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Coulomb gap in the one-particle density of states in three-dimensional
systems with localized electrons
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The one-particle density of states (1P-DOS) in a system with localized electron states vanishes at the Fermi
level due to the Coulomb interaction between electrons. The derivation of the Coulomb gap uses stability criteria
of the ground state. The simplest criterion is based on the excitonic interaction of an electron and a hole and leads
to a quadratic 1P-DOS in the three-dimensional (3D) case. In 3D, higher stability criteria, including two or more
electrons, were predicted to exponentially deplete the 1P-DOS at energies close enough to the Fermi level. In this
paper, we show that there is a range of intermediate energies where this depletion is strongly compensated by
the excitonic interaction between single-particle excitations, so that the crossover from quadratic to exponential
behavior of the 1P-DOS is retarded. This is one of the reasons why such exponential depletion was never seen in
computer simulations.
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I. INTRODUCTION

The study of localized, interacting electrons in a disordered
system has been a source of interesting physics for nearly
half a century. The canonical example of such a system is
a lightly doped, compensated, n-type semiconductor, where
electrons become localized on donor sites.1 The study of
electron-electron interactions in the localized regime was
initiated by Pollak2 and Srinivasan.3 Efros and Shklovskii4,5

later argued that the single-particle density of states (1P-DOS)
g tends to zero at the Fermi level as a result of the long-range
part of the Coulomb interaction between electrons. They
proposed the following universal soft gap in the 1P-DOS
near the Fermi level at temperature T = 0, which is called
the Coulomb gap and depends only on the dimensionality D

of the system:

g(ε) = 2

πe4
|ε| for D = 2 (1)

and

g(ε) = 3

πe6
ε2 for D = 3. (2)

Here, the reference point for the energy ε is the Fermi level
and e2 denotes the square of the electron charge divided by the
dielectric constant. Equations (1) and (2) were derived for the
case when the bare DOS, which is the DOS without Coulomb
interactions, has a nonzero value at ε = 0.

The primary method for a quantitative, theoretical study of
the Coulomb gap is through computer simulations,6–14 which
mostly confirm the above results for the 1P-DOS. The most
important experimental manifestation of the Coulomb gap is
its effect on the variable-range hopping conductivity σ , which
as a consequence of the Coulomb gap obeys the law4

σ = σ0 exp[−(T0/T )1/2], (3)

observed in dozens of experimental works. Here, σ0 is
a constant and T0 = βDe2/ξ , where ξ is the localization
length and βD is a numerical constant that depends on the
dimensionality: β3 ≈ 2.81 while β2 ≈ 6.15,16

Equations (1) and (2) are derived from the requirement that
the ground state be stable with respect to the transfer of a
single electron from an occupied to an empty state. In this
introduction, we will just mention that this depletion of the
bare 1P-DOS is a result of the excitonic attraction of electrons
and holes near the Fermi level, which eliminates electrons and
holes with small |ε| that are close in space, pushing them to
higher energies. In other words, one can say that electrons
and holes that remain in the ground state and contribute to the
1P-DOS “intimidate” each other.

While Eqs. (1) and (2) reflect the effect of this first-order
stability criterion, a more challenging question is how the
1P-DOS is affected by higher-order stability criteria, in which
two or more electrons are transferred simultaneously. It has
been shown5 that such criteria do not significantly modify the
linear gap in the two-dimensional (2D) case [see Eq. (1)], but
they should modify the quadratic gap in the three-dimensional
(3D) case [see Eq. (2)]. Previous authors5,17 have suggested
that compact dipole excitations intimidate single-particle
excitations, thereby making the 1P-DOS exponentially small
in the limit of small enough energies. It was also understood
that this effect does not modify the law of variable-range
hopping conductivity [see Eq. (3)] because when dipole
excitations play an important role, hopping conductivity occurs
by multielectron excitations called electronic polarons, for
which the DOS always obeys Eq. (2).1,5,18 The depleted 1P-
DOS could, in principle, be seen in tunneling experiments.19

However, such strong, exponential depletion of the 1P-DOS
was never seen in computer simulations.6–14 For large simu-
lated samples, this is the case because computer simulations
are not able to reach the ground state of the system or
cannot enforce a sufficiently large number of higher-order
stability criteria. In this paper, we show that even for samples
where the ground state can be reached, the crossover from a
quadratic to an exponentially small 1P-DOS with decreasing
energy |ε| is strongly retarded. The reason is that the survival
probability P (ε) of single-particle excitations in the presence
of intimidating dipoles remains a weaker function of ε than
Eq. (2) over a wide range of energies. The crucial idea of
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this paper is that the bare DOS multiplied by P (ε) can be
considered as an effective new bare DOS. We show that
because of the remarkable stability of g(ε) with respect to
changes in the bare DOS, such modification produces only
a small effect on the 1P-DOS over a substantial range of
intermediate energies.

Finally, at even smaller energies, where the exponential
effect of dipoles reduces the modified bare DOS so strongly
that the mutual electron-hole intimidation plays a weak role,
the 1P-DOS decreases exponentially and is proportional to
P (ε). At present, computer simulations are not able to find the
ground state in systems that are large enough to explore such
small energies.

The remainder of this paper is organized as follows. In
Sec. II, we present the simple model Hamiltonian that is
used in most numerical studies of the Coulomb gap and we
discuss the role of mutual intimidation of single-particle exci-
tations, including its description by the self-consistent equation
(SCE).5,18 In Sec. III, we recapitulate old theoretical results
related to dipole excitations and their mutual intimidation.17

We then discuss the depletion of the bare DOS by surviving
dipole excitations,5,17 and we use this depleted DOS as a
bare DOS to solve the SCE for g(ε). In Sec. IV, we study
analytically the stability of the Coulomb gap for hypothetical
cases where the bare DOS follows a power law, and we confirm
all qualitative conclusions obtained numerically in Sec. III.

II. EXCITONIC EFFECT ON SINGLE-PARTICLE DENSITY
OF STATES

In order to remind the reader of the derivation of Eqs. (1)
and (2), we start from the model Hamiltonian:5

H =
∑

i

φini + 1

2

∑
i,j

e2

rij

(ni − 1/2)(nj − 1/2). (4)

The electrons described by this Hamiltonian are assumed to
occupy sites on a cubic lattice with lattice constant l. ni = 0,1
is the occupation number of site i and rij is the distance
between sites i and j . The quenched random site energies φi

are distributed uniformly within the interval [−Ae2/l,Ae2/l],
where A � 1 is some positive number, so that the bare DOS
created by the random site energies is the “box function”
g0(ε) = g00�[A − |ε|/(e2/l)]. Here, g00 = (2Ae2l2)−1 and
�[x] denotes the Heaviside step function. In order to make the
system neutral, each site is given a positive background charge
e/2. Due to electron-hole symmetry, the chemical potential
μ = 0. The single-particle energy at site i is given by

εi = φi +
∑

j

e2

rij

(ni − 1/2). (5)

At zero temperature (in the ground state of the system) all states
with εi < 0 are occupied and all states with εi > 0 are empty,
since the ground state must be stable with respect to transfer of
an electron from an occupied site to infinity or from infinity to
an empty site. This condition is only the first stability criterion
of the ground state. The second stability criterion considers
the transfer of one electron from some site i that is occupied

in the ground state to a site j that is vacant in the ground state.
The change in H resulting from such a transfer,

	ij = εj − εi − e2

rij

, (6)

must be positive for the stability of the ground state. The last
term in Eq. (6) reflects the simple fact that the ground-state
energy εj includes the potential of the transferred electron,
which initially was at site i.

One can see the origin of the Coulomb gap from Eq. (6).
Since εj > 0 and εi < 0, the first two terms give a positive
contribution to 	ij , while the third term is negative. Thus any
two sites i,j with energy close to the Fermi level should be
separated in space to keep 	ij > 0. To see how this produces
the Coulomb gap, consider sites whose energies fall in a narrow
band (−ε/2,ε/2) around the Fermi level. According to Eq. (6),
any two sites in this band with energies on opposite sides
of the Fermi level must be separated by a distance rij not
less than e2/ε. Therefore the concentration of such sites n(ε)
cannot exceed (ε/e2)D . Thus, the 1P-DOS g(ε) = dn(ε)/dε

must vanish when ε tends to zero at least as fast as εD−1.
In this way, we arrive at a simple upper bound for

the 1P-DOS. Applying the principle of the microcanonical
distribution to the disordered system we find that all states
except the forbidden ones are homogeneously distributed in
phase space. Thus the bound g(ε) ∝ εD−1 is an exact one
if we enforce only the criterion 	ij > 0. Applying all other
stability criteria can only reduce the 1P-DOS.

The numerical coefficients in Eqs. (1) and (2) were later
found by solving the SCE for g(ε), which is designed to
describe mutual intimidation of single-particle excitations. In
3D, this equation has the form5,18

g(ε) = g0(ε) exp

[
−2π

3
e6

∫ ∞

0

g(ε′)dε′

(|ε| + ε′)3

]
, (7)

where g0(ε) is the bare DOS.
The asymptotic solution of Eq. (7) at small energies ε �


 leads to Eq. (2).5 Here, 
 is the width of the Coulomb
gap, defined as the energy ε at which Eq. (2) matches g00, so
that 
 = (e2/l)(π/6A)1/2 � A(e2/l). The solution of the 2D
version of the SCE at small energies ε � 
 leads to Eq. (1).
Remarkably, these asymptotic solutions do not depend on A or
l and, in this sense, are universal. It should be noted that Eq. (7)
does not describe the corresponding increase in high-energy
states that accompanies the depletion of low-energy states. In
this sense, its solution g(ε) is not exactly normalized to contain
the same total number of states as g0(ε), but this should not be
very important for A � 1.

At only moderately small energies, where ε/
 is not
asymptotically small, the integral equation of Eq. (7) has
no known analytical solution. Nonetheless, one can find
numerical solutions to the SCE by using a simple iteration
procedure, wherein an initial guess is made for the function
g(ε) [say, that of Eq. (2)] and then inserted into the right-hand
side of Eq. (7) to produce a new estimate for g(ε). This iteration
can be repeated an arbitrary number of times until a convergent
solution is found for the function g(ε) over the desired range
of energies.
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FIG. 1. (Color online) The 1P-DOS g(ε) (thick black curve)
and the probability P (ε) for a single-particle excitation to survive
interaction with dipole excitations (blue, dashed curve). The thin red
curve, g1(ε), is calculated from Eq. (7), the green dashed-dotted curve
is the product of this solution with P (ε), and the black dotted line is
the asymptotic result of Eq. (2). Both g(ε) and g1(ε) are calculated
using A = 2.

It should be mentioned that, in fact, the iterative numerical
solution to Eq. (7) converges only very slowly at ε/
 < 10−2,
with the solution oscillating as a function of iteration number.
The convergence of the solution can be greatly sped up if one
introduces a relaxation procedure, such that each new solution
for g(ε) is averaged with the previous one using a weighted
arithmetic or geometric mean. All numeric solutions presented
in this paper use this relaxation procedure, and they were found
to be completely independent of the nature of the relaxation
process and of the choice of initial guess for g(ε).

The resulting numeric solution to Eq. (7) is shown for A = 2
in Fig. 1 by the thin red line, denoted g1(ε). At small energies
this solution approaches its asymptotic form [Eq. (2), shown
by the dotted black line]. In the dimensionless units of this plot,
the solution for A = 4 (not shown) coincides almost exactly
with the solution for A = 2.

III. DIPOLE EXCITATIONS AND THEIR INTERACTION
WITH SINGLE-PARTICLE EXCITATIONS

Until now we have taken into account only the conditions
that H be minimized with respect to the change of one or two
occupation numbers. An analysis of the role of stability criteria
with respect to the change of three or more occupation numbers
shows that in the 2D case the single-electron approach, used
above, is good, while in the 3D case the physics is more
complicated.5

It is convenient to talk about this problem by introducing
a dipole branch of excitations. For a given electron transition
from a site that is occupied in the ground state to an empty site,
the energy is given by Eq. (6). The result of such a transition
is the formation of an “electron-hole pair.” If the energy 	ij

of this transition satisfies 	ij � e2/rij , then the pair can be
thought of as two independent single-particle excitations: an
extra electron on site j and an extra hole on site i. If 	ij �
e2/rij , on the other hand, the pair constitutes a strongly bound

small dipole.4,5,17 The typical arm of such dipoles is r0 =
e2/
. At small 	, these dipoles are spatially separated from
each other and do not participate in dc conductivity. They
do contribute, however, to the ac conductivity and the low-
temperature thermodynamics.4,5,17

In the first approximation, the interaction between these
dipole excitations was assumed to be weak4,5 and their density
of states (2P-DOS) �(	) was predicted to be constant at
small energies 	 and given by �(	) = g00. A more careful
consideration17,18 shows that dipole-dipole interaction leads
to some mutual intimidation, resulting in the logarithmic
depletion of �(	), specifically, �(	) = g00/[ln(
/	)]1/2. At
the same time, the remaining soft dipoles have dipole arms that
are shorter than r0, with an average arm r0/[ln(
/	)]1/4. This
happens because shorter dipoles interact more weakly and
therefore survive with larger probability.

Let us now describe the interaction between dipole and
single-particle excitations. We first note that dipole excitations
are more abundant than single-particle excitations due to
the strong depletion of the 1P-DOS at the Fermi level.
Thus it is natural to think that after finding the 2P-DOS,
one can use it to study the role of dipoles in intimidating
single-particle excitations. Following this logic, Efros5 noticed
that in 3D a dipole with the proper orientation and proximity
can intimidate a single-particle excitation. Using the constant
2P-DOS �(	) = g00, Efros showed that the probability that a
single particle will survive this interaction is given by

P1(ε) = exp[−(
/ε)1/2]. (8)

The subscript 1 in P1(ε) emphasizes that it describes the effect
of intimidation by a single dipole.

Later the authors of Ref. 17 realized that collective intimi-
dation by many dipoles surrounding a one-particle excitation
is stronger than intimidation by a single dipole. This can be
seen by considering that around an empty site (a positive
single-particle excitation) there is a certain probability to
find a cloud of many dipole moments oriented away from
the hole. Such dipoles can repolarize (move their electron
away from hole) when an electron is brought to the empty
site from a low-energy occupied site. This process lowers the
system’s total energy. To guarantee that the original state is not
vulnerable to such an event, and, therefore, is the true ground
state, one has to exclude such a polarization atmosphere.

The probability of a hole or electron surviving collective
intimidation by dipoles in the ground state was calculated in
Ref. 17:

P (ε) = exp

[
−γ

(



ε

)
ln−7/4

(



ε

)]
. (9)

where γ = 1.5. Both logarithmic reductions of �(	) and
of the size of dipoles discussed above contribute to the
logarithmic factor in Eq. (18) that increases the probability
P (ε). Apparently at 
/ε � 1, the probability P (ε) � P1(ε),
where P1(ε) is given by Eq. (8), and the intimidation of
single-particle excitations is determined by the collective effect
result of Eq. (9).20

Equation (9) is of course de-
rived in the limit that ln(
/ε) � 1.
Attempting to use it at 
/ε ∼ 1 leads to nonphysical
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divergence, since ln(
/ε) tends to zero. Instead, the correct
behavior for P (ε) is that it should approach unity at ε/
 � 1.
One can model such behavior while still maintaining
the correct small energy asymptotic form in Eq. (9) by
introducing a multiplicative “crossover function” f (ε/
) into
the exponent of Eq. (9):

P (ε) = exp

[
−γ

(



ε

)
ln−7/4

(



ε

)
f

( ε




)]
. (10)

The function f (x) should have the properties f (x → 0) =
1 and f (x > 1) = 0. One should also ensure that f (x)
approaches zero at x = 1 faster than (x − 1)7/4, so that the
divergent behavior of Eq. (9) at ε/
 = 1 is eliminated. One
obvious choice for f (x) is

f (x) = (1 − x)η�(1 − x) (11)

with η > 7/4. In the numeric results presented in Fig. 1,
we use η = 4, which produces a smooth crossover from the
asymptotic behavior of Eq. (9) to P (ε) = 1 at ε > 
.

We can now consider how the 1P-DOS is affected by the
elimination of single-particle states, as given by the small
survival probability in Eq. (10). Asymptotically, at very small
ε, P (ε) goes to zero faster than ε2 and should play a dominating
role in the 1P-DOS. This is why the fact that numerical data
for g(ε) in 3D are close to Eq. (2) looked puzzling.1,18

We would like to argue here that the dominance of Eq. (10)
requires very small ε. One can notice that around ε/
 = 0.3
the probability P (ε) still has the strength of the first power of
ε/
. It reaches the strength of (ε/
)2 only at ε/
 ≈ 0.1. This
is seen in Fig. 1, where the probability P (ε) is plotted by the
dashed blue line.

Still, one may think that the effect of mutual intimidation
of single-particle excitations and the effect of intimidation of
single particles by dipole excitations are multiplicative, so that
to obtain g(ε), one should multiply the solution of Eq. (7) for
the bare “box” DOS, which we dub g1(ε) (thin red line), by
P (ε) from Eq. (10). This product is shown by the dashed-dotted
green curve in Fig. 1.

We argue that instead of directly multiplying the final result
of Eq. (7) by P (ε), one should think that the role of P (ε) is
to modify the bare DOS g0(ε). Thus to find g(ε), one should
replace g0(ε) in Eq. (7) by g0(ε)P (ε) and solve this new self-
consistent equation for g(ε). This procedure is justified by the
fact that the quantity g0(ε)P (ε) is the DOS that results from the
local interaction of low-energy electrons with the surrounding
dipoles (which also interact with each other), but it does not
allow for mutual interaction of low-energy electrons and holes.
This interaction should be treated self-consistently by solving
Eq. (7). The result of this calculation is shown by the thick
black line in Fig. 1, as determined by the numerical iteration
procedure described in Sec. II.

One can see that at ε/
 > 0.1, the 1P-DOS stays much
closer to Eq. (7) than the product P (ε)g1(ε). Thus, in the
range of energies ε > 0.1
, the solution of Eq. (7) is very
stable with respect to modification of the bare density of
states. The mechanism of this stability is as follows. When
g0(ε)P (ε) becomes moderately small, the exponential factor
on the right-hand side of Eq. (7) grows sharply, supporting an
almost unchanged value for g(ε). In other words, any attempt

at moderate reduction of g(ε) by dipole intimidation is met by
resistance from the compensating effect of weakening of the
intimidation by single-particle excitations. This is an extension
of the universality of the small energy solution of Eq. (7) with
respect to varying the bare “box” density of states g00.1,18

Returning to Fig. 1, we note that at ε � 0.1, where the
probability P (ε) changes substantially faster than (ε/
)2,
our result for g(ε) follows the exponentially small P (ε). At
present, however, this is a purely theoretical range, since
computer simulations can find the ground state at A ∼ 3 only
for lattices of size 10 × 10 × 10 or smaller.21 For such small
samples, finite-size effects6 limit the range over which one can
determine the 1P-DOS of infinite systems to ε/
 � 0.3.21 At
these energies, the value of g(ε) in the ground state follows
Eq. (2),21 in agreement with our prediction in Fig. 1 (the thick
black curve).

IV. STABILITY OF THE COULOMB GAP:
ANALYTICAL SOLUTIONS

In the previous section, we dealt with the stability of the
1P-DOS Coulomb gap with respect to moderate depletion
of the bare DOS g0(ε) by solving the SCE numerically. In
this section, we would like to illustrate this stability for an
analytically solvable model. We consider this model only in
its 3D version, but the two-dimensional version is similar.

Assume that the bare “box” DOS g0(ε) = g00�[A −
|ε|/(e2/l)] used above is modified at small energies ε < 


by the power-law factor

g0 = g00(ε/
)α, (12)

where α � 0. In order to find out how this changes the low-
energy solution of Eq. (7), we write it in the differential form

d ln g

dε
= d ln g0

dε
+ 2πe6

∫ ∞

0

g(ε′)dε′

(ε + ε′)4
. (13)

At small values of ε and α < 2, the solution of this
equation is

g(ε) = βε2/e6, (14)

where β is a numerical factor. Substituting Eq. (14) into
Eq. (13), one gets

β = 3(2 − α)

2π
. (15)

At α = 0, we are back to the bare “box” g0(ε), and Eq. (14)
coincides with Eq. (2). One can see that even at 0 < α < 2
the density of states is still quadratic and the only effect of the
depletion of the bare DOS in Eq. (12) is to reduce the numerical
coefficient β. In this way, at small energies, the solution g(ε)
is remarkably stable to the strong change in g0. The reason
for this stability is that at 0 < α < 2 the number of available
sites in a small energy band near ε = 0 exceeds the number of
electrons that is permitted by their interaction. Of course, the
electrons cannot arrange themselves as comfortably as in the
case of constant g0, and this fact is reflected in the reduction
of the coefficient β.

On the other hand when α > 2, the number of places for
electrons in a small energy band near ε = 0 is less than the
number of electrons permitted by their interaction. Therefore
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g(ε) has the same energy dependence as g0(ε). This can be seen
formally from Eq. (7). Substitution of g0(ε) into the integral
term with α > 2 allows one to set ε = 0 inside the integral at
ε/
 � 1. Then at small ε one gets g(ε) = Bg0(ε), where B

is a constant given by

B = exp

[
−2π

3
e6

∫ ∞

0

g0(ε′)dε′

(ε′)3

]
. (16)

Here, we have used the fact that g0(ε) is zero at ε > A(e2/l),
so that the integral in Eq. (16) converges.

In the critical case, α = 2, one can show that the asymptotic
solution at ε → 0 is

g(ε) = 3

2πe6

ε2

ln(
/ε) + h(
/ε)
, (17)

where h(
/ε) is a small correction to ln(
/ε). We were not
able to find this correction analytically, but numerical solutions
to the SCE suggest that h(
/ε) 
 7.3 at ε/
 � 10−3.

The analytical solutions of this section confirm our numer-
ical experience from the previous section. Namely, that when
the bare density of states g0(ε) at small energies is larger than
the one given by Eq. (2), the solution of Eq. (7) is very close
to Eq. (2). On the other hand, when g0(ε) is smaller than
Eq. (2), at small energies the density of states g(ε) is close to
g0(ε).
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21M. Goethe and M. Palassini (unpublished).
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