation
induces stronger changes in the reflectivity in spectral regions
where the cavity presents the strongest variation in reflectivity.
In other words, the optical mode center is insensitive to
differential changes in the index of refraction, while in the
mode edges, where the reflectivity presents the strongest
variations, the system will have the maximum sensitivity.
Taking this into account, a simple way to evaluate the
sensitivity of the system is to calculate the derivative of the
reflectivity with respect to the wavelength.

Figure 6 shows the optical reflectivity [panels (a) and (b)],
the absolute value of the reflectivity derivative with respect
to the wavelength [panels (c) and (d)], and the amplitude of
the detected FS peak considering pGaAs = 250 [panels (e)
and (f), black curve] as a function of the laser wavelength. In
panels (e) and (f) we also include in gray the amplitude of the
detected FS peak considering pGaAs = 250i, where i is the
imaginary unit. Panels (b), (d), and (f) show a zoom around
the optical microcavity mode. The amplitude of the detected
signal (case p real) presents two maxima around the cavity
mode and a zero at its center. It mimics the general behavior
of the curve shown in panels c and d. On the contrary, the gray
curve, corresponding to the imaginary photoelastic constant,
presents three maxima instead of two in the cavity mode region.
Moreover, in the region between 900 and 1000 nm it can be
noted that each maximum of the gray curve corresponds to a
minimum of the black curve and vice versa. By observing the
two extreme cases (p being purely real or purely imaginary),
it is clear that the response of the microcavity is strongly
dependent on the nature of the photoelastic constants of the
materials forming the spacer. We recall that in Fig. 4(e), the
maximum of the generation spectra coincides with the center
of the cavity mode, independently of the real or imaginary
nature of p.
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FIG. 6. (Color online) Coherent detection of zone center acoustic
phonons when an acoustic pulse is assumed to be incident from the
substrate side. (a),(b) Optical reflectivity of the light resonator. (c),(d)
Calculated derivative of the optical reflectivity as a function of the
wavelength. (e),(f) Calculated intensity of the detected spectrum. In
black (gray) a structure where the photoelastic constant is purely real
(imaginary). Observe that the two curves present different behaviors
in the whole wavelength range.

In order to analyze the behavior of the microcavity
sensitivity dependence with the photoelastic constant, in Fig. 7
we plot the amplitude of the FS mode in the detection spectrum
as a function of the probe wavelength. The curves have been
vertically shifted 0.2 units for clarity reasons. We take the
photoelastic constant of the GaAs layers in the microcavity
spacer to be equal to 250eiπt , with t taking the values 0, 1/4,
and 1/2. The vertical lines indicate the cavity mode position
and the maxima of the reflectivity derivative. In the case where
the photoelastic constant is purely real two maxima can be
observed, which coincide with the maxima of the derivative.
In addition, when the laser is tuned with the cavity mode, there
is an absolute zero; that is, no signal can be detected at 850 nm,
independently of the intensity of the electromagnetic field
inside the cavity. On the other extreme, when the photoelastic
constant is purely imaginary, three maxima can be observed.
The central maximum is practically located at the cavity mode
center. There are two zeros limiting the central maximum.

FIG. 7. (Color online) Influence of the real/imaginary nature of
the photoelastic constant p in the coherent phonon detection process
using optical microcavities. The curves have been vertically shifted
for clarity reasons.

By changing the real/imaginary ratio it is possible to get a
continuous variation of the position of the zeros and maxima.
For the case t = 1/4 an asymmetric position of the zeros can be
obtained. Moreover, since in this case there are two materials
that form the optical spacer it is possible to tune the position of
the zeros in the sensitivity (for example with one photoelastic
constant real and the other one complex). Inversely, it would
be possible to determine the photoelastic constants by properly
determining the spectral response of the structure embedded
in the optical microcavity.

V. MODIFICATION OF THE SELECTION RULES USING
OPTICAL MICROCAVITIES

In this section we analyze the modification of the selection
rules for both the generation and the detection of coherent
acoustic phonons as a function of the tuning of the laser
and microcavity mode. For the sake of simplicity we take
all the generation and photoelastic constants as real numbers.
Figure 8(b) [8(c)] shows the intensity of the generation
[detection] spectrum for phonons of 498.7 GHz in black and
531.2 GHz in gray, with q ≈ 2k and q ≈ 0, respectively. In
panel (a) the calculated optical reflectivity is presented. To
facilitate the comparison between the two cases, the curves
have been normalized by the maximum value achieved in
the region around the optical cavity mode. Between 880 and
1000 nm, a zoom of the curves is also shown.

In the case of the generation process [Fig. 8(b)], the
two curves reach a maximum at the center of the optical
microcavity mode. Between 880 and 1000 nm, the gray curve
(q ≈ 0) presents its maxima at the minima of the reflectivity. At
those points there is a bigger optical density of states, and thus
a partial amplification of the local electromagnetic field. The
maxima of the black curve (q ≈ 2k) are located approximately
at the same positions. Note that in a superlattice without
optical confinement, the generation is only effective for q ≈ 0
and results essentially independent of the laser wavelength
(neglecting excitonic resonances). For the detection process
[Fig. 8(c)], in the region around the optical microcavity mode,
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FIG. 8. (Color online) Selection rules for the coherent generation
and detection of acoustic phonons. (a) Calculated optical reflectivity.
(b) Generation spectral amplitude. (c) Detection spectral amplitude.
The black (gray) curves correspond to a phonon with frequency
498.7 GHz (531.2 GHz) with q ≈ 2k (q ≈ 0).

the curves present identical behaviors and reach two maxima
at the mode edges. Between 880 and 1000 nm, the gray curve
(q ≈ 0) presents four zeros, while in the case of the black curve
only two zeros can be identified. Observe that a superlattice
without optical confinement only phonons with q ≈ 2k can be
detected, and results, as in the case of generation, independent
of the optical wavelength. This result implies that in a pump-
probe experiment, with a laser wavelength set around the
optical microcavity mode, the generated spectrum would be
identical to the detected spectrum, thus obtaining an additional
enhancement due to the cavity confinement.

It follows that the microcavity modifies not only the
intensities of the signals, but also the selection rules for the
generation-detection processes. The enhancement of the co-
herent phonon generation is proportional to the amplification
of the electric field intensity. For the studied structure we
obtained an amplification factor of ∼20 for the generation
process of a phonon with q ≈ 0, comparing the amplitude
of the spectrum of a superlattice without and with optical
microcavity. Note that this amplification is approximately half

of the maximum amplification reached by the field intensity in
the cavity (see Fig. 1). This can be explained by observing that
the electric field is described as a cosine function, and thus the
excitation results modulated along the optical spacer varying
from the maximum intensity value (40 times the incident field)
to a minimum reached at the node.

On the other hand, the enhancement of the detection
process, considering real photoelastic constants, is given
by the derivative of the reflectivity curve. The value of
this derivative will be increased when the cavity finesse is
increased. Comparing the detection signals calculated for the
superlattice with and without optical confinement for a phonon
with q ≈ 2k, we obtained an enhancement factor of ∼80.

VI. DOUBLE OPTICAL ENHANCEMENT

In the previous sections we have observed that the max-
imum enhancement for the generation process takes place
when the pump laser is perfectly tuned with the optical
microcavity mode. On the contrary, when considering real
photoelastic coefficients, the maximum enhancement of the
detection is achieved at the points where the derivative of the
reflectivity presents its maxima. In this section we analyze the
total enhancement factors achieved when both conditions are
fulfilled. We call this condition DOE and the total enhancement
factor DOE factor. From the experimental point of view, the
DOE can be reached by means of three methods: (i) using
different wavelengths for the pump and probe beams; (ii)
filtering the laser pulses in order to get different spectral
components in each beam; or (iii) taking advantage of the
microcavity light dispersion, and varying independently the
angle of incidence of the pump and probe beams.25

To simulate the DOE condition we used a two-step process.
First, we simulate the generation process under normal
incidence with the laser wavelength tuned with the optical
microcavity mode, as explained in Sec. III. Then the generated
phonon spectrum is used as a seed to simulate the detection
process, as explained in Sec. IV. In other words, the simulation
of the detection does not consider a white incident phonon
spectrum anymore, but the simulated one in the generation
step. We used different wavelengths for both pump and probe.
We select the probe wavelength to coincide with the maximum
value of the reflectivity derivative, that is, corresponding to the
method (i) above. The results are identical to what would be
obtained by modeling the experiment with different angles of
incidence for pump and probe beams to attain the same DOE
condition [method (iii) above]. All the calculated intensities
are normalized to the case of a identical SL grown on top of a
simple GaAs substrate.

Figure 9(b) shows the calculated coherent phonon
generation-detection spectrum under DOE in the optical SL
embedded in the optical microcavity. Figure 9(a) shows the
same simulation performed using the bare SL on top of a
GaAs substrate. Note how the main features usually observed
under backscattering and forward scattering geometries in
Raman experiments (labeled as BS and FS, respectively)
appear in both spectra. The finite size of the sample allows
the observation of the three peaks in the case of the bare
superlattice, in spite of the weak overlapping between the
generation and detection spectra. The enhancement factor
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FIG. 9. (Color online) Coherent phonon generation and detection
under DOE condition. (a) Simulated spectrum of a pump-probe
experiment on a bare SL on top of a GaAs substrate. (b) Simulated
spectrum of the same SL embedded in the studied optical microcavity
under the DOE condition. BS and FS indicate acoustic modes
observed under backscattering and forward-scattering geometries
in Raman experiments. (c) Enhancement factor under DOE (solid
circles) and Q factor of the optical microcavity (crossed open circles)
as a function of the number of periods forming the DBRs.

achieved with the considered optical microcavity was 2300.
The high-frequency oscillations in Fig. 9(b) are related to
the additional acoustic modulation introduced by the optical
DBRs. In Fig. 9(c) we compare the efficiency of different
optical microcavities. The microcavities are formed by a
top (bottom) DBR of N (N + 3) periods. The full circles
correspond to the logarithm of the achieved amplitude. For
a microcavity with 16 (19) periods in the top (bottom) DBR
the signal is almost six orders of magnitude bigger than in
the case of the bare SL. With crossed empty circles we plot
the associated Q factor of the microcavity, being the highest
around 2400. Cavity Q factors in these range are standard
for planar semiconductor microcavities grown with molecular
beam epitaxy.

VII. DISCUSSION AND CONCLUSIONS

We have studied how a planar optical microcavity modifies
the efficiency and selection rules of the generation and
detection of coherent acoustic phonons. We observed that
around the optical cavity mode, peaks associated to q ∼
0 and q ∼ 2k become active for both the generation and
the detection processes. So, under optical confinement, the
phonons that modulate the optical reflectivity are exactly the

same phonons that were created, enhancing the signals with
respect to standard experiments. Analyzing how the generation
is enhanced by the presence of the optical microcavity, the
generated signal reaches its maximum when the excitation
laser is exactly tuned with the optical microcavity mode. This
behavior is not affected by the real/imaginary nature of the
used generation constants. When assuming real photoelastic
constants, the coherent phonon detected signal, on the contrary,
reaches a zero when the laser is exactly tuned with the optical
microcavity mode. There are two maxima in the detection
efficiency that are located at the points where the reflectivity
derivative presents its extreme values (either positive or
negative). Thus, for a single laser wavelength and under
normal incidence, both generation and detection cannot be
simultaneously optimized.

We have observed that the detection sensitivity strongly
depends on the real/imaginary nature of the photoelastic
constants in the spacer. Particularly, the location of the zeros
in the detection spectrum is determined by the real/imaginary
parts ratio. Thus, optical microcavities could be used for the
determination of photoelastic constants in novel structures
and materials. However, it must be noted that in the case
of high-frequency phonons, laser pulses of 80 fs or less are
used. This implies that the resolution to obtain photoelastic
constants as a function of the laser energy is limited.

In order to maximize the pump-probe signal, it is then
necessary to tune the maximum of the generated spectrum (at
the center of the optical cavity mode) and that of the detected
spectrum (at the edges of the optical cavity mode). We have
introduced the concept of DOE, obtaining a total enhancement
factor 2300 for an optical microcavity with a Q factor of
∼160. This value is good enough to apply this measurement
configuration to systems where the photoelastic constants are
too small. Maris et al.24 have started working on this subject
implementing an external microcavity to amplify signals in
metals and water-based systems. Using cavities with higher Q

factors, enhancements of more than six orders of magnitude
can be envisaged. The discussed results open the path to
address novel problems and applications in nanophononics
including the study of phonon stimulation, nonlinear effects
and efficient phonon-imaging systems.
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