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Effective shear speed in two-dimensional phononic crystals
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The quasistatic limit of the antiplane shear-wave speed (effective speed) c in 2D periodic lattices is studied. Two
new closed-form estimates of c are derived by employing two different analytical approaches. The first proceeds
from a standard background of the plane wave expansion (PWE). The second is a new approach, which resides
in x space and centers on the monodromy matrix (MM) introduced in the 2D case as the multiplicative integral,
taken in one coordinate, of a matrix with components being the operators with respect to the other coordinate. On
the numerical side, an efficient PWE-based scheme for computing c is proposed and implemented. The analytical
and numerical findings are applied to several examples of 2D square lattices with two and three high-contrast
components, for which the new PWE and MM estimates are compared with the numerical data and with some
known approximations. It is demonstrated that the PWE estimate is most efficient in the case of densely packed
stiff inclusions, especially when they form a symmetric lattice, while in general it is the MM estimate that
provides the best overall fitting accuracy.
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I. INTRODUCTION

Effective material properties of composites have been and
remain a topic of much interest in micromechanics, see the
reviews.1–3 The recent surge of research into the properties of
metamaterials and phononic crystals has heightened attention,
particularly for periodic systems. In this context, considerable
work has been done on the low-frequency, or quasistatic, limit
of the antiplane shear-wave speed in 2D periodic structures
(referred to as the “effective speed” c in the following; note
that this value also yields the limit of the fundamental velocity
branch of shear plate waves). A natural tool for tackling
the problems with periodicity is the plane-wave expansion
(PWE). An explicit PWE expression of the effective speed c

via an infinite sum of Fourier coefficients has been obtained
in Ref. 4 and was broadly used afterwards for computing c in
various periodic materials. Note some other semianalytical
techniques that were used for numerical evaluation of c,

such as scaling5 and mixed-variational6 methods. In turn,
the multiple-scattering theory (MST), which deals directly
with the inclusion/matrix boundary problem, has proved to
be expedient for deriving the effective speed in an approx-
imate but closed form. By means of MST, such simple (in
appearance) estimate of c, which had been known for certain
statistically uniform models in micromechanics, was recently
extended to phononic crystals with a periodic microstructure
of inclusions.7–10

The main results of the present paper are concerned with
both analytical and numerical aspects of the problem of
evaluating c. The analytical development aims at finding
approximations of c by means independent of the MST. The
starting point is the general expression for c in the operator
form that may be further specialized to either Fourier space
or x space. On this basis, we provide two new closed-form
estimates of c derived by employing two different analytical
frameworks. The first is the PWE approach, which commences
from the formula of Ref. 4. The second is a completely new
approach based on the monodromy matrix (MM), which is
a fundamental object for the 1D periodic problems (cf. the

state-vector formalism) but it has not seen much, if any,
far-reaching application in 2D. Here the MM is introduced as a
multiplicative integral, taken with respect to one coordinate, of
the matrix with components defined as operators acting on the
functions of the other coordinate. On the numerical side, we
develop an efficient PWE-based scheme for computing c, in
which the matrix inversion is replaced by the power series that
is judiciously gauged for its faster convergence. The results are
applied to several examples of 2D square lattices consisting of
two and three high-contrast components with filling fractions
f , for which the new PWE and MM estimates of c (f ) and its
known MST estimate are compared against the benchmark of
the numerically computed c (f ) . In brief, it is demonstrated
that the PWE estimate is efficient in the case of densely
packed stiff inclusions (where the MST estimate fails) and is
particularly useful for the symmetric binary lattices invariant
to interchanging their components (in which case the MST for-
mula is ambiguous); but it is the MM estimate that provides the
best overall fit over various lattice configurations considered.

The paper is organized as follows. The background ex-
pression for c is presented in Sec. II. The PWE and MM
closed-form estimates of c are derived in Sec. III. The
numerical scheme used for computing c is described in
Sec. IV. Application of analytical and numerical results to 2D
square lattices is discussed in Sec. V. Concluding remarks
are presented in Sec. VI. The Appendix expands on the
convergence of the implemented numerical scheme.

II. BACKGROUND: EXACT EXPRESSION FOR
EFFECTIVE SPEED

Consider a 2D periodic locally isotropic medium with the
density ρ (x) and the shear coefficient μ(x), which are real
positive piecewise continuous functions satisfying

ρ

⎛⎝x+
2∑

j=1

nj aj

⎞⎠ = ρ(x),
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μ

⎛⎝x+
2∑

j=1

nj aj

⎞⎠ = μ(x) (1)

for any x ∈ R2, nj ∈ Z, and some linear independent trans-
lation vectors aj ∈ R2 that form the irreducible unit cell T =∑2

j=1 tj aj (tj ∈ [0,1]) of the 2D periodic lattice. Let e1,e2 ≡
{ej } be an orthonormal base in R2, and x · y = ∑2

i=1 xiyi be
the scalar product in R2, where xi are the coordinates of an
arbitrary vector x with respect to {ej }. Denote

aj = Aej , bj = (A−1)Tej , g =
2∑

j=1

2πnj bj , (2)

where aj · bk = δjk (j,k = 1,2), T means transpose, and g =∑2
j=1 gj ej is the reciprocal lattice vector whose components

(g1,g2) in {ej } take all values from the set � = 2π (A−1)TZ2.
In the following, the Fourier coefficients of a periodic function
f (x) are indicated by a hat:

f (x) =
∑

g

f̂ (g)eig·x ⇔

f̂ (g) = 1

|T|
∫

T
f (x)e−ig·xdx ≡ 〈f (x)e−ig·x〉; (3)

and the same notation (·,·) is used for the scalar products in g
space and in L2 (T):

(f,h)=
∑

g

f̂ (g)̂h(−g)= 1

|T|
∫

T
f (x)h∗(x)dx ≡ 〈f h∗〉. (4)

The antiplane time-harmonic displacement v (x,t) =
v (x) e−iωt is determined by the wave equation

∇ · (μ(x)∇v(x)) = −ρ(x)ω2v(x) (5)

with periodic ρ (x) and μ(x). By this periodicity, v(x) =
u(x)eik·x where u (x) is periodic and k = kκκκ (|κκκ| = 1) is the
Floquet vector, and so Eq. (5) can be cast as

(C0 + C1 + C2)u = ρω2u with C0u = −∇∇∇(μ∇∇∇u),

C1u = −ik · (μ∇∇∇u + ∇(μu)), C2u = k2μu. (6)

To find the effective speed c(κκκ) = limω,k→0 ω (k) /k, consider
the asymptotics ω2 = ω2

0 + ω2
1 + ω2

2 + O(k3). It is evident
that ω2

0 = 0 is an eigenvalue of (6) with the eigenvector u0 = 1.

Therefore perturbation theory yields

ω2
1 = (C1u0,u0)

(ρu0,u0)
, ω2

2 = (C2u0,u0) − (
C−1

0 C1u0,C1u0
)

(ρu0,u0)
, (7)

where (ρu0,u0) = 〈ρ〉 and (C2u0,u0) = k2〈μ〉. Note that
(C1u0,u0) = 0 by periodicity of μ, hence ω2

1 = 0 and the
operator C−1

0 is defined in the subspace L2
0 of all functions

f orthogonal to 1, that is, such that 〈f 〉 = 0. Thus c2(κκκ)
is expressed via the averaged density 〈ρ〉[= ρ̂ (0)] and the
effective shear coefficient μeff(κκκ) as follows:

c2(κκκ) = μeff (κκκ)

〈ρ〉 , μeff(κκκ) = 〈μ〉 − M(κκκ) (8a)

with M(κκκ) =
2∑

i,j=1

(
C−1

0

∂μ

∂xi

,
∂μ

∂xj

)
κiκj . (8b)

The operator C−1
0 is compact and also self-adjoint and positive,

hence

c2(κκκ) � 〈μ〉/〈ρ〉. (9)

It is worth emphasizing that the perturbation theory enables
an efficient shortcut to an explicit expression of the effective
speed c, in which the quadratic form M(κκκ) may be specialized
to either g or x space. Taking a double Fourier expansion of
(8b),

M(κκκ) =
∑

g,g′∈�\{0}
μ̂(g)μ̂(−g′)(g · κκκ)(g′ · κ)

× [μ̂(g − g′)g · g′]−1 (10)

provides the PWE representation of c2(κκκ) obtained in Ref. 4.
Viewing Eqs. (8) along with the equation C0h = ∂μ/∂xi in x
space is precisely equivalent to the formulation of quasistatic
limit by the scaling approach (see Ref. 11). The above
derivation, taking a few lines, does not need the scaling ansatz.
Moreover, while the central point of the scaling approach is
the use of the Fredholm alternative (Lemma 1 in Chap. 4
of Ref. 11), the same is inherent to the perturbation theory
“by construction,” whereby the eigenfunction perturbations are
confined via the operator C−1

0 to the subspace L2
0 orthogonal to

the unperturbed eigenfunction [in g space, this is implied by the
summation over g ∈ �\ {0} in Eq. (10)]. Finally, note that Eqs.
(8) can be further developed by using the monodromy-matrix
approach, see Sec. III B.

III. ESTIMATES OF THE EFFECTIVE SPEED

A. PWE estimate

Equation (10) of Ref. 4 defines M(κκκ) as a scalar product in
the Fourier space l2(�\{0}),

M(κκκ) = (B−1d,d), (11)

where B is an infinite matrix and d an infinite vector with
components

B ≡ (B[g,g′])g,g′∈�\{0} : B[g,g′] = μ̂(g − g′)g · g′; (12a)

d ≡ (d (g)) : d (g) = μ̂ (g) g · κ. (12b)

By definition (12a), B−1 is a compact operator in l2(�\{0}).
Let us further cast μ(x) in the form

μ(x) = μ0 + μ	(x), (13)

where μ0 is some positive constant and hence μ̂(g − g′) =
μ0δgg′ + μ̂	(g − g′). Denote

C(μ0) ≡ (C[g,g′])g,g′∈�\{0}:

C[g,g′] = μ̂	

μ0
(g − g′)

g
|g| · g′

|g′| ;

D ≡ diag(|g|)g∈�\{0};

f = D−1d ≡ (f̂ (g))g∈�\{0}:

f̂ (g) = μ̂(g)
g
|g| · κκκ = μ̂	(g)

g
|g| · κκκ;
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(f,f) =
∑
g�=0

|μ̂(g)|2 (g · κκκ)2

|g|2 ≡ F (κκκ)

=
2∑

i,j=1

Fijκiκj (Fij = Fji). (14)

It follows from (11), (12) and (13), (14) that

B = μ0D (I + C) D, M(κκκ) = μ−1
0 [(I + C)−1f,f], (15)

where I is an infinite identity matrix. Note that I + C is positive
and that it satisfies the identities

(I + C)−1 =
m∑

n=0

(−C)n + (−C)m+1(I + C)−1, (16)

M(κκκ) = μ−1
0

m∑
n=0

[(−C)nf,f]

+μ−1
0 [(−C)m+1(I + C)−1f,f]. (17)

Taking (16) with m = 0 yields

M(κκκ) = μ−1
0 F (κκκ) − μ−1

0 [C(I + C)−1f,f]. (18)

Consider (18) for two different choices of μ0 > 0. If μ0 =
max μ(x) ≡ μmax then μ	 (x) = μ(x) − μ0 is negative, hence
so is C and therefore the second term on the right-hand side of
(18) is positive. If μ0 = min μ (x) ≡ μmin then the above signs
are inverted. Thus μ−1

maxF (κκκ) � M(κκκ) � μ−1
minF (κκκ). Combin-

ing this with (8b) gives the bounds

〈μ〉 − F (κκκ)

μmin
� μeff(κκκ) � 〈μ〉 − F (κκκ)

μmax
for any μ(x). (19)

The lower bound is not very interesting since it may become
negative if μmin is small. The upper bound reinforces the
inequality (9) as

c2(κκκ) � 1

〈ρ〉
(

〈μ〉 − F (κκκ)

μmax

)
. (20)

It is natural to inquire as to what choice of μ0 provides
the best estimate of μeff(κκκ) within the bounds (19). To answer
this question, let us formally consider Eqs. (16) truncated as
follows:

(I + C)−1 ≈
m∑

n=0

(−C)n , (20a)

M(κκκ) ≈ μ−1
0

m∑
n=0

[(−C)nf,f]. (20b)

The sufficient condition for convergence of both series as m →
∞ is ‖C‖ < 1, where ‖ · ‖ is an operator norm. Hence we need
to take μ0 which minimizes ‖C(μ0)‖. Note from (14) that C
is close to the operator of multiplication by μ	(x)/μ0, so ‖C‖
may be gauged by the value maxx |μ	(x)/μ0|. Its minimum
over all choices of μ0 is reached when μ0 = 1

2 (μmax + μmin).

Thus a simple estimate, given by a single first term M(κκκ) ≈
F (κκκ)/μ0 of (20b), can be taken as

c2(κκκ) = μeff(κκκ)

〈ρ〉 ≈ 1

〈ρ〉
(

〈μ〉 − F (κ)

μ0

)
with μ0 = μmax + μmin

2
≡ μ. (21)

Note that the obtained estimation is a general result in the
sense of having the same form for an arbitrary periodic
dependence μ (x) , but it certainly provides a different accuracy
for different types of μ(x). For instance, consider two extreme
examples: a stiff composite with small admixture of a highly
contrasting soft ingredient and the inverse case where these two
components form a soft material with a stiff reinforcement. The
common ratio of geometrical progression (20b) with μ0 = μ

has a similar absolute value (gauged by maxx |μ	 (x) /μ|) for
both cases but is likely to differ in sign, since C is close
to multiplying by μ	 (x) = μ (x) − μ and hence should be
positive (negative) definite when the stiff (respectively, soft)
component is volume dominant. Obviously a sign-alternating
progression converges faster. Thus the PWE estimate, which is
the leading-order term of (20b), is expected to be more accurate
in the former case of a predominantly stiff composite with a
small volume fraction of a soft material and less accurate in
the latter, inverse, case. This observation is illuminated by the
examples in Sec. V A 2.

It remains to supply the closed-form relations for F (κκκ).
From its definition in (14),

trace(Fij ) =
∑

g∈�\{0}
|μ̂(g)|2

= 〈(μ − 〈μ〉)2〉 = 〈μ2〉 − 〈μ〉2. (22)

Hence by (20) and (21) the sum of squared effective
speeds along any pair of unit orthogonal vectors κκκl in R2

satisfies

2∑
l=1

c2(κκκl) � 1

〈ρ〉
(

2〈μ〉 − 〈μ2〉 − 〈μ〉2

μmax

)
,

(23)
2∑

l=1

c2(κκκl) ≈ 1

〈ρ〉
(

2〈μ〉 − 2
〈μ2〉 − 〈μ〉2

μmax + μmin

)
.

The quadratic form c2(κκκ) is known to be independent of the
orientation of κκκ in R2 if μ(x) [thus also μ̂(g) and c2(κκκ)]
is invariant under three- or fourfold rotations about the axis
normal to the x plane. In this case, c2(κκκ) = 1

2

∑2
l=1 c2(κκκl) for

any κκκ and thus (23) gives

c2 � 1

〈ρ〉
(

〈μ〉 − 〈μ2〉 − 〈μ〉2

2μmax

)
, (24a)

c2 ≈ 1

〈ρ〉
(

〈μ〉 − 〈μ2〉 − 〈μ〉2

μmax + μmin

)
≡ c2

PWE, (24b)

where the notation c2
PWE is introduced for future use to

distinguish this estimate from those obtained by other methods.
For a piecewise homogeneous periodic material consisting of
J = 1,2, . . . . components with constant μJ , ρJ and with fill-
ing fractions fJ (

∑
fJ = 1), Eqs. (24) obviously specializes

by setting 〈·〉 = ∑
J (·)J fJ and μmax / min = (max / min)J μJ .
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The above results are formulated for the 2D periodic media;
however, they can be readily adapted for equations similar to
(5) with x ∈ Rd of any dimension d > 2, for example, for
3D equations of heat conduction or fluid acoustics. Indeed,
replacing

∑2
l=1 by

∑d
l=1 keeps (22) intact and replaces the

factor 2 by d before 〈μ〉 in (23), which leads to c2(κκκ) =
1
d

∑d
l=1 c2(κκκl) if c2(κκκ) is independent of κκκ ∈ Rd . This is the

case for d = 3 under cubic symmetry (Note aside that the
condition for such isotropic behavior at any d > 2 may be
stated as invariance of the coefficient μ(x) in (5) to the shift
x1 → x2, . . . ,xd → x1 and, separately, to the change of sign
x1 → −x1 of the Cartesian coordinates xi of x ∈ Rd ). For
example, consider a 3D-periodic fluid-like cubic structure with
bulk modulus K(x) and density ρ(x). Based on the standard
equivalence between SH → acoustics under the interchange
ρ → K−1, μ → ρ−1, the PWE bound and estimate of the
effective acoustic speed follow in the form

c2 � 1

〈K−1〉
(

〈ρ−1〉 − 〈ρ−2〉 − 〈ρ−1〉2

3(ρ−1)max

)
,

(25)

c2 ≈ 1

〈K−1〉
(

〈ρ−1〉 − 2

3

〈ρ−2〉 − 〈ρ−1〉2

ρ−1
max + ρ−1

min

)
.

B. MM approach and the estimate

In this subsection we develop the x-space approach basing
on the monodromy matrix (MM). The idea implies casting
the wave equation in matrix form containing an ordinary
differential operator with quasiperiodic boundary condition in
one coordinate, integrating this system using the multiplicative
integral in the other coordinate, and applying perturbation
theory to express the result via the scalar product in L2(T) that
enable eliminating the operators and yields the closed-form
approximate solution in the form of double integrals of μ(x)
and ρ(x). Thus the MM approach is performed in x space.

It is convenient to assume for the moment that the functions
μ(x) and ρ(x) in the wave equation (5) are smooth functions,
which are periodic on the 2D rectangular lattice with the unit
cell T � x = (x1,x2) formed by the translations a1,2 ‖ e1,2 (see
Sec. II). Alongside the notation 〈·〉 ≡ 1

|T|
∫

T ·dx introduced in
(3), denote

〈·〉xi
≡ 1

|ai |
∫ |ai |

0
·dxi

( ⇒ 〈〈·〉x1

〉
x2

= 〈·〉) (26)

and let, for brevity, a1,2 be of unit length so that T = [0,1]2.
Imposing the Floquet quasiperiodic condition along one of
the coordinates, say x1, leads to v(x) = w(·,x2)eik1x1 where
w(·,x2) ≡ w(x1) for any fixed x2 and w(x1) is an absolutely
continuous periodic function:

w(x1) ∈ W ≡ {w(x1) ∈ AC[0,1] :

w(0) = w(1), w′(0) = w′(1)} (27)

with ′ meaning d/dx1. On these grounds, Eq. (5) can be

rewritten in the form

Qηηη = ∂

∂x2
ηηη, Q =

(
0 μ−1(x)

A − ω2ρ(x) 0

)
,

(28)

ηηη(x) =
(

w (·,x2)

μ(x)∂w (·,x2) /∂x2

)
,

where the operator A = A (k1,x2) acting on the components
of ηηη as on functions of x1 is defined in the space W by the
definition

A(k1,x2)w(x1) = −e−ik1x1{μ(x1,·)[eik1x1w(x1)]′}′
= −(μw′)′ − ik1[μw′ + (μw)′] + k2

1μw. (29)

The solution ηηη(x) of Eq. (28) with the initial condition
ηηη(x1,0) = ηηη0(x1) at x2 = 0 can be represented in the form

ηηη(x) = M[x2,0]ηηη0(x1) with

M[x2,0] =
∫̂ x2

0
(I + Qdx2) = I +

∫ x2

0
Q(k1,ς )dς

+
∫ x2

0
Q(k1,ς )dς

∫ ς

0
Q(k1,ς1)dς1 + · · · , (30)

where I is the identity operator, and the operator M[x2,0]
is formally a matricant of (28) defined in a standard fashion
through a multiplicative integral

∫̂
expanding in the Peano

series.12 In the same spirit, the operator M[1,0] given by
(30) with x2 = 1, that is, taken over a period 1 in x2, may
be called a monodromy matrix. It has the important property
that if eik2(ω,k1) with k2 ∈ R is an eigenvalue of M[1,0], then
ω and k = (k1,k2) satisfy Eq. (5), that is, ω2 is an eigenvalue
of (5) with the Floquet quasiperiodic conditions along both
coordinates x1 and x2. This is similar to the case of scalar
waves in 2D media with 1D periodicity (see Ref. 13); however,
the presence of terms of the order O(k0

1), O(k1) ∈ A in
(29) underlies an essential difference in the 2D periodicity
case. Note that M[a,b] at ω = 0,k1 = 0 has the eigenvalue
eik2(0,0) = 1 corresponding to the eigenvector (1,0)T, that is, to
w(x1) = const.

The MM approach enables deriving a new form of the
exact solution for the effective speed. Referring for brevity to
the isotropic case, it is as follows:

c2 = 1

〈ρ〉 〈(0,1)(M1[1,0] − I)−1(1,0)T〉x1 , (31)

where M1[1,0] is M[1,0] with ω,k1 = 0 and (M1[1,0] −
I)−1(1,0)T is any vector from the pre-image of the vector
(1,0)T with respect to M1[1,0] − I. We will not, however,
discuss Eq. (31) in detail because, as any exact solution for
c, it defies a closed form and hence exceeds the scope of the
present study.

Seeking specifically a closed-form estimate of c necessi-
tates some additional simplifications. On this ground, let us
further consider the matrix operator M0 which consists of the
first two terms of the Peano series of M[1,0] [see (30) with
x2 = 1]:

M[1,0] = M0 + · · · with M0(ω,k1) = I + 〈Q〉x2 . (32)
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Denote by eik̃2 and e the eigenvalue and eigenvector of M0

which at ω = 0,k1 = 0 coincide with those of M[1,0], so that

M0e(ω,k1; x1) = eik̃2(ω,k1)e(ω,k1; x1),
(33)

where k̃2(0,0) = 0, e(0,0; x1) = (1,0)T.

The motivation for introducing M0 is that k̃2(ω,k1) has
an exact closed-form asymptotic form that can be used for
constructing an estimate of c. It is emphasized that the
difference between M[1,0] and M0, which is given by the
members of the Peano series (30) of the order n > 2, contains
the terms of the same order O(k0

1), O(k1) (∈ A), and O(ω2)
as in M0 but with numerical factors decreasing somewhat like
1/n!. For the latter reason, the asymptotics of k̃2(ω,k1) and
k2(ω,k1) should be close.

To obtain the asymptotics of k̃2(ω,k1) in small ω, k1, it is
convenient to pass from the matrix form of (30) to the scalar
equation as follows:

〈Q〉x2 e = λe (λ ≡ eik̃2 − 1) ⇒ (34a)

〈μ−1〉x2

(〈A〉x2 − ω2〈ρ〉x2

)
e1 = λ2e1, (34b)

where λ = 0 and e1(x1) = 1 at ω = 0,k1 = 0 by (33). Denote
k1 = αε and ω = βε where ε is a small perturbation parameter.
Inserting in (34b) and invoking (29) yields

(R0 + εR1 + ε2R2)e1(ε,x1) = λ2(ε)De1(ε,x1)

with Dw = 〈μ−1〉−1
x2

w, R0w ≡ −(〈μ〉x2w
′)′

,

R1w ≡ −iα
[〈μ〉x2w

′ + (〈μ〉x2w)′
]
,

R2w ≡ (
α2〈μ〉x2 − β2〈ρ〉x2

)
w. (35)

Note that the operators Ri and D acting on w(x1) ∈ W

are self-adjoint with respect to the inner product (f,h) ≡∫ 1
0 f h∗dx1 ≡ 〈f h∗〉x1 where ∗ means complex conjugate.

Applying the standard technique of perturbation theory then
leads to

λ2(ε) = (λ2)1ε + (λ2)2ε
2 + O(ε3) with

(λ2)1 = (R1e01,e01)

(De01,e01)
, (36)

(λ2)2 = (R2e01,e01) − (
R−1

0 R1e01,R1e01
)

(De01,e01)
,

where e01 ≡ e1(0,x1) = 1. First note that (R1e01,e01) =
−iα

∫ 1
0 (〈μ〉x2 )′dx1 = 0 since 〈μ〉x2 is a periodic function of

x1, and hence (λ2)1 = 0. To find R−1
0 R1e01 ≡ φ(x1), we need

to solve the equation R0φ(x1) = R1e01, that is,

−(〈μ〉x2φ
′)′ = −iα

(〈μ〉x2

)′ ⇒

φ(x1) = K + iαx1 + K1

∫ x1

0
〈μ〉−1

x2
dx1, (37)

where K and K1 are constants. Using the boundary condition
φ(0) = φ(1) for φ(x1) ∈ W [see (27)] determines K1, hence

R−1
0 R1e01 ≡ φ (x1) = K + iαx1

−iα
〈〈μ〉−1

x2

〉−1

x1

∫ x1

0
〈μ〉−1

x2
dx1. (38)

Thus, calculating(
R−1

0 R1e01,R1e01
) = α2[〈〈μ〉x2〉x1 − 〈〈μ〉−1

x2
〉−1
x1

]
,

(R2e01,e01) = α2
〈〈μ〉x2

〉
x1

− β2〈ρ〉,
(De01,e01) = 〈〈μ−1〉−1

x2

〉
x1

, (39)

and inserting in (36) yields the explicit form of λ2(ε) ≡ (eik̃2 −
1)2 ∼ (λ2)2ε

2 which, on reverting to the original parameters
k1 = αε and ω = βε, yields

−k̃2
2 =

k2
1

〈〈μ〉−1
x2

〉−1

x1
− ω2 〈ρ〉〈〈μ−1〉−1

x2

〉
x1

+ O
(
k3

1,ω
3). (40)

As argued above, k̃2 (ω,k1) at small ω and k1 is supposed
to be close to k2 (ω,k1); therefore replacing k̃2 in (40) by
k2 leads to the approximation for the effective speed c (κ) =
limω,k→0 ω (k) /k (k = kκκκ) as

c2(κκκ) ≈ 1

〈ρ〉
(
κ2

1

〈〈μ〉−1
x2

〉−1
x1

+ κ2
2

〈〈μ−1〉−1
x2

〉
x1

)
. (41)

Note that applying the same scheme with respect to the
reverse order of coordinates, that is, imposing the Floquet
condition along x2 and using the monodromy matrix along x1,
yields the formula which follows from (41) by interchanging
x1 � x2and κ1 � κ2. Neither of the two approximations is
generally preferable, so it is natural to use their average, say,
the half-sum 1

2 [(41) + (41)1�2]. Therefore we arrive at the
estimate for the effective speed in the following form:

c2(κκκ) ≈ 1

2〈ρ〉
[(〈〈μ−1〉−1

x1

〉
x2

+ 〈〈μ〉−1
x2

〉−1
x1

)
κ2

1

+ ( 〈〈μ〉−1
x1

〉−1

x2
+ 〈〈μ−1〉−1

x2

〉
x1

)
κ2

2

]
, (42)

where 〈·〉xi
is defined by (26) (obviously the assumption of

unit and equal periods |ai | is no longer needed).
The wave speed estimate (42) describes an ellipse of

effective slowness s(κκκ) = c−1(κκκ)κκκ with the principal axes
along the translations a1 ⊥ a2 of an orthotropic lattice. For
an isotropic lattice, where each of 〈〈μ〉−1

x1
〉−1
x2

�= 〈〈μ−1〉−1
x1

〉x2 is
invariant to x1 � x2, Eq. (42) [in contrast to (41)] becomes
isotropic, that is, yields the same value

c2
MM = 1

2〈ρ〉
(〈〈μ−1〉−1

x1

〉
x2

+ 〈〈μ〉−1
x2

〉−1

x1

)
(43)

for anyκκκ. It is instructive to apply the explicit formula (43) to a
square lattice composed of J = 1,2, . . . . homogeneous mate-
rials, which is the case exemplified in detail in Sec. V. Inserting
μ (x) = ∑

J μJ χJ (x) for x ∈ T, where χJ (x) (〈χJ 〉 = fJ ) is
an indicator function equal to 1 on the domain occupied by the
J th material and to 0 elsewhere, reduces Eq. (43) to

c2
MM = 1

2 〈ρ〉

[∫ 1

0

dς2∑
J μ−1

J χJ (ς2)

+
(∫ 1

0

dς2∑
J μJ χJ (ς2)

)−1
]

(44)

with χJ (ς2) = ∫ 1
0 χJ (ς1,ς2) dς1 and ςi = xi/ |ai |. Now sup-

pose that one of the constituent materials has μJ → 0 and it
is distributed with a small (but finite) concentration fJ along
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the unit-cell boundary. Then both integrals on the right-hand
side of (44) tend to zero, and so c2

MM → 0. Thus the essential
attribute of the MM estimate (44) is that it is capable of
capturing the “insulating” effect of even a small concentration
of soft material when this forms a “network” breaking the
connectivity of stiff components in the lattice. One more
revealing example is the limiting case where μ(x) is constant
along some fixed direction in R2 [while ρ(x) may remain 2D
periodic]. Taking this direction as the base vector e1 implies
〈μ〉x1

= μ (x2) and thus reduces (42) to the well-known exact
formula

c2(κκκ) = 〈ρ〉−1
(〈μ〉x2κ

2
1 + 〈μ−1〉−1

x2
κ2

2

)
. (45)

In fact, the original nonsymmetric estimate (41) reduces to the
exact form (45) when μ(x) is constant along the direction ei ,
i = 1 or 2.

In conclusion, a few remarks are in order concerning the
approximate nature of the MM-approach implementation and
result. First, the assumption that μ(x) and ρ(x) are smooth can
actually be relaxed to include piecewise continuous functions
and hence to apply the approximation (42) to composites
with inclusions (see Sec. V). This is similar to the effect
of truncating PWE series of piecewise continuous μ(x) and
ρ (x), which allows one to think of them as smooth functions
(Sec. IV). A second remark is that the MM estimate (42) is
not restricted to the isotropic case like the PWE estimate (24b)
is. On the other hand, due to the simplification adopted on
deriving Eq. (42), it does not contain a cross term proportional
to κ1κ2 and hence is unable to pinpoint the effect of asymmetric
form and/or distribution of inclusions in a rectangular lattice
that could tilt the principal axes of the exact effective-speed
curve away from the translation vectors a1,a2. For the same
reason, Eq. (42) may not be invariant with respect to different
choices of a unit cell in a given lattice. Such deficiency could be
rectified by taking into account the terms of order O(ω2) from
the next (n > 2) Peano-series members, which are discarded
in M0 [cf. (30) and (32)]; however, this is hardly an expedient
course of action since adding even one more term on top of
M0 leads to quite a cumbersome expression for c. Finally,
we note that instead of taking the arithmetic mean leading to
(42), one could have invoked another average, for example,
the geometric mean. Its direct use as [(41) × (41)1�2]1/2 is
unreasonable since the resulting estimate of squared speed
c2(κκκ) would no longer be a quadratic form in κκκ; however, the
geometric mean could be applied separately to the coefficients
of κj thus yielding

c2(κκκ) ≈ 1

〈ρ〉
[(〈〈μ−1〉−1

x1

〉
x2

〈〈μ〉−1
x2

〉−1

x1

)1/2
κ2

1

+ (〈〈μ−1〉−1
x2

〉
x1

〈〈μ〉−1
x1

〉−1

x2

)1/2
κ2

2

] ≡ c2
M̃M. (46)

Comparison of the two MM estimates cM̃M and cMM is
considered in Sec. V A 1.

IV. PWE NUMERICAL IMPLEMENTATION

PWE numerical implementation rests on calculation of
the quantity M(κ) = (B−1d,d) [Eq. (11)], which involves the
inverse of the formally infinite matrix B truncated in the 2D
calculations to a finite N2 × N2 size (N is the number of

Fourier terms in one coordinate). Its inversion takes O(N8)
steps. Calculating B−1d, that is, solving a linear system
Bh = d for unknown h by Gauss or similar methods, takes
O(N6) steps [and needs O(N4) memory cells for storing
intermediate results]. This may also be onerous for large
enough N . Note also that the case of high-contrast lattices
with very soft or void components needs special care (see,
e.g., Ref. 14). The difficulty arises due to the fact that B is not
invertible if μ(���) = 0 for some domain ��� of x within the unit
cell T. This does not preclude numerical inversion of truncated
B (since a finite-size B can no longer possess eigenfunctions
with a support in ��� �T); however, both inversion of B and
solving Bh = d with zero or small μ(���) may become tricky
because taking more elements of B implies a greater impact
of its small eigenvalues and thus may actually deteriorate
numerical accuracy.

In this light, we advocate the method of direct computation
of M(κκκ) via the series expansion (20b) with μ0 = 1

2 (μmax +
μmin) ≡ μ. On fixing the meaning of truncated quantities as
defined on a N2 -dimension subspace l2

N2 ⊂ l2(�\{0}) spanned
by N2 = (2j + 1)2 vectors eg = (δgg′)g′ �=0 with 0 < |gi | �
2πj (i = 1,2), the explicit expression for computing M(κκκ)
is

M(κκκ) ≈ μ−1
m∑

n=0

[(−CN2×N2 )nfN2 ,fN2 ], (47)

where CN2×N2 (μ) ≡ C and fN2 ≡ f have components (Ceg,eg′ )
and (f,eg) in l2

N2 . “Termwise” [by way of storing Cnf
and calling on it for Cn+1f = C(Cnf)] calculation of (47)
takes O(mN4) steps, which is notably less than O(N6)
when N � m,1. The validity of approximation (47) can be
justified on the basis of the sufficient condition ‖C‖ < 1
for convergence of (20a) and on the fact that C is close
to the operator of multiplication by (μ(x) − μ0)/μ0 hence
‖C(μ)‖ ≈ |μ(x)/μ − 1| [see the discussion of Eqs. (20) and
(21) in Sec. III]. Thus ‖C(μ)‖ is expected to be less than 1,
being close to 1 in the special case where μ is very small in
some ��� ∈ T. In the former case, fast convergence of (20b) is
facilitated by the diagonal predominant structure of I + C (see
the Appendix). In the latter case [small μ(���)], the fact that
|f| decreases as g grows large may come into play. However,
in contrast to the MM approach (see Sec. III B), the PWE
considerations seem unable to explain the very different effect
of this small μ when it occurs either strictly inside the unit
cell (soft inclusion) or along its boundaries (soft matrix).
Numerical examples provided in Sec. V show that Eq. (47)
is not sensitive to μ of an inclusion tending to zero, and
hence it can be directly applied to computing the effective
shear speed in solid/air and solid/fluid composites (see, e.g.,
Refs. 15 and 16), where the solid phase remains connected
(Note that the effective density for shear (SH) waves in 2D
solid-fluid structures depends only on the solid density since
the vanishing shear force on the fluid/solid interface means
that the fluid does not participate in the SH motion.). The
alternative case, in which a very soft matrix material forms an
“insulating network,” is known to be particularly subtle for any
PWE-based numerical scheme. No wonder that application of
Eq. (47) to this case requires more numerical effort as detailed
in Sec. V.
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Note that taking (20b) with μ0 = μ, which leads to the
same form (47) for any μ(x), does not at all guarantee the
fastest convergence for all μ(x). This is elucidated in the
Appendix which contains an example of strict and quantitative
convergence analysis of the series (20b) for a particular family
of periodic μ(x).

V. DISCUSSION AND EXAMPLES

A. Two-phase lattices

1. Estimates

Consider a 2D square lattice which is isotropically com-
posed of two homogeneous materials J = 1,2 with constant
ρJ , μJ and with filling fractions fJ (f1 + f2 = 1). It will
also prove useful to introduce the conjugate lattice by the
following definition: two conjugated binary lattices are related
to one another through the replacement J = 1,2 � 2,1 (that
is, μ1,f1 � μ2,f2) interchanging the materials along with
their filling fractions. The conjugated lattices are referred to
below as 1/2 and 2/1 lattices, with the matrix material put first.
Note that the exact effective speeds in conjugated lattices are in
general certainly different, c(1/2) �= c(2/1), except for particular
symmetric lattice configurations (see Sec. V A 2).

The PWE estimate (24b) of the effective speed c reduces to
the form

c2
PWE = 1

〈ρ〉
(

μ1f1 + μ2f2 − f1f2 (μ1 − μ2)2

μ1 + μ2

)
, (48)

which, by definition, depends only on the filling fractions fJ

and is not sensitive to the inclusion shape. It is also evident that
(48) is invariant under the interchange J = 1,2 � 2,1, that is,
cPWE is the same for the two conjugated binary lattices.

The MM estimate c2
MM for the two-phase square lattice is

given by (44) with J = 1, 2. It is not invariant to interchanging
J = 1, 2 � 2, 1, that is, the effective speed for each of the
conjugated lattices has its own MM estimate c(1/2) ≈ c

(1/2)
MM

and c(2/1) ≈ c
(2/1)
MM (where c

(1/2)
MM = c

(2/1)
MM for the symmetric

configurations).
The estimate obtained by means of the multiple-scattering

theory (MST)7–10 is, for the 1/2 lattice,

c2
(1/2) ≈ [

c
(1/2)
MST

]2 = μ1

〈ρ〉
(

μ1 + μ2 − (μ1 − μ2) f2

μ1 + μ2 + (μ1 − μ2) f2

)
,

J = 1 is matrix, J = 2 is inclusion. (49)

Interchanging the indices J = 1, 2 � 2, 1 in (49) provides the
MST estimate for the conjugated 2/1 lattice as

c2
(2/1) ≈ [

c
(2/1)
MST

]2 = μ2

〈ρ〉
(

2μ1 − (μ1 − μ2) f2

2μ2 + (μ1 − μ2) f2

)
,

J = 2 is matrix, J = 1 is inclusion. (50)

The MST estimate defines distinct values of cMST for the
two conjugated lattices. The choice as to which of the MST
formulas (49) or (50) to apply to a given binary lattice
depends crucially on the designation of the two constituent
materials as “matrix” and “inclusion.” There is no ambiguity
for simple configurations where one of the materials (matrix)
circumvents the unit-cell boundary and the other is enclosed
within (inclusion). However, in the case of a symmetric

lattice configuration, for which two conjugated lattices are
equivalent, Eqs. (49) and (50) provide two starkly different
MST approximations of a single exact value c(1/2) = c(2/1)

(see further Sec. V A 2).
Note that the explicit expressions (49) and (50) actually

have a long record in micromechanics (see Refs. 1–3). In par-
ticular, they are the Hashin-Shtrikman bounds (respectively,
upper and lower at μ1 > μ2 or vice versa at μ1 < μ2) obtained
by the variational approach for a binary composite of a matrix
material J = 1 or 2 with statistically homogeneous inclusions
of material J = 2 or 1 (see Ref. 17). The relation of these
bounds to periodic structures may not be generally obvious. At
the same time, for the two-phase lattices, it is easy to verify ex-
plicitly that the PWE estimate (48) is always enclosed between
(49) and (50), and that the upper Hashin-Shtrikman bound is
never greater than the PWE bound (24a) for the two-phase
case; however, the same is not always true for the MM estimate
(44) with J = 1, 2. One more general result from the theory
of 2D two-phase composites is noteworthy, which is Keller’s
duality relation18,19 for the effective shear coefficients μeff of
two reciprocal lattices (μ1,μ2) and (μ2,μ1) obtained from one
another by interchanging μ1 � μ2 while keeping the concen-
trations f1,2 intact (cf. the definition of conjugated lattices).
For the isotropic case in hand, this relation yields the identity

〈ρ〉2 c2
(μ1,μ2)c

2
(μ2,μ1) = μ1μ2. (51)

Among the above-mentioned estimates of c, the MST formulas
(49) and (50) satisfy (51), while the PWE and MM approxi-
mations (48) and (44) do not. Note that the M̃M estimate (46)
does satisfy (51); however, the numerical tests (omitted from
the graphical data below to avoid its overloading) show that
fitting of c by the MM estimate cMM given by (44) is always
better than by cM̃M (� cMM) given by (46). The degree to which
it is better is often quantitative small, but then the departure of
cMM from the duality identity (51) is equally small. A greater
accuracy of (44) than of (46) extends to the case of J > 2,

where (46) has no methodological advantage of satisfying
(51) since the latter is no longer relevant. Thus, all in all the
MM estimate in the form (44) appears to be preferable to (46).

2. Examples

In this subsection, a comparison between the numerical
evaluation of the effective speed c and its different estimates
is demonstrated for several examples of a square lattice
of parallel square rods embedded in a matrix and oriented
at an angle of 0◦ or 45◦ to the translation vectors. Such
configurations of phononic crystals have been studied, for
example, in Refs. 15,20–23. It is clear that the MST estimate
of Refs. 7–10, though derived for cylindrical inclusions,
should be equally viable for square ones since it describes
the quasistatic limit. If the contrast of matrix and inclusion
shear coefficients is relatively low, then so is the difference
between the two values of the effective speed c for the
two conjugated lattices. In this case, the PWE, MM, and
MST estimates (48), (44), and (49) and (50) all yield close
values that provide a good approximation of c in either of
the conjugated configurations. This is exemplified in Fig. 1
for Al and Pb phases with the material constants ρAl = 2.7,
ρPb = 11.6 g/cm3 and μAl = 26, μPb = 14.9 GPa. Note that
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f

c

0 10.5

cPb

cAl

ceff exact
cmst appr
cpwe appr
cMM

FIG. 1. (Color online) Effective speed c vs concentration fAl

for conjugated Al/Pb and Pb/Al lattices of 0◦-oriented rods. The
numerical curves for both lattices [computed via (47) with N = 25
and m = 10], the PWE estimate (48), the MM estimate (44), and the
MST approximations (49) and (50) all merge at the scale of the plot.

the series (47) needs only about j ∼ 7 modes (N ∼ 15) and
m ∼ 5 terms for accurate calculation of the numerical curve
c (fAl) (the larger values of N and m indicated in the caption
were taken for better precision).

Addressing the high-contrast case, consider two examples
of binary materials with a “medium” and “drastic” contrast:
one consisting of steel (≡ St) and epoxy (≡ Ep), and the
other of steel and rubber (≡ R). Their material constants
are ρSt = 7.8, ρEp = 1.14, ρR = 1.14 g/cm3 and μSt = 80,
μEp = 1.48, μR = 4 × 10−5 GPa. The results for the St/Ep
and Ep/St conjugated lattices of 0◦-oriented rods are shown
in Fig. 2(a), and the results for the St/R and R/St lattices
are shown in Fig. 3(a). It is seen that the two numerical curves
c (f ) , plotted for each conjugated pair as a function of concen-
tration of the same (say, softer) material, have quite different
trajectories between the fixed end points. The physical reason
is obvious: the effective speed c is indeed strongly affected
by a small concentration of a highly contrasting component
when this forms a “network” breaking up connectivity of the
volume-dominating component. On the numerical side, given
the “medium-contrast” case of steel-epoxy composite, Eq. (47)
provides a reasonable approximation of c (f ) when taken with
j = 7 modes (N ∼ 15) and m ∼ 50 terms (compare with the
above Al-Pb case). About this number of modes and terms in
Eq. (47) is also sufficient to capture the shape of the curve
c (f ) for the “drastic-contrast” steel-rubber structure but only
if rubber is an inclusion located inside the cell. Markedly more
numerical effort is required when rubber is the matrix material
distributed along the unit-cell boundaries—in this case no less
than j = 12 modes (N ∼ 25) and m ∼ 150 terms in Eq. (47)
are needed to obtain good accuracy (see Sec. IV). Note that
formally reducing μR to zero causes no discernible changes at
the scale of Figs. 3 and 4.

Let us now examine the PWE, MM, and MST estimates of
c for the above examples. It is evident that a single curve of
the PWE estimate, which depends only on volume fraction and
disregards geometrical details (see Sec. V A 1), cannot fit two
markedly different curves of conjugated lattices. As noted in
Sec. III, it must be more accurate when the stiff component is
volumetrically dominant over the soft one rather than when the
situation is reversed. This is what is observed in Figs. 2(a) and

fEp

c

0 10.5

cSt

cEp

=

=
(50)

(49)

Ep St

(b)
c num
cMST (49), (50)
cPWE
cMM

fEp

c

0 10.5

cSt

cEp

(50)

(49)

Ep St

(a)

cMM

cMM

c num
cMST (49), (50)
cPWE
cMM

FIG. 2. (Color online) Effective speed (a) for the conjugated St/Ep
and Ep/St lattices of 0◦-oriented rods and (b) for the symmetric St/Ep
lattice of 45◦-rotated rods. Numerical curves c(fEp) are computed via
(47) with N = 29 and m = 150; the PWE estimate cPWE is given by
(48); the MM estimate cMM is given by (44); the MST approximations
c

(St/Ep)
MST and c

(Ep/St)
MST are given by (49) and (50) with J = 1 = St,

J = 2 = Ep.

3(a). It is also seen that the MM and MST estimates provide
a fairly close evaluation of c, which fits very well the whole
numerical curve of c for St/Ep and St/R lattices (soft rods in
stiff matrix); however, they lose accuracy for the conjugated,
Ep/St and R/St lattices (stiff rods in soft matrix), specifically
when the rod concentration fSt (= 1 − fEp,R) is close to 1.
Regarding MST, this is in agreement with the remark made
on its derivation in Refs. 7–10 that the MST estimate does
not fully account for the multiple interactions and hence may
be error prone in the case of densely packed stiff inclusions.
Thus, in the latter case, the PWE estimate is preferable to two
others, as illustrated in Fig. 2(a) and especially in Fig. 3(a).

Consider next similar structures but with 45◦-rotated rods,
which is the case where the two conjugated lattices coincide
into one symmetric configuration. The corresponding depen-
dence of the effective speed versus concentration c (f ) has
a single-valued approximation for each of the PWE and MM
estimates, whereas the MST estimate still defines two different
approximations (49) and (50) for the single curve c (f ).
Comparing these estimates displayed alongside the numerical
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fR

c
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=
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(50)
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cMST (49), (50)
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cMM

fR
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cSt

cR

(50)

(49)

R St

(a)

cMM

cMM
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cMST (49), (50)
cPWE
cMM

FIG. 3. (Color online) The same as in Figs. 2(a) and 2(b) but for
St/R and R/St lattices. Numerical curves c (fR) are computed via (47)
with N = 29 and m = 150. Note that cR is not distinguishable from
0 at the scale of the vertical axis.

curve c (f ) in Figs. 2(b) and 3(b) shows that the PWE estimate
is the most accurate so long as the stiff component is volume
dominant; the MM estimate provides the best “overall” fit; and
each of the MST approximations works over less than a half
of the range while mismatching markedly the other half.

Finally, we consider the case of cylindrical inclusions.
Results for the steel-rubber conjugate lattices with circular rods
are presented in Fig. 4. It is instructive to observe the similarity
of the dependences c (f ) on the concentration of inclusions
f = fSt and fR, which are displayed in Figs. 4(a) and 4(b), to
the two corresponding “halves” of the corresponding curves
for square rods in Fig. 3(b).

B. Three-phase lattices

1. Estimates

Consider a 2D square lattice similar to above but with
a coated inclusion. Such nested structures have received
much attention lately in relation to modeling locally resonant
phononic crystals (e.g., Refs. 24 and 25). The PWE and MM
estimates of the effective speed c for this case are given by
Eqs. (24b) and (44) with 〈·〉 = ∑

J (·)J fJ and J = 1, 2, 3. If

fSt

c

0 π/4
cR

cSt

cMSTcMM

R St

(b)
c num
cMST
cPWE
cMM

fR

c

0 π/4

cSt

cR

R St

(a)
c num
cMST
cPWE
cMM

FIG. 4. (Color online) Effective speed as a function of concen-
tration of inclusions in (a) St/R and (b) R/St conjugated lattices of
circular cylinders in a matrix. Numerical curves c (fR) and c (fSt) are
computed via (47) with N = 29 and m = 150.

the concentration fJ of one of the constituent materials tends
to zero, the MM estimate (44) for three constituents certainly
tends to that for two remaining constituents; whereas the PWE
estimate (24b) with, say, f3 → 0 tends to its form for the pair
J = 1, 2 only if the “vanishing” material is neither the stiffest
nor the softest one, that is, if μ3 �= μmin, μmax.

As a MST counterpart, we adopt the generalization of (49)
that is well-known in micromechanics as the Kuster-Toksöz
formula (closely related to Hashin-Shtrikman bounds) for 2D
fluids with small concentration of different inclusions.26,27

More recently, it was used for a periodic structure of different
cylinders in a fluid matrix.8,10 The formula for the 2D
configurations considered here is

c2 ≈ c2
MST = μ1

〈ρ〉

(
1 − ∑3

J=2 fJ
μ1−μJ

μ1+μJ

1 + ∑3
J=2 fJ

μ1−μJ

μ1+μJ

)
, (52)

J = 1 is matrix, J = 2, 3 are inclusions.

The MST estimate (52) coincides with the binary formula (49)
if any one of the inclusion concentrations f2 or f3 is zero.
On the other hand, (52) does not tend to either of (49) and
(50) as the matrix concentration f1 tends to zero (which is not
surprising since the Kuster-Toksöz is not recommended at low
matrix concentration28).
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FIG. 5. (Color online) Effective speed c (f ) for three-phase
lattices where f is given by (53) with α = 4/9: (a) St/R/Pb structure
of coated square rods and (b) Ep/St/Ep structure of cylindrical annuli.
Numerical curves are computed via (47) with N = 29 and m = 150

2. Examples

Denote the filling fraction of a coated inclusion in a matrix
(J = 1) by f and set the filling fractions of the skin (J = 2)
and core (J = 3) materials as

f2 = αf (skin), f3 = (1 − α) f (core) ⇒ f2 + f3 = f.

(53)

The effective speed c of the three-phase composite is now a
function of the single variable f = 1 − f1.

Motivated by Refs. 24 and 25, we first examine the case
of a soft coating (skin) material. Consider the square St/R/Pb
lattice of square lead (≡Pb) rods coated by rubber (≡R) which
are embedded in steel matrix [Fig. 5(a)]. The value of c (f )
at f = 0 is obviously the speed in the matrix c (0) = cSt.
The opposite limit value of c (f ) at f = 1 is equal to the
effective speed cR/Pb (fR) in the binary R/Pb lattice of lead rods
embedded in the rubber matrix with the volume fractions fixed
by (53) as fR = α and fPb = 1 − α. Once fR is not too small,
cR/Pb (fR) should be close to cR [see Fig. 3(a)], which therefore
implies that c (f ) in the St/R/Pb structure has a very small
value in the limit f → 1. This is observed in Fig. 5(a) (where
α = 4/9). It is also seen that the PWE and MST estimates
(24b) and (52) of c(f ) do not describe this behavior of c(f )
at f → 1 and overestimate c (1) [by an incidentally close
value which is neither PWE nor MST estimate of cR/Pb (fR),
as pointed out in Sec. V B 1 above]. By contrast, the MM

estimate (44) provides a good fit for the whole curve c (f )
including the critical region f → 1. This is because Eq. (44)
captures the “insulating” effect of a small concentration of soft
material which drastically decreases the effective speed when
this material extends throughout the unit-cell boundary (see
Sec. III B).

Another case of interest is when the matrix material
coincides with that of the rod core, which means that the
rod coatings are simply spacers separating the same material.
Figure 5(b) demonstrates the dependence of the effective speed
c on the concentration f of stiff (steel) cylindrical annuli
embedded in a soft (epoxy≡Ep) material. The shape of the
curve c (f ) can be shown to change only slightly if the steel
spacers are square instead of circular. It is seen from Fig. 5(b)
that the basic outline of this curve is again best approximated
by the MM estimate.

VI. CONCLUSION

The paper uses the PWE approach and a newly developed
MM approach, based on the monodromy matrix, to derive
the new estimates of the effective shear-wave speed c in
2D periodic lattices. The estimates are compared with the
known MST approximations and with the numerical data for
a number of examples of two- and three-phase square lattices.
The main findings are listed in the Introduction. The results
for effective velocities of the vector waves in the 3D lattices
are to be reported elsewhere. It is worth pointing out that
the obtained PWE and MM estimates are also valid for the
gradient index, or functionally graded, materials (for which
the MST is irrelevant). In conclusion, the combination of the
perturbation theory with the PWE and MM techniques, which
is elaborated in this paper, is hoped to lend an efficient tool for a
broad range of problems concerned with periodic composites,
phononic crystals, and metamaterials.
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APPENDIX: CONVERGENCE OF (20b) – A STRICT
EXAMPLE

1. Sufficient condition on μ(x)

Our objective is to provide a rigorous example of a class of
functions μ(x) ≡ μ0 + μ	(x) that guarantee convergence for
M(κκκ) = μ−1

0

∑∞
n=0[(−C)nf,f], and thus validate application

of this series for computing the effective parameters μeff(κκκ)
and c2(κκκ). To do so, we begin by formulating a sufficient
condition on μ(x) to fulfill the sufficient condition ‖C(μ0)‖ <

1 for convergence of (20b) as m → ∞. Note that the matrix C
can be written as

C = μ−1
0

∑
g̃∈�

μ̂	 (̃g) J̃g where J̃g:

J̃g[g,g′] =
{

g
|g| · g′

|g′ | if g̃ = g − g′,
0 otherwise.

(A1)
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It is seen from (A1) that ‖C‖ � μ−1
0

∑
g̃∈� |μ̂	(̃g)| since

‖J̃g‖ � 1, which in turn is because all its nonzero elements
J̃g[g,g′] occupy a single particular diagonal and satisfy
|J̃g[g,g′]| � 1 . Hence the sufficient convergence condition
‖C‖ < 1 may be eased to

(‖C(μ0)‖ �)μ−1
0

∑
g̃∈�

|μ̂	(̃g)| = 1 − 〈μ〉
μ0

+ 1

μ0

∑
g�=0

|μ̂ (g)|

≡ �μ0 < 1 for μ0 � 〈μ〉 . (A2)

In other words, for those μ(x) which satisfy∑
g�=0

|μ̂ (g)| < 〈μ〉 (A3)

there always exists a choice of μ0 � 〈μ〉 which ensures
‖C(μ0)‖ < 1 and hence guarantees convergence of (20b) to
M(κκκ). The remainder of the series (20b) with μ0 � 〈μ〉 may
be estimated as follows:∣∣∣∣∣μ−1

0

∞∑
n=m+1

[(−C)nf,f]

∣∣∣∣∣ � ‖f‖2

μ0

∞∑
n=m+1

‖C‖n <
〈μ〉2

μ0

�m+1
μ0

1 − �μ0

= 〈μ〉2 �m+1
μ0

〈μ〉 − ∑
g�=0 |μ̂ (g)| , (A4)

where it has been used that ‖C‖ � �μ0 by (A2) and that

‖f‖ =
√

〈|f (x)|2〉 � max
x

|f (x)|

�
∑
g�=0

∣∣∣∣μ̂ (g) eig·x g
|g| · κκκ

∣∣∣∣ < 〈μ〉 (A5)

for f (x) = ∑
g�=0 f̂ (g) eig·x by (14) and (A3). The least value

of the residual sum (A4) for all μ0 � 〈μ〉 is achieved when
�μ0 is minimum, which is the case when μ0 = 〈μ〉. Note that
the average 〈μ〉 of μ(x) satisfying (A3) may well differ (be
greater or less) than the value μ ≡ 1

2 (μmax + μmin), which
was argued in Sec. IV as a numerically reliable choice of μ0 in
(20b). There is indeed no contradiction in this difference. First,
recall that all the conclusions of the Appendix stem from only
the sufficient conditions. Second, as mentioned in Sec. IV, an
advantage of taking (20b) with μ0 = μ is that it yields the
same formula (47) for any profile μ(x), but this choice of μ0 is
not intended to provide the fastest convergence for all possible
profiles.

We still need to examine the restrictions on μ (x) which
are imposed by the derived sufficient condition (A3). First of
all, by (A3) μ(x) = ∑

g μ̂ (g) eig·x � μ̂ (0) − ∑
g�=0 |μ̂ (g)| >

0, that is, only positive μ(x) are allowed as needed. Second,

any μ(x) satisfying (A3) must have a uniformly converging
Fourier series and hence be continuous. The latter is actually
not a loss of generality in the numerical context, even if we
are mostly interested in the case of materials with inclusions
(i.e., with jumps of properties), because the calculations deal
with truncated Fourier series of μ(x) which in effect replaces
a possibly piecewise constant μ(x) by a continuous profile.
Thirdly, (A3) implies that |μ(x) − 〈μ〉| � 〈μ〉, that is, μ(x) >

0 should not depart “too far” from its average 〈μ〉 . When so,
the matrix I + C is diagonal predominant and |f| decreases for
large g, both furthering the truncation of the PWE and of the
power series in (20b). It is evident that the above condition,
which may be recast as μmax � 2 〈μ〉 , fits a fairly broad class
of functions μ(x).

2. Example

In constructing an explicit example of the profile μ(x) which
ensures convergence of (20b), we consider one that emulates
a high-contrast composite with a small volume fraction of
soft inclusions. For brevity of writing, let T = [−π,π ]2 so
that x = (x1,x2) , g = (g1,g2) with xi ∈ [−π,π ] and gi = ni

(ni ∈ Z). Denote

ϕn1n2 (x) = ψn1 (x1)ψn2 (x2)

=
∑

|g1|�n1;|g2|�n2

ϕ̂n1n2 (g) eig·x,

where ψn (x) ≡ (cos x)2n =
∑
|g|�n

ψ̂n (g) eigx. (A6)

Since ψn (πl) = 1 (l ∈ Z) and ψn (x) → 0 for x �= πl as
n → ∞, the function ϕn1n2 (x1,x2) for large n1, n2 tends to
a 2D grid of narrow unit peaks. Note also that ψ̂n (g) �
0 ∀g and

∑
|g|�n ψ̂n (g) = ψn (0) = 1, hence ϕ̂n1n2 (g) � 0

and
∑

|g1|�n1,|g2|�n2
ϕ̂n1n2 (g) = 1. Using this ϕn1n2 , define the

function μ(x) as follows:

μ(x) = μ0 + μ	 (x) : μ0 > A > 0, μ	 (x) = −Aϕn1n2 (x) ,

(A7)

where μ0 and A are some constants. From the above properties
it follows that∑

g�=0

|μ̂(g)| = A
∑
g�=0

ϕ̂n1n2 (g)

= A
[
1 − ϕ̂n1n2 (0)

]
< μ0 − Aϕ̂n1n2 (0) = 〈μ〉. (A8)

Thus the function (A7) satisfies the condition (A3) sufficient
for convergence of (20b).
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