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We study the zero-temperature phase diagram of Ising spin systems in two dimensions in the presence of
competing interactions: long-range antiferromagnetic and nearest-neighbor ferromagnetic of strength J. We first
introduce the notion of a “corner energy,” which shows, when the antiferromagnetic interaction decays faster
than the fourth power of the distance, that a striped state is favored with respect to a checkerboard state when J
is close to J., the transition to the ferromagnetic state, i.e., when the length scales of the uniformly magnetized
domains become large. Next, we perform detailed analytic computations on the energies of the striped and
checkerboard states in the cases of antiferromagnetic interactions with exponential decay and with power-law
decay r~?, p > 2, which depend on the Manhattan distance instead of the Euclidean distance. We prove that
the striped phase is always favored compared to the checkerboard phase when the scale of the ground-state
structure is very large. This happens for J < J. if p > 3, and for J sufficiently large if 2 < p < 3. Many of
our considerations involving rigorous bounds carry over to dimensions greater than two and to more general

short-range ferromagnetic interactions.
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I. INTRODUCTION

In this paper, we continue our study of the ground state
(GS) of lattice spin systems with competing ferromagnetic (F)
and antiferromagnetic (AF) Ising-type spin interactions. See
Refs. 1-4 for previous results. Such systems are simplified
models of real systems with both short-range attractive
interactions and long-range dipolar-type interactions. The
competitive nature of these interactions is believed to be re-
sponsible for the formation of mesoscopic periodic structures,
such as stripes, in many quasi-two-dimensional (2D) systems
at low temperature (see Refs. 5-15 for several examples
of spontaneous pattern formation in physical systems with
competing interactions). See, also, Refs. 16 and 17 where
such competition is held responsible for the development
of macroscopic patterns in chemical and biological systems
described by reaction-diffusion equations.

While it is simple to understand that the competition
between interactions acting on different length scales can
give rise to mesoscopic structures, it is very difficult to
predict the optimal shape of these structures. The problem
of determining the optimal shape and mutual arrangement of
these domains has been addressed in the past by a variety
of numerical and theoretical techniques, ranging from Monte
Carlo simulations,'®2° variational computations and energy
estimates,>2° functional analytic estimates,?”28 mean-field
theory and self-consistent equations,”*=3? effective field theory,
thermodynamic stability and local density approximation,*3—3°
scaling arguments,’” and renormalization group.*®° Similar
methods have been used to predict the shape and size
dependence of these structures on experimental parameters
such as temperature*®? or, in the context of thin magnetic
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films, the sample thickness,20* the out-of-plane uniaxial
anisotropy,** or an external magnetic field.*** However, a
fundamental understanding of the microscopic mechanism
leading to a self-organized periodic pattern is still missing.
Even at a heuristic or numerical level, the preferred pattern
is often very difficult to identify due to the proliferation of
quasidegenerate states and the slow glassylike approach to
equilibrium.*7-3!

Here, we show for a large class of interactions that stripes
are energetically favorable as compared to other natural
structures, such as the rectangular or square checkerboard,
by a combination of variational estimates, rigorous upper and
lower bounds, and by analytical comparison of the energies
of different patterns. The Hamiltonians we consider have the
form

1
H = 5 Z[—J S\X—y\,l +ev(x— Y)](Gxay -1
X#£Y
1
=3 ;db(x —y)oxoy — 1), (1
XAy

where x € Z4, oy = +1 are Ising spins, J and ¢ are two
positive constants (the strengths of the F and AF interactions),
v is a non-negative potential, symmetric with respect to 90°
rotations and summable. In the following, we will be mostly
concerned with d = 2 and v of infinite range. The constants
J and ¢ will be thought of as being “large” and “small,”
respectively.

The goal is to understand the zero-temperature phase
diagram as the ratio J /¢ is varied. If ¢ = 0, the ground state is
ferromagnetic. In the opposite limit, that is, J = 0, the ground
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state displays some nontrivial alternation between positively
and negatively magnetized domains; e.g., if v(x) = |x|77,
p > d, then the ground state is the period-2 antiferromagnetic
Néel state.’®> As the ratio J/e is increased from zero to
large values, the GS changes to reduce the number of
antiferromagnetic bonds. This can be achieved by generating
uniformly magnetized structures of larger and larger length
scales. It is often assumed that the ground-state configurations
are periodic, and display either checkerboard or striped order,
depending on the specific choice of the interaction and the
value of J. In Ref. 24, it was shown that, for v(x) = |x|~> and
J large enough, the optimal striped configuration has lower
energy than the optimal checkerboard configuration (contrary
to the erroneous conclusions of Ref. 21, where a similar
computation was performed). This leads to the conjecture [still
unproven, but supported by several numerical works (see, e.g.,
Refs. 20,22, and 23)] that the ground-state configurations of
Eq. (1) with v(x) = |x| = and J large display periodic striped
order.

There is also evidence for the fact that the sequence of
transitions to the ferromagnetic phase has some universal
features,®>3% and that the emergence of stripes is essentially
independent of many details of the F and AF interactions.
However, the reason for this is still unclear and puzzling
because stripes break the symmetry of the lattice.

In this paper, we prove that striped patterns are favored,
within a natural class of variational states, when the scale
of the GS structure is very large compared to the range of
the FM interaction. A simple explanation of this fact can
be based on the concept of corner energy, which suggests
that the intersection points among straight phase separation
lines can be thought of as elementary excitations of the
system with positive energy, at least in the case that the
AF interaction decays faster then r—* at large distances. Our
argument is substantiated by explicit computations in the
simple case that the AF interaction depends on the Manhattan
(L") distance between sites and decays as r 7, p > 2, at large
distances.

The rest of the paper is organized as follows. In Sec. II, we
introduce the notions of line and corner energies and present
our argument explaining why stripes are favored as compared
to checkerboard when the AF interaction decays at infinity
faster than »~* and the scale becomes very large compared to
the lattice spacing. In Sec. III, we present detailed analytical
computations of the stripe and checkerboard energies in cases
where the AF interaction depends on the Manhattan distance
between sites and decays either exponentially or as a power
law r=7, p > 2. In Appendix A, we rigorously compute
the critical strength J. of the FM interaction separating a
FM from a non-FM phase, when the AF interaction decays
at infinity faster than r—3. In Appendix B, we prove that
power-law interactions depending on the Euclidean distance
between sites are reflection positive. This implies that, if the GS
consists of stripes, it will be periodic. Finally, in Appendix C,
we discuss in some more detail the zero-temperature phase
diagram of the model when the AF potential is an exponential
Kac interaction; in this case, we have evidence for a transition
from checkerboard to stripes as J is increased from zero to J..
The conjecture is verified by rigorous upper and lower bounds
on the GS energy.
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II. LINES AND CORNERS

In this section, we show that the formation of stripes of
mesoscopic size in d = 2 is essentially independent of the
nature of the AF interaction in Eq. (1), as long as it is long
range and falls off faster than |x| ™, i.e., 0 < v(x) < K|x|~*~¢
for some constants K,§ > 0. According to this argument, the
occurrence of stripes is related to the sign and the relative sizes
of line and corner energies, which we now define.

Consider a system in a square box of side length L with
half the spins up and half down, separated by a vertical line,
called an antiphase boundary. When the falloff of v is faster
than |x| 3, the energy divided by L will have a nice limit as
L — oo, which is defined to be the line energy 7:

r=-2lm L ) Y dx-y». @

—L/2<x;<0 1<y <L/2
I1<x <L I<y.<L

The energy per unit length t has the interpretation of surface
tension of an infinite straight line, and is linear in J, i.e.,
T = 2(J — J,) for a suitable positive constant J,.

At J = J,, the surface tension of an infinite straight line
vanishes and there is coexistence of the FM ground state with
the ground state corresponding to a single isolated antiphase
boundary. It is intuitive that, for all J > J., the ground
state is ferromagnetic, since the energies of ferromagnetic
contours (or, at least, of straight FM contours) are positive.
See Appendix A for a proof of stability of the FM state against
arbitrary contours. For J < J., the GS is certainly not FM,
because the system reduces its energy by producing antiphase
boundaries.

Next, we define a corner energy « by first taking two
crossed, vertical and horizontal, antiphase boundaries in the
box of size L. The energy of this configuration is, to first
approximation, 2t L. The difference between this energy and
27 L has a limit as L — oo whenever the falloff of v is faster
than |x|~*. This difference is the corner energy «, and is given
by the formula

k=4 Y px—y+4Y DY sx-y, O

x€Q) ye0s XEQr yEQ4

where Q1, Q,, 03, and Q4 are the first, second, third, and
fourth quadrant in Z?, respectively. Note that « does not depend
on the nearest-neighbor interaction energy and is therefore
positive for the Hamiltonian in Eq. (1).

We now observe that, if the GS is made up of a rectangular
checkerboard (not necessarily periodic), then it consists of a
mixture of horizontal and vertical lines, and hence has corners
where these lines intersect. To lower the energy, one can re-
place the horizontal lines by the same number of vertical lines,
thereby eliminating the corners. While the increased density
of vertical lines increases the energy, the saving on the corners
more than makes up for it when the scale is large enough
and J < J..In fact, consider a configuration of sparse straight
lines, all typically at a mutual distance larger than R >> 1. The
interaction energy of any vertical (resp. horizontal) line in a
square box of side L with all the other vertical (resp. horizontal)
lines is positive and smaller than (const) L R~!%, which
follows from the fact that 0 < v(x) < K|x|~#7%. Similarly, the
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interaction energy of any corner with all the other corners is
negative and smaller in absolute value than (const) R~%. There-
fore, the total energy E 5 of a configuration of widely separated
straight lines in a square box A C Z? of side L has the form

Ep =[t+ OR'"™)IM, + Ma)L + [k — O(R™°)] M M,
)

where M, (M,) is the total number of horizontal (vertical) lines
and we recall that the line energy v = 2(J — J,) is negative
for the considered values of J, J < J.. Equation (4) shows
that, for given M = M| + M, of order L/R, it is energetically
favorable to have M| M, < L*/R?. In fact, if the number of
corners was ~ L2/R?, than we could decrease the energy by
rotating all the vertical (horizontal) lines by 90°, making them
horizontal (vertical) and placing them halfway between the
existing horizontal (vertical) lines. The decrease in energy
due to elimination of the corners would be of the order
L?/R?, while the increase, due to increased repulsion energy
between lines, would be of the order L2 / R**3_ which is much
smaller. Therefore, after this rotation, the final configuration
would have an energy equal to [—|t|+ O(R™!=5)(M, +
M>,)L, which is strictly smaller than the one of the initial
configuration. From this expression, it is apparent that the
optimal line separation, which can be computed by balancing
the line energy with the repulsion energy between lines, is of
the order R ~ |r|'/0+9  Therefore, having R large requires
having |t| small, that is, J sufficiently close to the critical
value J.. This also indicates that the GS energy per site scales
as —|7|+9/0+9) at small negative values of 7. By the methods
of Appendix A, we can prove a rigorous lower bound, showing
that the actual GS energy scales exactly as —|t|?9/0+9 for
7 small and negative. This is a strong indication for stripes in
the parameter range under consideration.

The previous discussion shows that corners play the role
of elementary excitations, with a positive energy cost, which
can be eliminated by rotating straight lines by 90°. A similar
analysis shows that also the “half corners” produced each time
that a nonstraight antiphase boundary has a 90° turn have a
finite positive cost. Therefore, we can give a similar argument
to exclude the presence of large isolated rectangles in the GS.
We are, however, not able to exclude the presence of more
complicated “excitations” in the GS.

Regarding the condition on the large distance decay of
the AF interactions, we do not think it is sharp. However,
in the general case, the balance between the corner and line
energies is much more subtle. In fact, if the decay of the
AF potential is ~r~7, 2 < p < 4, then the corner energy
is formally infinite; however, corner-corner interactions have
an oscillatory sign and such oscillations make the effective
energy of each corner finite and approximately proportional to
R*7Pif2 < p < 4, where R is the distance to the neighboring
corner. It is straightforward to check that, if the corners have
a finite density, then their contribution to the specific GS
energy is comparable to the line-line interaction and of the
order of R>7P, where R is the typical separation between
lines. Therefore, by rotating the vertical lines by 90°, we
gain the corner energies and lose some line-line interaction
energy, both of the order (const)R?>~7L?; to decide whether
the saving makes up for the loss, we need to compute the
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constant prefactors. This will be done analytically in the next
section, in the special case of AF interactions depending on
the Manhattan distance between sites. The computation shows
that, when we rotate the vertical lines by 90° and eliminate the
corners, the saving overcomes the loss for all p > 2. It remains
to be seen whether this saving is an accident of the specific
model considered below or whether there is a general physical
reason behind the result.

We note that in the special case that the AF interaction is
reflection positive,’? given that the configurations entering the
GS are all straight vertical (horizontal) lines, then they have
to be periodically arranged. This follows from the analysis in
Refs. 1-4.

III. COMPARISON OF THE STRIPE
AND CHECKERBOARD ENERGIES

In this section, we perform explicit analytic computations of
the energies of the stripe and checkerboard states for different
choices of the falloff of the long-range AF potential. We focus
on the (analytically) simple case of interactions depending on
the Manhattan (L) distance ||x]||; := |x1| + |x2| between sites.
Our calculations complement and simplify those in Ref. 24.

Let us consider Eq. (1) withd =2,¢ =1, and

v(X) = / ” do p(a)e Xl (5)
0

with u(a) a positive measure. We will be particularly con-
cerned with two cases:

(i) exponential interactions v(x) = y2e~"!XI' correspond-
ing to the choice u(a) = y28(a — y) in Eq. (5);

(i) power-law interactions v(x) = ||x||1_"7 , with p > 2, cor-
responding to the choice u(o) = ocp’l/ I'(p) in Eq. (5).

As mentioned above, the choice Eq. (5) is made to simplify
the computations; choosing Euclidean rather than Manhattan
distance should not make a difference from the physical point
of view. Let us remark that the potential in Eq. (5) is reflection
positive’* and so is the (more usual) power-law potential
v(x) = |x|77, with |x] = v/x7 +x7 the Euclidean distance
(see Appendix B). The property of reflection positivity is not
explicitly used in the computations below but, as observed at
the end of previous section, it implies that if the GS consists
of stripes, then these must be regularly spaced (see Refs. 1-4).

Let s,(x) be the one-dimensional (1D) profile of period
2h, obtained by extending periodically over Z the function f :
(=h,h] — R such that f(x) = sign(x — 1/2) for x = —h +
1,...,h. Let e.(h) be the specific energy of the checkerboard
configuration oy = s;,(x1)s,(x2), and let es(h) be the specific
energy of the striped configuration oy = s;(x;). We start by
computing the specific energy e(hi,h;) of the “rectangular”
configuration sy, (x1)ss,(x2). We have

2J 2J 1 e
eth hy=2T 120 _ fdwm
P T g S,

% Z Z e—a\xl—yl\e—am—yz\x(ax + oy),

1<x<hy yez?

1<x2<hy

(6)

064205-3



GIULIANI, LEBOWITZ, AND LIEB

where x (condition) is = 1 if the condition is satisfied and = 0
otherwise. After some straightforward algebra,

[ Y tanh(ah, /2)

2 2J * do
hi)="+""12[ =
e(hy,ha) +—+ /0 " p(e) ahy /2

hy hy

_ tanh(ah,/2) tanh(ah;/2) tanh(ah,/2)
“ ahy/2 “ahy )2 ahy/2 |
@)
where
3 4
Aa:(a/g) cosh(a/2) _ .(a/2) ' @®)
sinh®(«r/2) sinh*(/2)

Note that, for small o, Ay ~ 1 — (1/15)(e/2)* and By, ~ 1 —
(2/3)(a/2)?, which will be useful in the following.

Using Eq. (7), we see that the energy of a striped
configuration of period 4 is equal to

4 o0 h 4
es(h/2)=71+2/ i—fn(a)[—zAa%}, ©)
0

while the one of a checkerboard configuration of period 24 is

4 %0 h(ah /2
ey = 4 2/ Z—‘;‘ ,u(oz)|: _ g4, tanh@h/2)
0

h ah)2

(10)

o

tanh®(cch /2)
(@h/2)* |
It is interesting to note that the various terms in Egs. (7), (9),
and (10) have a clear interpretation in terms of the notions of
“line energy” and “corner energy,” introduced in Sec. II. In
fact, looking at Eq. (7), the terms proportional to J correspond
to the FM surface tension energy; the integral terms with
the integrand proportional to A, correspond to the AF line
energy (including both the negative AF surface tension and
the repulsive line-line interactions); the integral term with the
integrand proportional to B, corresponds to the AF corner
energy (including both the positive corner self-energy and the
attractive corner-corner interactions). The analogous terms in
Egs. (9) and (10) have a similar interpretation; note that e.(h)
includes a positive contribution from the corner energy, which
does not appear in ez(//2), while the contribution from the
line energy is smaller than the corresponding one in e;(h/2).
As we discussed above, the goal is to find the balance
between these terms when the scale of the relevant structures
is large compared to the lattice spacing. We will, in fact, show
that when 2 > 1, then e.(h) > ez(h/2), which is equivalent to

1 /00 da VB tanh?(ach /2)
1)y @M PGy

* da tanh(ah/2) — tanh(ah /4)
>/ _zﬂ(a o Ol]’l/2 )

implying that the GS is striped. This will be proved below by
treating separately the cases of exponential interactions and of
power-law interactions, withp > 4,p =4,3 < p <4,p =3,
2 < p < 3 (which are listed here in the order of increasing
difficulty).

Y
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Remark. Even though Eq. (11) does not involve the
parameter J, the condition that the scale % of the GS structures
is large compared to the lattice spacing is satisfied only if J is
chosen properly. More precisely, as discussed in Sec. II (see
also Appendix A), if the AF interaction decays faster than r 3,
then there exists a finite J,. such that the homogeneous FM
state is the GS for all J > J,; in this case, the condition that
h > 1 is valid in the range J < J.. On the contrary, if the
decay of the AF interaction is equal to 7 or slower, then the
condition & > 1 is verified for all J > 1. The results below
are relevant for J belonging to these ranges.

A. Exponential interactions and power laws with p > 4

If the AF interaction decays exponentially or as a power
law with p > 4, then we already know from the analysis in
Sec. II that e.(h) > e;(h/2) for all & > 1. For completeness,
let us check this analytically, using Eq. (11). In the case of
exponential interactions, the condition reduces to

tanh(y h/2) — tanh(yh/4)
yh/2 ’

1 tanh®(yh/2)
5B, > Ay
2 (vh/2)?

which is obviously satisfied for 4 large, simply because the
left-hand side goes to zero as 22, while the right-hand side
goes to zero exponentially fast in 4. In the case of power-law
interactions with p > 4, the left-hand side of Eq. (11) can be
rewritten as

12)

1 /°° Jea” B tanh®(cch /2)
0

2 (ah/2)?

= 2 [ dwarsp, (- 13
_ﬁo oo «\ =2 ) (13)

while the right-hand side is
/ * daqr-t 4, A00(@R/2) — tanh(ah/4)
0

ah/2
1 o _5 tanh(a/2) — tanh(a/4)
= do o?
hr=2 Jo a/2
where, in estimating the error term of order 47 —2_we used the
fact that |[A, — 1] < Ca* for a suitable constant C. Therefore,

Eq. (11) is valid, simply because 7=2 > h=?%2 Vp > 4 for h
large.

1

(14)

B. The case p =4

This case is very similar to the previous one. In fact, the
right-hand side can be rewritten and estimated exactly as in
Eq. (14), with p = 4; in particular, it is ~ h~2. The left-hand
side can be rewritten as

1 /Ood B, tanh?(ach /2)
2 Jo (ah/2)?

2 U da 1
= = — tanh®*(¢h/2)+ O | —
i /l/h " anh”“(ah/2) + <h2>

+0(5):

logh
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Therefore, Eq. (11) is valid simply because A~%logh > h™>
for h large.

C. The case p < 4

If p <4, the proof of Eq. (11) is slightly more subtle
because both sides of the inequality scale in the same way
as h — oo. In fact, the left-hand side can be rewritten
as

2
l/wdaap_sBatanh (Olh/z)
2 )y («h/2?

1/2\r-2 [ tanh® o 1
__(z p—3 _
_2(h> /0 daa " +0<h2>, (16)

while the right-hand side reads as

/OO daa?—3 A tanh(ah /2) — tanh(ah /4)
ao a
0 ah/2

2\p=2 [ _, tanh o — tanh(a/2) 1
—(Z p=3
_<h> /0 dao " +0 Wiz )

a7

Therefore, both sides of Eq. (11) scale as ~ h?>~? as h —
oo. The inequality is asymptotically valid if and only if the
following condition is true:

1 [ tanh® o
Z daoo? 32—~
2/0 ao " >
(18)

This inequality can be checked numerically in the different
ranges 3 < p <4, p=3,and 2 < p < 3. In fact, if p =3,
Eq. (18) is equivalent to

foo doreP=3 tanh @ — tanh(a/2)
ao .
0 o

1 [ tanh® «
—/ da =0.85256... >1og2 =0.69315....
2 0 (x2

19)

If 3 < p < 4, Eq. (18) is equivalent to

1
3 /g%zaaf’—S tanh’> o > (277° — 1) | *da a?~*(1—tanha).

(20)

In the limiting case p — 37, Eq. (20) is equivalent to Eq. (19),
as it should. In the limit p — 47, Eq. (20) is obviously valid
(because the right-hand side tends to a constant, while the
left-hand side diverges to +-00). The validity of Eq. (20) for all
values of p in the interval (3,4) can be checked numerically
(see Fig. 1).

Finally, if 2 < p < 3, Eq. (18) is equivalent to

1 o0 o0
3 / da P tanh® o > (1 — 2P73) / da o’ *tanha.
0 0
21
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3.0 32 3.4 3.6 3.8 4.0

FIG. 1. A plot of the difference between the right- and left-hand
sides of (20) vs p, which proves that e;(h/2) < e.(h) forall3 < p <
4, and h large enough.

In the limit p — 37, condition (21) reduces to Eq. (19),
as it should. In the limit p — 2%, condition (21) reduces
to

0 tanhe  tanh’« 1
log?2 > da — — log2+ =
0 a? a’ 2

tanh® o
o2

oo
= 1.193 147...>/ do =1.154785....
0

(22)

The validity of Eq. (21) for all values of p in the interval (2,3)
can be checked numerically (see Fig. 2).

This concludes the proof that e.(h) > e;(h/2), whenever h
is large, for all power-law decays with exponent p > 2 and
for exponential interactions. An immediate consequence of
this analysis is the following: let e} (J) = minjen e,(h) and
e’(J) = minyeN e.(h) be the optimal stripe and checkerboard
energies at a given J; then, if the AF interaction is either
exponential or power law with p > 3, we have e} (J) < eX(J)
for all J. — J positive and small enough; if the AF interaction
is power law with 2 < p < 3, then e} (J) < ef(J) for all J
large enough.

0.15

0.10 -

2.0 22 2.4 2.6 2.8 3.0

FIG. 2. A plot of the difference between the right- and left-hand
sides of (21) vs p, which proves that e;(h/2) < e.(h) forall2 < p <
3, and & large enough.
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In conclusion, we showed for a two-dimensional spin
model with competing short-range (nearest-neighbor) FM and
long-range AF interactions that stripes are favored with respect
to checkerboard when the GS structures are large compared
to the range of the FM interaction. If the AF interaction
decays faster than r—*, the emergence of stripes close to the
transition to the FM phase can be understood on the basis of
a comparison between the sign and relative sizes of the corner
and line energies, which is independent of the details of the
AF interaction. If the decay at infinity of the AF interaction is
slower, then the balance between corner and line energies is
more subtle, and the understanding of why stripes are favored
relies on explicit computations of the stripe and checkerboard
energies, which have been performed here in the simple case
that the AF depends on the Manhattan distance between sites.
We believe that future progress on the problem will come from
a deeper understanding of the reason that interactions that fall
off slower than »—* always seem to favor stripes.
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APPENDIX A: A RIGOROUS COMPUTATION OF J,

Let us assume that the long-range AF interaction decays
at infinity faster than =3, and let T = 2(J — J,) be the line
energy, as defined in Sec. II. Here, we want to prove that,
for all J > J., the homogeneous FM state is a GS of Eq. (1)
(and is the unique GS for J > J.). As already remarked in
Sec. II, for J < J., the homogeneous state is not a GS, simply
because the state with a single straight antiphase boundary has
negative energy. If J > J., we want to get a lower bound on
the energy of an arbitrary state, which is positive, unless the
state is homogeneous.

We proceed in a way similar to the proof of Theorem 3 of
Ref. 1. We need to introduce some definitions; in particular,
via the basic Peierls construction, we introduce the definitions
of contours and droplets. Given any spin configuration o ,
on the squared periodic box A, we define A to be the set of
sitesat whicho; = —1,i.e.,, A={i € A : 0; = —1}. Wedraw
around each i € A the four sides of the unit square centered at
i and suppress the sides that occur twice: we obtain in this way
a closed polygon I'(A), which can be thought as the boundary
of A. Each side of I'(A) separates a point i € A from a point
Jj & A. Atevery vertex of I'(A) N A*, with A* the dual lattice
of A, there can be either two or four sides meeting. In the
case of four sides, we deform slightly the polygon, “chopping
off” the edge from the squares containing a negative spin.
When this is done, I'(A) splits into disconnected polygons
I'y,...,I’, which are called contours. Note that, because of
the choice of periodic boundary conditions, all contours are
closed but can possibly wind around the box A. The definition
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of contours naturally induces a notion of connectedness for
the spins in A: given i,j € A, we shall say that i and j are
connected if there exists a sequence (i = ig,if, ... i, = j)
such that i,,,i,+1, m =0,...,n — 1, are nearest neighbors
and none of the bonds (i,,i,,+1) crosses I'(A). The maximal
connected components §; of A will be called droplets and the
set of droplets of A will be denoted by D(A) = {6y, ... ,d,}-
Note that the boundaries I'(§;) of the droplets §; € D(A) are all
distinct subsets of I'(A) with the property Ui_;T"(§;) = I'(A).

Given the definitions above, let us rewrite the energy
Ex(g,) of o, in a box A C Z* with periodic boundary
conditions as

Ex(on)=2J Y ITI—= ) Eap®),

rer(a) 3eD(A)

(AD)

where  Egip(8) := 26 3 s > cac V(X =), which can be
bounded from above as

Egp(®) =2¢ ) vm) Y x(x—y=n)

neZ? Xed yeAc
<2 ) um) Y xx—y=n). (A2)
neZ? Xed yeZ2\8

Now, the number of ways in which n = (n;,n,) may occur as
the difference x —yory —x withx € § and y ¢ 6 is at most
Zrer(a) Ziz:l |T|;|n;|, where |T'|; is the number of faces in I"
orthogonal to the ith coordinate direction. Therefore,

2
Egp@®) <& Y Y vm)) [Tlin

I'el'(6) neZ? i=1
=2 Y IT| Y mum=2J Y [T
rer() neZ?: rer()
n;>0
(A3)
Plugging this back into Eq. (A1) gives
Engn) >2(J =) Y IT], (A4)

Tel(A)

which readily implies that the uniformly magnetized state is a
GS for all J > J, and that it is the only GS for J > J..

As remarked in Sec. II [see the paragraph after Eq. (4)], the
same method leading to Eq. (A4) allows us to prove that,as T =
2(J — J.) tends to zero from the left, the specific ground-state
energy scales as —|7|?T9/0+9 which is the same scaling as
the optimal stripes energy for T small and negative. However,
we will not belabor the details of this computation here.

APPENDIX B: REFLECTION POSITIVITY OF
POWER-LAW INTERACTIONS
In this appendix, we prove that v(x) = |x|~7, with p > 0
and |x| = |x|, = xlz + x% the usual Euclidean distance, is

a reflection-positive (RP) potential, which may be a useful
remark for a possible future proof of the periodicity of the GS
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of Eq. (1) with v(x) = |x|~7. We recall that v is RP if, for all
compactly supported functions f : Z> — C,

Yo Afvi4y—lxn—y) >0 (B

xp,y=1

X2, 2€Z

By Schur’s product theorem, pointwise products of RP
potentials are reflection positive. Therefore, in order to prove
that |x|~” is RP for all p > 0, it is enough to show that |x|~!

and |x|™*, with 0 < A < 1, are separately RP. If v(x) = |x|~!
and x; > 1,
1
v(xy,x2) = N
,/xl + x5
+00 +00 +00 th1+tpxz
= dk d
2712 oo /oo p/oo e rte

_ dp IPXZ » +q
2 s rre

(B2)

from which (B1) readily follows. If v(x) = |x|~*, with 0 <
A < 1, then (B1) follows if we prove the stronger result

/ dx]/ dylfwdx /+°°

if p(x) is a smooth compactly supported real function, with
support contained in R? \ {x; = 0}, and such that p(—x,x;) =
o(x1,x2). Using the Fourier transform of |x|™* (see, e.g.,
Ref. 57, Theorem 5.9]), and proceeding as in Ref. 58, we
can rewrite the left-hand side of (B3) as

1 F 1— >
2)7-[ 1" /];{2 /xl y1>0

x2,meR

p(X)p(|yA) >0, (B3)

ek nty) pika(x2—y2)
1—2/2
(k? + K3)
We observe that, for fixed x; + y; > 0 and k;,, the function
ety (k2 4 k2y=14%/2 ig analytic in k; in the upper half
plane with the cut {it : T > |k;|} removed. Deforming the

contour of integration in dk; to this cut and calculating the
jump of the argument across it, we obtain

/+00 eikiatyn)
dky————55
oo (k12+k%)l A2

xdxdy p(x) p(y). (B4)

00 e~ Tty
—2sinfr(1 —2/2)] | di—5— . (BS)
o ()

Plugging this back into (B4), we find

l-ap(1 =2
[ s 2200 2L g1 - 2/20

x—y* 7 T(3)

X2, VzER
fdszk 1 /2 /xl,wo
x2,y2€R
x dxdy[p(x)e—”'*ka"Z]Wy)e—”'—"km], (B6)
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which is clearly non-negative. This concludes the proof that
|x|~7 is reflection positive for all p > 0.

APPENDIX C: KAC INTERACTIONS

In this appendix, we add some comments about the possible
structure of the GS of Eq. (1) in the case that v is a 2D Kac
potential, i.e., v(x) = y?vg(yX), with y a small parameter.
These may be relevant for the understanding of the “froth
problem,” addressed by Lebowitz and Penrose in Ref. 59. To
be definite and make things simple, we restrict to the case of
exponential interactions depending on the Manhattan distance:
v(x) = y?e VX Tn this case, J. =2y~'A, and, if J > J,
the GS is the homogeneous FM state.

From the computations in Sec. III, we already know that,
as J — J, the stripe state is energetically favored as com-
pared to the checkerboard state. If ¢ (J) = minyen e,(h) and
eX(J) = minyeN e.(h) are the optimal stripe and checkerboard
energies, an explicit computation shows that, if 0 < & :=

y(Je—J) <1,
e e B
g 2 g 1
* —__> —1/8\.
€)= —gg 0

correspondingly, the scales /5 and h of the optimal stripe and
checkerboard configurations turn out to be

yhi 2B, iy
=—+4+0 ,
2 & (e )
. yht

!
q; = 2‘ = 5 |log&] + Odlog|log&)).

Using methods similar to those in the proof of Ref. 1, Theorem
3, it is easy to prove that for £ small the scaling of e} (/) is the
optimal one; i.e., the absolute ground-state energy per site eq
admits a lower bound of the form ey > —(const)¢|log&|~".

It is interesting that the model with exponential Kac inter-
actions also displays a phase where mesoscopic checkerboard
are energetically favored with respect to stripes. In fact, note
that the periods of the optimal checkerboard and striped states
are given by

q; =
(C2)

hqc

yJ= <2A -2B, )[tanhqf—q:(l—tanh2 gH], (C3)

L'

yJ =2A,[tanh g’ — ¢*(1 — tanh® ¢})], (C4)

from which we immediately recognize that, if y « 1 and
1 < J <« y~!, then h¥ and h¥ are both < y~!; therefore, the
solution to these equations can be determined by expanding
their right-hand sides in Taylor series in g and solving to
dominant order, which leads to

he o (9y I\~
yzc = <%) + 0Lty A,
10 9y J\*?
=2+ 9( Z > + Ol(y 1)1,
vhi _ (3vI\"
T:<T> + 0y J),

AN
e =-2+ 2(”T> + Ol(y )],
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FIG. 3. (Color online) A plot of the optimal checkerboard energy
eX (solid line) and of the optimal striped energy e; (dashed line)
vs J := yJ for exponential Kac interactions v(x) = y2e "Xl at
y = 0.4. The plot shows a transition from a case where e} < e} (for
small values of J) to a case where eX > e; (for larger values of J).In
the limit y < 1, the transition is expected to occur for J of the order

y

Therefore, in this regime, the specific energy e of the optimal
checkerboard configuration is smaller than the specific energy
ey of the optimal striped configuration. This suggests that,
for any fixed J and y small enough, the ground states of
the considered model display periodic checkerboard order, a
conjecture supported by the fact that the absolute ground-state
energy per site admits a lower bound of the form ey > —2 +
(const)(y J)*/>, which has the right scaling (see below for a
proof).

In conclusion, if the AF interaction is exponential with a
Kac-type scaling, we expect that as J is increased from 0 to
J., the GS should display a transition from checkerboard to
stripes. On the basis of the previous computations, we expect
the transition to take place at values of y J of order one (see
Fig. 3).

Remark. The scaling of the checkerboard energy as well
as the very existence of a checkerboard phase may depend
on the specific choice of the Kac potential. In particular, it
may depend on the reflection-positivity property of the Kac
potential (note that the considered exponential interaction is
reflection positive); if vy is smoother at the origin [e.g., vo(X) =
¢~], the checkerboard phase may disappear or, at least, be
characterized by a completely different scaling behavior. The
reason for this is already apparent in a 1D toy model: consider
model Eq. (1) in d = 1 with v(x) = yvo(yx) and vy either of
the form vy(x) = e~ or vo(x) = e~*"; if one optimizes the
energy of a configuration consisting of blocks of uniformly
magnetized spins of size & and alternating sign, the optimal
size turns out to be of the order y~>/? in the exponential
case and y~!/|log y| in the Gaussian case. This can be seen
as follows: The scale of the optimal periodic structure can
be found by balancing the energy contributions from the FM
and AF interactions; while the first is 2J/ h, the second is of
the order of 7y(1/y h), with 0y the Fourier transform of vy; the
latter depends on the smoothness properties of vy and, more
specifically, it behaves like 9o(k) ~ k2 or ~ ¢~V 4t Jarge
k, in the cases of vy exponential or Gaussian, respectively.
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Minimization of 2J/h + 0o(1/yh) over h gives the optimal
size of the structures.

The fact that the nature of the checkerboard structure
depends on the reflection-positivity properties of the Kac
potential is consistent with the fact that the proof of the lower
bound on the energy in the Kac regime heavily uses reflection
positivity (see next section).

1. Lower bound on the energy: Kac regime

Let us assume that 1 < J « y~': In this case, we want to
prove that ey > —2 + (const)(y J)*3, which asymptotically
matches the upper bound ey < e} and supports the conjecture
that, in this regime, the ground state has checkerboard order.
Let EA(c,) be the energy of the spin configuration o, in
the periodic squared box A. Let us consider a partition of A
into squares Q; of side £: A = Uy:\\l/zz; given o, and Q; we
shall denote by o, the restriction of the spin configuration
a5 to the square Q;. Let v} (x) = y* ), .72 e77 L1 and let
us rewrite

(v /2)*
tanh?(y /2)

where E;\(QA) = % Zx,yeA U)I/\(

romagnetic energy associated to o,, while E?(g A =

Ex(g,) =2 |Al+ E)(a,) + Ef(@y), (C5)

X —y)oxoy is the antifer-

27 wen Z,’Z=1 x (0x # Ox4¢,) is the surface tension energy of
o , inthe box A with periodic boundary conditions. If we drop
the surface tension energy across the boundaries of the squares
Q;, we get a lower bound on the energy of the form

|Al/€?

A+ ENp)+ Y Efi(ay)
i=1

(/2
Enlen) 2 _ztanhz(y /2)

(Co)
where E JQ’ (0 p,) 1s the surface tension energy of the spin con-
figuration o, in the box Q; with open boundary conditions.

If m; := £72 Y xe 0,(@ 0, )x, the surface tension energy can be
further bounded from below by

E?i(gg,.) > 2J¢min{1,2/2(1 — |m;])} .

Moreover, using reflection positivity,”” the antiferromagnetic
energy can be bounded from below as

€N

|Al/€2

ENay) =0 ey(op) (C8)
i=1

where ¢, (c,,) is the specific energy of the infinite volume
configuration obtained by repeatedly reflecting o, (with
“antiferromagentic reflections”) across the sides of Q; and
its images. More explicitly,

2
@) =17 D

p=7(n1,n2)
n;=1,3,5,....2¢—1

15122 (1 — e72)?

2
1

X ,

il] (1 —e7)2+2e7(1 —cos p;)

(€9
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where oj, =) 0; oxe~'PX, Using the fact that, for all ¢ > 0,
41— ¢)

41 1 )2
|Up| (1 — cos p1)(1 — cos p2) sg (L= Jmil)", (C10)
we get
1
ey(ag) = (1 —#)ey(lg,) — (consn—(1 — Imi)*(y )°,

(C11)

where e, (1,,) is the antiferromagnetic energy per site of
the checkerboard configuration with tiles of side ¢. Note
that e,(1,,) scales as (const)(y£)* in the regime under
consideration and for £ > 1; moreover, it can be bounded
from below by C(y£)* for a suitable constant C. Optimizing
over ¢, we get

> e, (L) — c(l = Imi)(y &) (C12)

for a suitable constant c¢. Combining all the previous
bounds, we find that E (o ) 4 2(y/2)* tanh~2(y /2)| A| can

€y (Q'Ql)

PHYSICAL REVIEW B 84, 064205 (2011)

be bounded from below by

lAl/€?

22 Z {—Jmm{l 2/2(1 = |m;|)}

+[C — (1 — |m,-|)]<yfzr‘} : (C13)
Optimizing over m; and £ leads to £ = (const)(Jy ~*)!/> and
()’/2)2 4/5
> —2—————|A| + (const)(yJ / Cl14
0 tanhz(y/2)| |+ ( Yy J) (C14)

as desired. The proof of (C14) can be easily adapted to higher
dimensions and to cases where the ferromagnetic interaction
has finite range rather than being nearest neighbor. On the
contrary, the assumption of RP was used in a crucial way and
it is likely that, in the presence of more general long-ranged
antiferromagnetic interactions, the ground-state energy scales
differently with y.
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