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Vibronic activation of molecular vibrational overtones in the infrared spectra
of charge-ordered organic conductors
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A dip-shaped anomaly appearing in the infrared spectrum of charge-transfer organic complexes has been
investigated. The anomaly appears at approximately the same frequency (∼2700 cm−1), irrespective of light
polarization as well as a composition of the complex, when the compounds undergo charge ordering. Isotope-shift
measurements for θ -(BEDT-TTF)2RbZn(SCN)4 [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene] indicates
a relationship between the overtone of a C=C stretching mode of the BEDT-TTF molecule and this anomalous
signal. Calculations of electron-molecular vibration coupling based on a diatomic molecular dimer model reveals
that the overtone is activated by an anharmonicity developed in the adiabatic potential in a charge-separated
system. It is presented that numerical calculation based on the simple cluster model reproduces essential features
of the experimentally obtained conductivity spectrum.
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I. INTRODUCTION

Strongly correlated electron systems show various unusual
physical properties. For these systems, electron transfer energy
is competing with those of electron-electron repulsions and
electron-phonon couplings, thereby the optical transitions
associated with these interactions are overlaid with each other
in the spectrum or coupled to give entangled structure which
is difficult to interpret. For example, in the present study
we focus on an apparently dip-shaped signal in the optical
conductivity spectrum, which is observed for a class of organic
charge-transfer complexes with highly correlated electrons.

The signal is activated when the compounds undergo
charge ordering. This phenomenon is recognized as an
order-disorder transition of electrons driven by repulsive
interaction of electrons.1,2 The Wigner-crystallization-like
phase transition has been found to occur in a number of
mixed-valency charge-transfer complexes with the 3/4-filled
electron system, and has drawn the attention of researchers
because of its intriguing properties, such as various kinds of
nonlinear conductions,3–6 light-induced phase transitions,7–10

unconventional ferroelectricity,11–13 and a possible relation
with superconductivity.14–20

As we will discuss in a following section, the anomaly
activated along with the charge ordering is ascribed to an over-
tone of a molecular vibration, activated by a vibronic coupling
effect. It has been widely known for organic conductors that
a strong vibronic effect called electron-molecular vibration
(e-mv) coupling significantly affects the spectroscopic prop-
erties. The spectroscopic impact of the vibronic effect, such as
activation of totally symmetric modes in the infrared spectrum,
have been explained by a linear coupling theory, in which
the vibronic effect is treated as a linear perturbation to the
electronic states.21–25 However, the theoretical treatment does
not offer us any implication on the activation of the overtone.

The aim of this paper is to extend the linear coupling
theory by incorporating higher-order effects of the vibronic
perturbation in order to explain the activation mechanism
of the overtone. By using a simple cluster model, we have
demonstrated that an anharmonicity is induced in the adiabatic
potential of a charge-ordered system due to the higher-order

energy correction. We then calculate the optical conductivity
to examine the influence of the higher-order modulation to the
electron wave functions and confirm that the experimentally
observed spectrum with the overtone signal is reasonably
reproduced by the simple cluster model.

The paper is organized as follows: in Sec. II, the in-
frared spectra of θ -(BEDT-TTF)2RbZn(SCN)4 [BEDT-TTF =
bis(ethylenedithio)tetrathiafulvalene] and other compounds
in charge-ordered phases are summarized. It is revealed by
the analysis of isotope shifts in the spectra for θ -(BEDT-
TTF)2RbZn(SCN)4 complex that there is a relationship be-
tween the dip-shaped signal and the overtone of a C=C
stretching mode of the BEDT-TTF molecule. In Sec. III, we
discuss the properties of a diatomic molecular dimer at equi-
librium, taking account of higher-order vibronic perturbations;
Sec. III A introduces the model cluster and the corresponding
Hamiltonian. Section III B presents the estimation of the
adiabatic potential of the dimeric system. In Sec. III C we
derive the electronic wave functions, including the vibronic
effect up to the second-order perturbation, and discuss the
mechanism of generation of the anharmonicity. Section IV
presents the optical properties of the e-mv coupled system.
Section IV A is dedicated to the derivation of the optical
conductivity taking account of the effect of the above-obtained
perturbed wave function. In Sec. IV B we discuss features
of the spectrum calculated from the optical conductivity
and compare the numerical spectrum and the experimentally
obtained one. Next we discuss the physical implications of the
activation of the overtone in Sec. V. Finally, we summarize
the present study in the last section.

II. DIP-SHAPED STRUCTURE IN INFRARED SPECTRA

Figures 1(a) and 1(b) show the polarized optical conductiv-
ity spectra of θ -(BEDT-TTF)2RbZn(SCN)4. This compound
undergoes a metal-to-insulator transition around 190 K due
to charge ordering.2,26–32 The two panels display the spectra
measured above (300 K) and below (6 K) the phase-transition
temperature. As shown by the plots, the spectra show a drastic
change; the smooth profiles are transformed to the pattern
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FIG. 1. (Color online) Polarized optical conductivity spectra of θ -(BEDT-TTF)2RbZn(SCN)4 [(a) E//a, (b) E//c]. The two curves in
each panel depict data measured at 300 and 6 K. The dotted lines indicate the dip-shaped anomaly. (c) Optical conductivity spectra of
selected organic compounds in the charge-ordered state [1: θ -(BEDT-TTF)2TlZn(SCN)4 (Ref. 36), 2: β ′′-(BEDT-TTF)(TCNQ) (Ref. 38), 3:
θ -(BDA-TTP)2Cu(NCS)2 (Ref. 37), 4: α-(BEDT-TTF)2I3 (Ref. 12), 5: α

′
-(BEDT-TTF)2IBr2 (this work). The highlighted regions of higher

and lower frequency indicate the dip-shaped anomaly and the fundamental signals of C=C stretching modes, respectively.

overlaid with numerous sharp peaks as well as the apparently
dip-shaped anomaly around 2700 cm−1.

The sharp peaks are attributable to intramolecular vibra-
tions because of the narrow shapes. In a previous study,
we discussed the interpretation of the vibrational signals
appearing in the C=C stretching region (∼1000–1600 cm−1)
in an investigation of the inhomogeneous charge distribution
associated with the transition.29 While we assigned the C=C
stretching signals in that study, the remaining signals were not
fully investigated. Among these remaining signals, we focus
on the characteristic dip-shaped anomaly here.

The anomaly could be interpreted as a valley between
two or more electronic transition bands with different peak
energies.33–35 Since large charge separation can be induced by
the charge ordering, it is expected that the electronic transition
band is split into several parts reflecting the multiplication of
inequivalent molecules due to the charge disproportionation.
Nevertheless, such an interpretation could be questioned in
several ways. For example, this material is a two-dimensional
complex, and thus the electron absorption energy should be de-
pendent on the light polarization according to an anisotropy of
the band dispersion; therefore, if the anomaly is associated with
the electronic transitions, the signal would show significant
polarization dependence. In reality, however, while the center
of the spectral weight of the broad charge-transfer bands shows
the noticed polarization dependence, the anomaly appears at
nearly the same frequency irrespective of light polarizations, as
shown in Figs. 1(a) and 1(b). Moreover, similar anomalies are

found in other organic conductors that undergo charge order-
ing, as shown in Fig. 1(c).12,36–38 Although these compounds
are composed of different counterions or donor molecules,
or have different chemical stoichiometry, the conductivity
spectra all show a similar anomalous feature around the same
frequency region. The common energy nature irrespective of
the crystal structure and the composition of the compounds
suggests that the signal would not be attributed to electronic
transitions, but implies that the signal is related to a discrete
transition having a characteristic energy such as the excitation
of a molecular vibration.

Although no characteristic absorption mode exists around
the frequency of the anomaly, it is noticed that the dip structure
is located near the twofold frequency of the intense vibronic
signal of a C=C stretching mode which appears as the positive
band around ∼1400 cm−1. Comparison of the spectra shown in
Fig. 1(c) allows us to recognize that there is an approximately
linear relationship between the frequency of the dip-shape
signal and that of the fundamental mode in each spectrum; i.e.,
for the spectrum in which the fundamental signal appears at a
lower frequency than that of the other spectra, the dip-shape
signal has a lower frequency in comparison to the other spectra.
These facts suggest that the anomaly may be related to an
overtone of the molecular vibration.

To examine this interpretation, we focused on the isotope
shift of the dip-shape signal. Figures 2(b) and 2(c) show
the conductivity spectra measured for a normal crystal of
θ -(BEDT-TTF)2RbZn(SCN)4 and an isotope-labeled sample
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FIG. 2. (Color online) (a) Molecular structure of the BEDT-TTF molecule. The asterisks denote the carbon atoms replaced by 13C for
the isotope-shift measurement. The arrows denote the C=C stretchings in the ν3(ag) mode. (b) and (c) Polarized optical conductivity spectra
measured from the normal (12C) and the isotope labeled (13C) θ -(BEDT-TTF)2RbZn(SCN)4 [(b) E//a, (c) E//c]. The highlighted regions indicate
the dip-shaped anomaly. The vertical arrows in (b) denote the isotope shift of several vibrational structures in the dip structure.

composed of BEDT-TTF molecules in which two central
carbon atoms were replaced with 13C [Fig. 2(a)], respectively.
It was found that there were appreciable differences between
these two profiles. For example, several small structures in the
dip structure were displaced, as marked by arrows. Moreover,
the dip structure itself showed a sizable isotope shift. By
assuming that the average frequency of the dip region is
given by 〈ωdip〉 = ∫

ωσ (ω)dω/
∫

σ (ω)dω [as marked by the
highlighted area in Figs. 2(b) and 2(c)], it was estimated that
the dip signal was displaced from ∼2757 cm−1 to ∼2731 cm−1

in the spectrum for E//a, and from 2729 cm−1 to 2709 cm−1

for E//c. These isotope shifts are a clear indication that the
dip signal is related to the C=C stretching mode. From the
twofold frequency of the fundamental signal, we proposed
that the dip is attributable to the overtone of the stretching
mode.

Generally, overtones are activated by some anharmonicity
in the vibrational potential. In the present case, however, most
organic conductors, except for the compounds such as those
included in Fig. 1(c), do not show an anomalous signal. Thus,
it is suggested that individual BEDT-TTF molecules should
not have significant anharmonicity in the potential for the
C=C stretching mode. On the other hand, it is known that
the C=C stretching mode is strongly coupled with conduction
electrons by the e-mv coupling effect. This fact suggests that
the anharmonicity may arise from the vibronic effect in a
limited condition that is probably connected with the charge
ordering.

To evaluate such a proposition, we investigate the adiabatic
potential and the optical conductivity of a charge-ordered
system using a simple cluster model. In the following section,
we describe the theoretical treatments of the model calculation;
afterward we present the results of a numerical simulation of
the experimentally obtained conductivity spectrum based on
the simple model.

III. DIATOMIC MOLECULAR DIMER MODEL AND
ADIABATIC PROPERTIES

The e-mv coupling effect can be regarded as an energy
shift of the valence level associated with totally symmetric
molecular vibrations. When two molecules oscillate in the
out-of-phase manner, a conduction electron will hop between
the molecules in accordance with dynamical oscillation of
the valence levels caused by the e-mv coupling. As the
result of such electron hopping, the originally infrared-
forbidden mode is activated in the optical conductivity
spectrum. To describe the spectroscopic properties associ-
ated with the vibronic effect, therefore, a model system
requires at least two molecules, each of which should have
at least one molecular normal coordinate like a diatomic
molecule, and should have one radical electron in the dimeric
unit.

We investigate the e-mv coupling phenomena for a system
in a charge-ordered state using such a diatomic molecular
cluster model. Since our focus is mainly on 3/4-filled cationic
complexes (having a hole per two molecules), we place a hole
in the cluster instead of an electron. We will see that this
simple model is instructive for a qualitative understanding of
the vibronic activation of the overtone. Moreover, the model
is effective for a numerical analysis of the experimentally
observed optical conductivity spectrum.

A. Hamiltonian and eigenstates of an unperturbed system

The total Hamiltonian of an electron-phonon coupled
system under an external electric field is expressed by
H = He + Hv + Hemv + HF (t), where He and Hv denote
the Hamiltonian for the pure-electron and vibrational states,
and Hemv and HF (t) represent the e-mv coupling and the
external-field effect, respectively. The electronic Hamiltonian
for the dimeric cluster is written as He = �εn1 − �εn2 −
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t(|1〉〈2| + |2〉〈1|), where n1 and n2 denote the charge density
(hole density in the present discussion) operators for molecules
1 and 2, respectively. |1〉 and |2〉 are the respective electron
wave functions in the bra-ket notation, and t is the transfer
energy between the two molecules. As mentioned earlier,
we are interested in the charge ordering driven by intersite
electron-electron repulsions. In the present cluster model, we
introduce the electron correlations effect via the difference in
the site energy (±�ε).

The ground and excited states of the two-level dimer system
can be formally written as

|g〉 = c1|1〉 + c2|2〉,
(3.1)

|e〉 = c2|1〉 − c1|2〉,
where c2

1 + c2
2 = 1. If we denote the charge sep-

aration of the pure-electronic ground state as δρ

(= 〈g|n1 − n2|g〉 = 〈g|δn|g〉 = c2
1 − c2

2), the transition matrix
element δneg(= 〈e|δn|g〉) and the ratio between the energy gap
Eeg(= Ee − Eg = 〈e|He|e〉 − 〈g|He|g〉) and t are written as

δneg =
√

1 − δρ2, (3.2)

Eeg

t
= 2√

1 − δρ2
, (3.3)

where t > 0. Note that in this expression, the effect of �ε , i.e.,
the electron correlation, has been imposed on δρ.

The pure vibrational Hamiltonian of the two molecules can
be written

Hv =
∑
i=1,2

ωi

4

(
Q̇2

i + Q2
i

)
, (3.4)

where Qi denotes the dimensionless normal coordinate of the
ith molecule [which is related to the usual mass-weighted
coordinate (qi) via the relationship Qi = √

2ωiqi], Q̇i is the
conjugated momentum of Qi , and ωi is the eigenfrequency of
the vibration for the neutral state (h̄ = 1).

The e-mv coupling effect can be expressed as a dependence
of the valence electron level on the molecular deformation
denoted by the normal coordinate. The Hamiltonian is thus
written by a power series of the electronic energy in terms of
the normal coordinate of the molecular vibration, i.e.,

Hemv =
∑
i=1,2

[
gniQi + 1

2
g(2)niQ

2
i + O

(
Q3

i

)]
, (3.5)

where g (= ∂Eg/∂Q) and g(2) (= ∂2Eg/∂Q2) refer to the linear
and quadratic coupling constants, respectively. The first term
indicates the linear dependence of the valence level on Q,
whereas the second term denotes the quadratic dependence.
As is seen from the quadratic form, this term adds such an
additional fraction to the original harmonic potential of the
Q mode as the function of the molecular charge n. Hence,
this effect represents the molecular ionicity dependence of the
eigenfrequency of the vibrational mode.

It may be possible to repeat the power series expansion
until we obtain anharmonic terms. However, one should note as
mentioned earlier that individual BEDT-TTF molecules appear
not to have significant anharmonicity. Therefore, it would be
reasonable to exclude the effect of such higher-order terms
from the discussion.

For TTF-derived molecules including BEDT-TTF, it is
known that one of the C=C stretching modes called ν3(ag)
has an exceedingly large g constant compared with the other
ones.39–42 As we will see later, the anharmonicity generated
by the vibronic coupling effect has a cubic dependence on the
coupling constant. Thus, it is expected that this mode with the
large g constant should play a dominant role in the vibronic
coupling phenomenon. As schematically shown in Fig. 2(a),
this mode includes the stretching motion of the central C=C
bond. Therefore, it is expected that the eigenfrequency should
be decreased by the 13C replacements. The low-frequency
isotope shift is consistent with the experimental results
discussed in Sec. II. These considerations rationalize that we
have focused on only one vibrational mode in the cluster
model.

For the convenience of understanding, we introduce the
symmetry-adapted coordinates Q+ = (1/

√
2)(Q1 + Q2) and

Q− = (1/
√

2)(Q1 − Q2). With the use of these coordinates,
the vibronic Hamiltonian Hemv are rewritten as

Hemv = Ng√
2
Q+ + gδn√

2
Q− + N

4
g(2)(Q2

+ + Q2
−)

+ g(2)

2
δnQ+Q−, (3.6)

in which N denotes the total charge density (i.e., N = 1). We
will evaluate the influence of the vibronic coupling for the
adiabatic potential in the next section, and then calculate the
optical conductivity in the successive sections.

B. Adiabatic potential

As demonstrated by the isotope-shift measurements, the
dip-shaped anomaly appears to have some connection to
an overtone of the C=C stretching mode. To understand
the activation mechanism of the overtone, we focus on the
adiabatic potential of the dimeric system.

The vibronic modulation of the adiabatic potential is given
by the series of the perturbation energies due to Hemv to the
electronic ground state, which can be classified in terms of the
order of the perturbations:

E(1) = gN√
2
Q+ + gδρ√

2
Q− + g(2)N

4
(Q2

+ + Q2
−)

+ g(2)

2
δρQ+Q−, (3.7)

E(2) = −g2δn2
ge

2Eeg
Q2

− − gg(2)δn2
ge√

2Eeg

Q+Q2
− + O(Q4), (3.8)

E(3) = −g3δn2
geδρ√

2E2
eg

Q3
− + O(Q4), (3.9)

where the superscripts of E denote the order of the perturbation.
The first and second terms in Eq. (3.7) indicate linear
energy shifts depending on Q+ and Q−, which give rise to
displacements of the equilibrium positions of the respective
coordinates. The third term in Eq. (3.7) represents the
renormalization of the eigenfrequency from the values for the
neutral molecule to that for the average charge density (+e/2).
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For a system with nonzero charge separation (δρ �= 0), the Q+
and Q− modes are no longer the eigenmodes of the system. The
fourth term in Eq. (3.7) denotes the mixing of the two modes
due to the charge separation that breaks the symmetry of the
dimer. The square term of Q− in the second-order perturbation
[Eq. (3.8)] represents a low-frequency shift of the out-of-phase
mode.

While most studies on the e-mv coupling effects have
neglected the remaining higher-order terms, we have examined
the spectroscopic influence of these higher-order terms. One
can see that there are two cubic (the lowest-order anhar-
monicity) terms in the perturbation energy, i.e., the second
term in Eq. (3.8) and the first term in Eq. (3.9). The former
term denotes an anharmonic interaction between Q+ and Q−.
As can be seen from the numerator of Eq. (3.8), this term
essentially consists of the transition matrix elements δnge,
thus there should be a finite contribution of this term for any
systems having nonzero charge-transfer matrix elements. On
the other hand, the latter term includes the charge separation
δρ, indicating that this term represents the anharmonicity
characteristic for the system with charge separation.

To compare the magnitude of the two anharmonicities, we
evaluated the coefficients of the two terms

ACT =
∣∣∣∣∣gg(2)δn2

ge√
2Eeg

∣∣∣∣∣ , (3.10)

ACD =
∣∣∣∣∣g

3δn2
geδρ√

2E2
eg

∣∣∣∣∣ . (3.11)

The coefficient ACT is the factor for the second term in
Eq. (3.8), which is associated with charge-transfer interaction
and ACD refers to the coefficient for the first term in Eq. (3.9),
which is thus related to charge disproportionation.

To evaluate the two anharmonic terms, one must know the
e-mv coupling constants g and g(2) in advance. The linear
coupling constant g of the BEDT-TTF molecule has been
calculated by various studies.39–42 For example, according to
the latest study (Ref. 42), the g constant for the ν3 mode
is estimated as 132 meV. On the other hand, as mentioned
in Sec. III A, the quadratic coupling constant g(2) can be
determined from the frequency difference between the neutral
and ionic states. For a donor molecule, for instance, the
coefficient is given by using the vibrational frequencies of
the neutral (ωneutral) and cationic (ωcation) states, as

g(2) = 1
2 (ωcation − ωneutral). (3.12)

For the ν3(ag) mode, ωneutral and ωcation have been reported
to be 1494 and 1415 cm−1, respectively.41,43–45 From these
values, g(2) was determined to be 5.6 meV (45 cm−1).

The remaining parameters to be specified are δρ, δnge,
Eeg, and t. For a given δρ, δnge is explicitly determined via
Eq. (3.2), whereas Eeg and t are given by a relative value as
the function of δρ by Eq. (3.3). We thus have calculated these
coefficients in two different ways: by fixing Eeg and by fixing
t. Figure 3 shows the results of the two calculations. Panel
(a) depicts the coefficients calculated as the function of δρ

for a fixed t, whereas panel (c) shows the result for a fixed
Eeg. In both plots, the ACD term (the anharmonicity related

to charge disproportionation) grows from zero with increasing
|δρ|, forming broad peaks for |δρ| = 0.3–0.7, then decreases
for |δρ| → 1. Meanwhile, the ACT term, which is related to
charge transfer, has the maximum at δρ = 0 and monotonically
decreases its intensity down to zero with increasing |δρ|.

As demonstrated by the ratio plots in Figs. 3(b) and 3(d),
the magnitude of ACD is much larger than that of ACT for most
values of δρ. In the region where ACD forms a broad peak
(|δρ| = 0.3–0.7), this coefficient dominates ACT. This strongly
suggests that the anharmonicity associated with the ACD term,
i.e., the third-order perturbation energy, played an essential
role in the activation of the overtone in charge-ordered systems.

C. Vibronic perturbation of electron wave functions

To understand the generation mechanism of the anhar-
monicity associated with ACD, we focus on the vibronic
modulation of the electronic wave functions. Generally, the
third-order energy perturbation is related to the second-order
perturbation of the wave functions, thus we deal with the
vibronic perturbations up to the second-order corrections.

Within the adiabatic approximation, the perturbation ex-
pansions of the electronic wave functions are written as

|g〉 = |g〉 − gδnegQ−√
2Eeg

|e〉 − g2δρδnegQ
2
−

E2
eg

|e〉

− g2δn2
egQ

2
−

4E2
eg

|g〉, (3.13)

|e〉 = |e〉 − gδnegQ−√
2Eeg

|g〉 − g2δρδnegQ
2
−

E2
eg

|g〉

− g2δn2
egQ

2
−

4E2
eg

|e〉. (3.14)

For the derivation, we have simplified the perturbation
Hamiltonian Hemv [Eq. (3.6)] to

Hemv = gδn√
2

Q−, (3.15)

because the omitted terms do not include the charge-transfer
operator δn, which is involved in the anharmonic coefficient
ACD as the form of the charge separation δρ or the transition
matrix element δneg, or have the coefficient g(2), which is much
smaller than g.

The obtained wave functions [Eqs. (3.13) and (3.14)] are
composed of the original wave functions and the modulation
terms. The second terms in the wave functions arise from the
first-order correction to the wave function. Its spectroscopic
effect would be transparent; in the case for the ground-state
wave function, for example, the correction gives rise of the
mixing of the excited level to the ground state depending on
Q−. On the other hand, the influence of the third and fourth
terms in Eq. (3.13), which are attributed to the second-order
correction of the wave function, may not be clear because
of the complexities of the form, i.e., they are quadratically
proportional to Q− and related to both the ground and excited
states.
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FIG. 3. (Color online) Two types of vibronically induced anharmonicity [ACD,ACT (see text)] calculated as a function of charge separation
δρ (g = 132 meV, g(2) = 0.56 meV). (a) and (c) show the results calculated for constant t and constant Eeg, respectively. (b) and (d) show the
ratio between the two anharmonicities of the respective calculations.

To aid in understanding, we calculate the expectation value of
charge separation using the modified wave function. The value
is given by

〈g|δn|g〉 = δρ −
√

2gδn2
eg

Eeg
Q− − 3g2δn2

egδρ

E2
eg

Q2
−.

(3.16)

In this expression, the second term in the right-hand side
arises from the first-order correction to the wave function,
whereas the third term, which has the quadratic dependence on
Q−, stems from the second-order corrections. At equilibrium,
the stationary value of Q− can be determined from the condi-
tion of ∂E/∂Q− = 0, where E denotes the adiabatic potential
of the ground state. From the energy correction given by
Eq. (3.7) and the vibrational Hamiltonian of Eq. (3.4), we find
Q− = −√

2gδρ/ωavg [where ωavg = (1/2)(ωcation + ωneutral)].
With the replacement of Q− with this equilibrium value,
Eq. (3.16) is rewritten for a given δρ as

〈g|δn|g〉 = δρ +
(

2g2δn2
eg

ωavgEeg

)
δρ −

(
2g2δn2

eg

ωavgEeg

)

×
(

3g2

ωavgEeg

)
δρ3. (3.17)

The second and third terms in the expression are attributed to
the effect of the first-order and second-order corrections of the
wave function, respectively.

Using Eq. (3.17), we have evaluated the expectation value
of charge separation at equilibrium state as the function of the
original charge separation. As performed in the calculations
of the anharmonic coefficients (Fig. 3), this calculation has
been carried out in two ways: for a fixed t and for a fixed
Eg. Figures 4(a) and 4(c) show the respective results, and the
accompanying Figs. 4(b) and 4(d) display the modulated part
of the charge separation extracted from the expectation value
(〈g|δn|g〉 − δρ).

It would be evident from the form of Eq. (3.17) that the
coefficient of the second term is always positive, thus it
should enhance the charge separation in proportion to the
original (pure-electronic) value δρ. It is illustrated that the
first-order correction [the second term in Eq. (3.17)] enhances
the charge separation as shown by the solid lines in Fig. 4.
As shown by Figs. 4(b) and 4(d), the enhancement develops
with increasing |δρ|, forming the broad maximum around
the middle point of |δρ| (∼0.5), and then approaches zero
for |δρ| → 1.

It is noted that the charge separation modulated by this
term exceeds unity for |δρ| ∼ 0.8, as shown in Fig. 4(c). Such
excessive modulation of charge separation is corrected by the
effect of the second-order perturbation to the wave function;
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FIG. 4. (Color online) The charge separation modulated by the e-mv coupling, plotted as a function of the original (pure-electronic) charge
separation δρ (g = 132 meV). (a) and (c) show the results calculated for constant t ( = 100 meV) and for constant Eeg ( = 200 meV),
respectively. (b) and (d) display the difference between the modulated charge separation and the original one for the results shown in (a) and
(c), respectively. The solid curves denote the charge separation modulated by the first term in Eq. (3.17), whereas the dashed curves include
the modulation due to the second term in the equation (see text).

as shown by the dashed lines, the charge separation including
the second-order correction effect is adjusted to a reasonable
range. As is suggested from such a function, the influence of
the second-order corrections is intensified for a middle region
of |δρ| where the vibronic enhancement of charge separation
is strengthened. It should be noted that such δρ dependence
agrees well with that of the anharmonicity characterized
by ACD.

The enhanced modulation of charge separation indicates
strong coupling between the electronic states and the molecular
vibration at equilibrium, which in turn means that the potential
of the molecular vibration, which behaves otherwise as a
harmonic oscillator, should be largely distorted by the broken
symmetry of the charge-separated system. Therefore, it would
be a natural consequence that an anharmonicity is induced in
the system having large charge separation.

IV. OPTICAL PROPERTIES

A. Expression of optical conductivity

To examine the influence of the anharmonicity to spectro-
scopic properties, we investigate the optical conductivity spec-
trum using the dimeric model. For a pure electronic dimeric

system, in which the charge-transfer operator is coupled with
an external field via the time-dependent Hamiltonian,

HF (t) = −ea

2
δnF (t), (4.1)

where a, e, and F (t), respectively denote the intermolecular
distance, electron charge, and electric field, the electric
susceptibility χelec(ω) [in the present discussion, we defined it
as χelec(ω) = δn(ω)/F (ω)] is given by

χelec (ω) =
∑

n

2ωng 〈n| δn |g〉2

ω2
ng − ω2 − 2iωγ

, (4.2)

where n, γ , and ω represent the quantum number of the excited
state, the phenomenological damping factor of the electronic
states, and the frequency of the electric field, respectively.

In the present vibronic system, on the other hand, δn is
also coupled with the vibrational coordinate Q−. So far, we
have supposed the coordinate to be a static parameter in
terms of the adiabatic approximation. In fact, however, the
coordinates should vary with time. Thus, we have to treat it
as a time-dependent parameter, and then solve the problem of
simultaneous differential equations.

In Ref. 22, this problem has been addressed by considering
the vibronic contribution as an effective time-dependent field
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to the electronic system with the following steps: first, the
coordinate Q− has been supposed to be driven by the time
dependence of the charge density δn via the vibronic Hamil-
tonian [Eq. (4.1)]. The susceptibility of the mode [χQ−(ω)],
which is defined as

Q−(ω) = χQ(ω)δn(ω), (4.3)

has been obtained from the equation motion of the harmonic
oscillator in classical mechanics. Within the first-order time-
dependent perturbation theory, there should be an electric sus-
ceptibility χtotal(ω) (i.e., the solution of the present problem)
that allows us to express the charge density of the total system
as a linear function of the external field F (ω), i.e.,

δn(ω) = χtotal(ω)F (ω). (4.4)

By the replacement of δn(ω) → χtotal(ω)F (ω), Eq. (4.3) is
rewritten as Q−(ω) = χQ(ω)χtotal(ω)F (ω). With the help of
the transformation, the vibronic Hamiltonian can be unified
with the external field effect [Eq. (3.15)] to give

H ′(ω) = Hemv(ω) + HF (ω)

= δn

[(
g√
2
χQ(ω)χtotal(ω) − ea

2

)
F (ω)

]
. (4.5)

This formula states that the square bracketed part, com-
posed of the external field and the molecular vibration excited
by the vibronic coupling, may work as an effective field to the
pure electronic system. Using the replacement of F (ω) →
[(g/

√
2)χQ(ω)χtotal(ω) − (ea/2)]F (ω) in the derivation of

Eq. (4.4), we obtain

δn(ω) = χelec(ω)[(g/
√

2)χQ(ω)χtotal(ω) − (ea/2)]F (ω)

(4.6)

by first-order time-dependent perturbation theory. A compari-
son of this result with Eq. (4.4) leads to the following:

χtotal(ω) = (−ea/2)χelec(ω)

1 − (g/
√

2)χQ(ω)χelec(ω)
. (4.7)

Note that within the above treatment, the vibronic effect,
which is included in Eq. (4.5) as the effective field to the
electronic system, is involved in only one perturbation proce-
dure, i.e., when Eq. (4.6) is derived. Thus, the resultant electric
susceptibility does not include the second-order perturbation
effect that we discussed in Sec. III. In order to investigate
the optical response associated with the overtone within the
framework in Ref. 22, one has to somehow perform an
additional perturbation procedure to incorporate the second-
order contribution.

There would be several ways to carry out the perturbation
procedure. A direct way, for example, would be to apply
the vibronic perturbation to the electronic wave functions.
However, the physical meaning of wave function, and thus
the effect of its modulation, may be uneasy to understand
(therefore, we calculated the expectation value of charge
separation in Sec. III C). For convenience in understanding, we
have tried to impose the perturbation effect to the Hamiltonian
by the following procedure.

To this end, we focus on the modification of the tran-
sition matrix element that defines the electric susceptibility

[Eq. (4.2)]. If we replace the pure electronic wave functions
|g〉and|e〉 to the vibronically perturbed ones |g〉 and |e〉 the
transition moment is modified to

〈e|δn|g〉 = 〈e|
(

1 −
√

2gδρ

Eeg
Q−

)
δn|g〉, (4.8)

where we have excluded the modulation terms except for the
linear one. By neglecting the modulations of the denominator
in Eq. (4.2) due to the e-mv coupling, we find that the
adiabatic perturbation to the wave function can approximately
be regarded as the replacement of the charge-transfer operator
δn to [1 − (

√
2gδρ/Eeg)Q−]δn.

By the replacement of the charge-transfer operator, the
vibronic Hamiltonian of Eq. (3.15) is modified to

Hemv = g√
2
δnQ− − g2δρ

Eeg
δnQ2

−. (4.9)

Note that the second term in the Hamiltonian represents
the linear coupling term between the charge transfer δn

and the overtone of the Q− mode in Eq. (4.2), suggesting
the appearance of influence of the overtone in the electric
susceptibility derived by the above-mentioned time-dependent
perturbation treatment.

While in Ref. 22 the susceptibility χQ−(ω) has been given
from the equation of motion of the harmonic oscillator in
classical mechanics, here we employ the quantum mechanics
for the simple description of the overtone. If we assume that
the fundamental Q− and its harmonic modes Q2

− are driven
by the time-dependent modulation of δn, the susceptibilities
of the respective modes, i.e., χQ(ω) and χQQ(ω) [defined as
Q2

−(ω) = χQQ(ω)F (ω)], can be obtained in a similar process
to that performed in the derivation of Eq. (4.2) from Eq. (4.1).
In this procedure, one must note that the symmetry-adapted
modes Q+ and Q− are mixed to form new eigenstates in the
system with charge separation. Using the new eigenstates as
the basis of the matrix elements, χQ(ω) and χQQ(ω) may be
written as

χQ(ω) =
∑

n

(
g√
2

)
2�ng|〈�n|Q−|�g〉|2
�2

ng − ω2 + 2iω�
, (4.10)

χQQ(ω) =
∑

n

(
−g2δρ

Eeg

)
2�ng|〈�n|Q2

−|�g〉|2
�2

ng − ω2 + 2iω�
, (4.11)

where � denotes the vibrational eigenstates for the state
with δρ, � represents the damping factor of the vibrational
states, and �ng stands for the frequency difference between
the nth excited and the ground level of the vibrational state.
In fact, the index n should be composed of two parameters to
specify the two orthogonal vibrational modes. If we denote the
eigenmodes as R and S, and the respective indices as nR and nS ,
then the vibrational wave functions are expressed as |�n〉 =
|nR〉|nS〉 (i.e., the ground state |�g〉 is |nR = 0〉|nS = 0〉).

On the other hand, the operator of Q− is transferred to a
linear combination of the R and S modes as

Q− = ζR + ξS (4.12)
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[the coefficients ζ and ξ are determined in the Appendix].
Substituting the operators R and S by the annihilation and
creation operators, i.e., R → bR − b

†
R and S → bS − b

†
S ,

we can evaluate the matrix elements in the summation of
Eqs. (4.10) and (4.11). Since the elements from the vibrational
ground state are given from the selection rules for the quantum
harmonic oscillator (n > 0),

〈n| X |0〉 = 〈n| bX − b
†
X |0〉 =

{
0 (n �= 1)
−1 (n = 1) , (4.13)

〈n| X2 |0〉 = 〈n| b2
X − bXb

†
X − b

†
XbX + b

†2
X |0〉

=
{

0 (n �= 2)√
2 (n = 2)

, (4.14)

where X = R or S, we find the descriptions of the susceptibili-
ties of the Q− and Q2

− modes,

χQ(ω) = 2�Rζ 2

�2
R − ω2 + 2iω�

+ 2�Sξ
2

�2
S − ω2 + 2iω�

, (4.15)

χQQ(ω) = 4�Rζ 4

(2�R)2 − ω2 + 2iω�
+ 4(�R + �S)ζ 2ξ 2

(�R + �S)2 −ω2 + 2iω�

+ 4�Sξ
4

(2�S)2 − ω2 + 2iω�
, (4.16)

where �X stands for the eigenfrequency of the X mode (X =
R or S). For simplicity, we have supposed that each mode has
a common damping factor �.

As the result of the variation of the vibronic Hamiltonian,
the time-dependent Hamiltonian Eq. (4.5) is rewritten lead

H ′(ω) = Hemv(ω) + HF (ω)

= δn

[
g√
2
Q−(ω) − g2δρ

Eeg
Q2

−(ω) − ea

2
F (ω)

]
.

(4.17)

As argued above, by assuming the square brackets in the
equation to be a time-dependent perturbation to the pure elec-
tronic system, one finds that the total electron susceptibility in
Eq (4.7) is modified to

χtotal(ω) = (−ea/2)χelec(ω)

1 − (g/
√

2)χQ(ω)χelec(ω) − (−g2δρ/Eeg)χQQ(ω)χelec(ω)
. (4.18)

Note that the vibronic effects associated with the overtones
are involved together with that of the fundamental mode in
the denominator. It should be noted that the two contributions
are expressed in the equivalent form, i.e., the product between
the vibrational (χQ or χQQ) and the pure-electronic suscep-
tibilities (χelec), aside from the difference in the coefficients.
This equivalence implies that the overtone should show spec-
troscopic features similar to those of the fundamental signals.

According to the present definition of the complex electric
susceptibility, the imaginary part of the dielectric constant is
expressed as ε′′ = Ndimer(−ea/2)Im χtotal, where Ndimer is the
density of the dimeric units in the unit volume. Thereby, the
optical conductivity (defined as σ = −ωε′′) is given by22

σ (ω) = −ωNdimer

(
−ea

2

)
Im χtotal (ω) . (4.19)

B. Numerical spectra and simulation

Figures 5(a)–5(c) show the optical conductivity spectra of
the dimeric model calculated by Eq. (4.19). Figure 5(a) depicts
the conductivity spectra calculated for various δρ with a fixed
Eeg, as in the case for Fig. 3(c), whereas Fig. 5(b) shows
the t dependence of the spectra calculated in a similar way
in Fig. 3(c), respectively. The spectra in Fig. 5(c) have been
calculated for various g constants. Parameters used in each
calculation are displayed in the panels (common parameters:
ωneutral = 1494 cm−1,43 ωcation = 1407 cm−1,44 � = 100 cm−1,
and γ = 1000 cm−1).

The calculated spectra commonly displayed a very broad
band due to the charge transfer between the molecules. In

Fig. 5(a), we have shown the spectrum calculated without vi-
bronic coupling (dashed line: g = 0,δρ = 0). The comparison
between the pure-electronic spectrum and the curve calculated
with the coupling effect (black solid line: g = 120 cm−1,
δρ = 0) illustrates that the spectral weight for the spectral
region above the fundamental frequency [1450.5 cm−1 =
(ωneutral + ωcation)/2] is flown to the lower-frequency region
in accordance with the low-frequency shift of the Q− mode
as mentioned in Sec. III B, resulting in the formation of
such antiresonance structures23 (spreading from ∼1000 to
∼3000 cm−1) as those observed for the system in which a
discrete level is coupled with continuum spectrum.46 (In the
present model calculation, the difference in the discreteness be-
tween the vibrational and the electronic states is imposed on the
distinct spectral linewidths, i.e., the damping factors γ and �.)

For the nonzero δρ system, the symmetry-adapted modes
Q+ and Q− should be mixed to form new eigenmodes.
With the development of the mixing effect, the originally
infrared-active mode, i.e., the Q− mode for δρ = 0, gains
a Q+ component along with δρ. Since the e-mv coupling is
mediated by the Q− mode, its influence should be decreased
with increasing δρ. This tendency qualitatively explains the
decrease in the band intensity of the fundamental mode and its
frequency shift from the unperturbed position (∼1450 cm−1)
with increasing δρ [Fig. 5(a)].

As shown in the figure, the spectra for nonzero δρ exhibited
additional signals around ∼2000–3000 cm−1. Note that this
band is positioned approximately at the twofold frequency of
the fundamental vibrational signal in each spectrum, indicating
that the additional structure is attributed to the overtone.
The intensity of the structure varied with an increase of
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FIG. 5. (Color online) Optical conductivity spectra calculated using Eq. (4.19). (a), (b), and (c) show the δρ, t, and g dependence of the
spectra, respectively. The parameters used for the calculations are shown in each panel. (Common parameters: ωneutral = 1494 cm−1, ωcation =
1407 cm−1, � = 100 cm−1, and γ = 1000 cm−1.) The absolute value of the spectra in (a) has been normalized by the maximum conductivity of
each data for the convenience of comparison. The dashed line in (a) shows the spectrum without vibronic coupling (see text). (d) Comparison
of the calculated results (dotted line) to the experimentally obtained spectrum of θ -(BEDT-TTF)2RbZn(SCN)4 [E//a, T = 6 K] (solid line). The
sharp peaks marked with ticks are the fundamental signals of ν3(ag) [see Ref. 29].

δρ; the band, which appeared at ∼2000 cm−1 with nearly
imperceptible intensity for δρ = 0.5, grew into a sizable signal
with increasing δρ. The signal was then maximized around
δρ ∼ 0.85, and finally diminished with a further increase of δρ.
Such δρ dependence agrees well with that of ACD in Fig. 3(d).

It should be stressed that this signal is observable only
for the system with a relatively large δρ, indicating that the
appearance of the overtone is viewed as an indication of large
charge separation.

As mentioned above, the signal of the overtone is suggested
to originate from the resonance between the vibrational levels
and the charge-transfer band. Since the continuum state is
not a completely flat spectrum but has a peak structure, the
resonance depends largely on the mutual position of the signals
for the discrete and the continuum states. Thus, the magnitude
and the profile of the antiresonance structure vary with the
frequency of the charge-transfer band as shown by the t
dependence of the spectrum in Fig. 5(b). Furthermore, the
overtone signal arises from the vibronic coupling of the Q−

mode as the fundamental signal does, and hence the signal
intensity is strongly dependent on the coupling constant.
Figure 5(c) displays the g dependence of the overtone, which
shows a significant increase with g, along with the fundamental
signal appearing around 1000–1400 cm−1. It should be noted
that appreciable overtone signals may be observed when g >

100 meV. As has been mentioned, the coupling constant for
the ν3 mode is estimated to be 132 meV. Thus, if the present
calculation is quantitatively reliable, it is anticipated that a
noticeable overtone signal would be observed when charge
ordering occurs.

We have applied the numerical calculation to the simula-
tion of the experimentally obtained spectrum of θ -(BEDT-
TTF)2RbZn(SCN)4. It should be noted that this complex
accommodates four BEDT-TTF molecules in the unit cell
at low temperatures. According to Ref. 30, however, the
BEDT-TTF molecules are tightly dimerized in the charge-
ordered phase, thereby it is suggested that the essential
spectroscopic feature may be governed by the electron
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transitions within the dimeric unit. Such structural charac-
teristics rationalize the application of the dimeric model for
the simulation.

Figure 5(d) shows a comparison of the experimentally
obtained spectrum of the complex [E//a, T = 6 K] and the
result of the numerical calculation. Whereas the spectrum
exhibited a number of vibrational signals over the broad
electronic transition band, we focused only on the fundamental
signals of the ν3 mode (labeled by ticks) and the dip-shaped
anomaly around 2700 cm−1. In the numerical calculation
we determined the transfer energy from the peak position
of the charge-transfer band and subsequently tuned the two
parameters δρ and g to reproduce the vibronic signals of the
fundamental mode and the overtone of ν3.

The fundamental signals of ν3 in the experimental spectrum
are split into at least three bands due to the factor group
splitting as marked by the ticks.29 Although the present dimeric
model cannot simulate the fine structure, the calculation
reproduced the essential features of the experimental spectrum,
i.e., frequency, intensity, and rough profile of the fundamental
signal as well as the overtone. It should be emphasized that
we have not assumed any fitting parameters peculiar to the
overtone (we used only the frequency of the neutral and
ionic states, the coupling constant, and the damping factor
as the parameter for the fundamental mode of ν3). In spite of
the fact that limited numbers of parameters have been used,
the calculation has reproduced the features of the spectrum,
which in fact ascertains the validity of the theoretical argu-
ments about the e-mv coupling properties in charge-ordered
systems.

V. DISCUSSION

We have demonstrated that the dip anomaly appearing in
the conductivity spectrum is attributed to the overtone of the
C=C stretching mode. Since the signal becomes noticeable
for large δρ, the appearance of the overtone can be regarded as
an indication that the system undergoes charge ordering, such
as the Wigner crystallization of electrons.

As substances that show the charge ordering, two-
dimensional organic compounds are establishing the repre-
sentative position along with some metal oxides such as
a series of magnetites47 and NaV2O5.48,49 Although there
would be rich physical subjects associated with the correlation
phenomenon, the number of studies on this phenomenon
has been limited until recently. One reason for this may
be attributed to the difficulty in identification of charge
ordering. Unlike the charge-density-wave characteristic for
one-dimensional systems, charge ordering generate significant
charge disproportionation; in some compounds, molecules in
the mixed-valency state are almost completely separated from
the neutral and ionic species.50 Even so, the amplitude of the
electron inhomogeneity is very small in comparison to the total
electron density, preventing clear identification of the charge
ordering with structural analysis such as x-ray diffraction.

Vibrational spectroscopy may be an effective tool for this
purpose, especially for organic compounds. This is because
it offers us information on the molecular ionicity via the
frequency of some vibrational modes. In fact, however, there is
significant difficulty in the assignment of these signals, which

hinders the estimation of molecular charge. The difficulty
in the assignment is associated with the fact that a number
of vibrational modes coexist in the same frequency region
where these modes appear. Furthermore, these signals can be
largely shifted from the frequency determined by the molecular
ionicity due to the e-mv coupling effect.

In contrast, the overtone signal studied here is easy to
assign for the broad dip shape and the characteristic frequency.
Therefore, the emergence of such a signal can be viewed as
an indication of the occurrence of charge ordering. Moreover,
we wish to stress an additional importance of the activation of
the overtone. Emergence of appreciable overtone indicates a
generation of significant anharmonicity in the electron-phonon
system. For several materials, anharmonicity plays a crucial
role for their unusual physical properties. In a recent example,
anharmonic local phonons in a class of cage compounds
are suggested to induce an enhanced thermoelectricity and
superconductivity.51–53 Hence, the appearance of the overtone
would be noteworthy as a clue implying unusual physical
properties.

We argued that the anharmonicity activating the overtone
signal arises from the nonlinearity in the mixing of the
electronic levels with respect to the Q− value at equilibrium.
As we have mentioned in Sec. IV A, the Q− mode acts
to the electronic system as if an electronic field does. This
formal equivalence between the Q− mode and the electric field
suggests that the charge-ordered system showing the overtone
signal may exhibit nonlinearities in the electronic properties
when applied with strong electrical fields. To examine this
idea, we have performed optical second-harmonic-generation
measurements, which is a lowest-order nonlinear optical
property. As widely known, the even-order nonlinear optical
property can be observed for a crystal without inversion
symmetry. We have selected α-(BEDT-TTF)2I3 [which is
included in Fig. 1(c)] as the sample of the measurements
because of a possible breakdown of the mutual exclusion rule
for the Raman and the infrared spectra54 and found that the
complex shows large optical nonlinearity in the charge-ordered
state.12,13

In the present study, we have neglected the effects of elec-
tron correlations except for introducing the charge separation
as the effective parameter. In reality, conduction electrons in
strongly correlated systems are correlated with each other,
which gives rise to various cooperating phenomena. Because
of the cooperative nature of the electronic system, a local
nonlinearity in the electronic transition might be amplified
in the macroscopic system. So far, a number of studies have
revealed that the charge-ordered or charge-fluctuating organic
compounds show a range of nonlinear properties in dielectric
and transport nature under strong fields. We suggest that these
properties may have something to do with the nonlinear nature
in the charge transfer of the charge-ordered systems argued in
the present study.

VI. CONCLUSION

We studied the dip-shaped signal appearing in the optical
conductivity spectrum of organic charge-transfer complexes in
charge-ordered state. This signal was attributed to the overtone
of the C=C stretching mode of molecular vibration by the
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observation of isotope shift. With the help of the simple
cluster model, we investigated the higher-order perturbation
effects of the e-mv coupling phenomenon to the adiabatic
potential of the cluster system when charge ordering occurs,
and revealed that an anharmonicity was induced as the result
of a higher-order vibronic correction of the electronic wave
function in the symmetry broken system. We calculated the
optical conductivity of the cluster system, and found that the
dimeric model reproduced the features of the experimental
spectrum, i.e., the shape and the frequency of the overtone
and its fundamental band, illustrating the validity of the
argument on the vibronic coupling effects in charge-ordered
systems.
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APPENDIX

The symmetric coordinates Q+ and Q− are not the valid
eigenmodes of a charge-separated system. The force constant
(Hessian) matrix F (Q+,Q−) of the charge-separated system
is defined as

F (Q+,Q−) =
⎛
⎝ ∂2H

∂Q2+
∂2H

∂Q+∂Q−
∂2H

∂Q−∂Q+
∂2H

∂Q2−

⎞
⎠

= 1

2

⎛
⎝ ωavg g(2)δρ

g(2)δρ ωavg − 2g2δn2
ge

Eeg

⎞
⎠ , (A1)

where H denotes the total Hamiltonian of the system and
ωavg = (1/2)(ωcation + ωneutral).

The new normal modes (named as R and S) [and thus
the respective eigenfrequencies (ωR ,ωS) as well] should be
obtained from the diagonalization of the matrix as the form of
the linear combination of Q+ and Q−, i.e.,(

R

S

)
= A

(
Q+
Q−

)
. (A2)

The coefficients ζ and ξ appearing in Sec. IV A are
determined from the inversion of the coefficient matrix, i.e.,(

ξ −ζ

ζ ξ

)
= A−1, (A3)

where ξ 2 + ζ 2 = 1.
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