
PHYSICAL REVIEW B 84, 064124 (2011)

High-temperature correlation functions: Universality, extraction of exchange interactions,
divergent correlation lengths, and generalized Debye length scales

Saurish Chakrabarty1 and Zohar Nussinov1,2

1Department of Physics and Center for Materials Innovation, Washington University in St Louis, Missouri 63130, USA
2Kavli Institute for Theoretical Physics, Santa Barbara, California 93106, USA

(Received 6 May 2011; published 29 August 2011)

We derive a universal form for the correlation function of general n-component systems in the limit of
high temperatures or weak coupling. This enables the extraction of effective microscopic interactions from
measured high-temperature correlation functions. We find that in systems with long-range interactions, there
exist diverging correlation lengths with amplitudes that tend to zero in the high-temperature limit. For general
systems with disparate long-range interactions, we introduce the notion of generalized Debye length (and time)
scales and further relate these to the divergence of the largest correlation length in the high-temperature (or
weak-coupling) limit.
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I. INTRODUCTION

The study of correlation functions in systems with mul-
ticomponent fields is an extremely general problem having
incarnations that range from systems in condensed matter
physics to fundamental field theories. One of the cornerstones
of field theories and the study of critical phenomena is
the recognition of the universality that underlies general
systems. This enables a unified understanding and potent tools
of analysis.1–3 Any system generally displays a disordered
high-temperature (T ) fixed point. Most of the research to date
has focused on the behavior of myriad systems at and in the
vicinity of various finite-temperature transitions. In this work,
we will focus on high-temperature behavior and illustrate
that a simple form of the two-point correlation function is
universally exact for rather general systems. This enables us
to make several striking observations. In particular, we will
demonstrate that, in contrast to common intuition, general
systems with long-range interactions have a correlation length
that increases monotonically with temperature as T → ∞.
As they must, however, the correlations decay monotonically
with temperature (as the corresponding amplitudes decay
algebraically with temperature). There have been no earlier
reports of diverging correlation lengths at high temperature
to our knowledge. A thermally increasing length scale of a
seemingly very different sort appears in plasmas.4 The Debye
length, the distance over which screening occurs in a plasma,
diverges, at high temperature, as λD ∝ √

T . We introduce the
notion of a generalized Debye length associated with disparate
long-range interactions (including confining interactions) and
show that such screening lengths are rather general.

Many early works investigated the high-temperature dis-
ordered phase via a high-temperature series expansion5 with
an eye toward systems with short-range interactions. In this
paper, we report on our universal result for the Fourier-
transformed correlation function for systems with general pair
interactions. As it must, for nearest-neighbor interactions,
our correlation function agrees with what is suggested by
standard approximate methods [e.g., the Ornstein-Zernike
(OZ) correlation function that may be derived by many
approximate schemes6]. Our work places such approximate

results on a more rigorous footing and, perhaps most notably,
enables us to go far beyond standard short-range interactions
to find rather surprising results. Our derivations will be done
for spin and other general lattice systems with multicomponent
fields. However, as illustrated later, our results also pertain to
continuum theories.

II. OUTLINE

In Sec. III, we introduce the systems we study (general
multicomponent spin systems on a lattice; later sections
generalize our result to other arenas—fluids, Bose and Fermi
systems, and so on). Section IV contains a derivation of
our main result about the universal form of the correlation
function in the high-temperature limit. In Sec. V, we comment
on how the correlation lengths in a system behave in the
high-temperature limit. Section VI introduces a generalized
Debye length. In Sec. VII, we present some generalizations
of our result to systems which are not covered in Sec. III.
Section VIII outlines standard approximate techniques used to
obtain our result. We give our concluding remarks in Sec. IX.

In Appendix A, we show how to obtain a full high-
temperature series expansion of the correlation function to ar-
bitrary order. In Appendix B, we relate the generalized Debye
length over which long-range interactions are screened to the
diverging correlation length present in the high-temperature
limit.

III. SYSTEMS OF STUDY

We consider a translationally invariant system with the
Hamiltonian

H = 1

2

∑
�x �=�y

V (|�x − �y|)�S(�x) · �S(�y). (1)

The sites �x and �y lie on a d-dimensional hypercubic lattice
with N sites having unit lattice constant. The quantities {�S(�x)}
portray n-component spins [“O(n) spins”] or general fields
where | �S(�x)|2 = n at all lattice sites �x. The normalization is
adopted from Ref. 7. The case of n = 1 corresponds to Ising
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spins, n = 2 to XY spins, and so on. We assume that whenever
the interaction kernel V (x) has a long-range component, that
component (unless stated otherwise) will always have some
finite screening, however small. This restriction is imposed
to avoid well-known difficulties in taking thermodynamic
limits in long-range systems. In what follows, v(�k) and
si(�k) are the Fourier transforms of V (|�x − �y|) and Si(�x).
With this, Eq. (1) reads H = 1

2N

∑
�k v(�k)�s(�k) · �s(−�k), up to

an innocuous constant. Throughout, we employ the Fourier
transform convention of a(�k) = ∑

�x A(�x)ei�k·�x [and A(�x) =
1
N

∑
�k a(�k)e−i�k·�x].

IV. THE UNIVERSAL FORM OF THE
HIGH-TEMPERATURE CORRELATION FUNCTIONS

We now derive a universal form for the correlation
function at high temperature. As in any other calcula-
tion with Boltzmann weights, the high-temperature limit
is synonymous with weak coupling. Initially, we follow
standard procedures and examine a continuous but exact
dual theory. High T (or weak coupling) in the original
theory corresponds to strong coupling in the dual theory.
We will then proceed to examine the consequences of the
dual theory at high temperature where the strong-coupling
interaction term dominates over other nonuniversal terms
that depend, e.g., on the number of components in the
original theory. This enables an analysis with general re-
sults. Unlike most treatments that focus on the character
of various phases and intervening transitions, our interest
here is strictly in the high-temperature limit of the cor-
relation functions in rather general theories of Eq. (1).
Our aims are (i) to make conclusions concerning systems
with long range interactions rigorous and (ii) to extract
microscopic interactions from measurements. It is notable
that due to convergence time constraints many numerical
approaches, e.g., Ref. 8, compare candidate potentials with
experimental data at high temperature (above the melt-
ing temperatures) where the approach that we will out-
line is most applicable. We will perform a transformation
to a continuous but exact dual theory where the high-
temperature character of the original theory can be directly
examined.

We augment the right-hand side of Eq. (1) by [−∑
�x �h(�x) ·

�S(�x)] and differentiate in the limit �h → 0 to obtain correlation
functions in the usual way:

G(�x − �y) = 1

n
〈�S(�x) · �S(�y)〉 = lim

h→0

1

nβ2Z

n∑
i=1

δ2Z

δhi(�x)δhi(�y)
,

(2)

with Z the partition function in the presence of the external
field �h. By spin normalization, G(�x) = 1 for �x = �0. The index
i = 1,2, . . . ,n labels the n internal spin (or field) components.
The partition function Z = TrS[exp(− β

2N

∑
�k v(�k)|�s(�k)|2 +

β
∑

�x �h(�x) · �S(�x))]. The subscript S denotes the trace with
respect to the spins. Using the Hubbard-Stratonovich (HS)

transformation,9,10 we introduce the dual variables {�η(�x)} and
rewrite the partition function as

Z = TrS

[ ∏
�k,i

(
{2π [−v(�k)]}−1/2

×
∫ ∞

−∞
dηi(�k)e[N/2βv(�k)]|ηi (�k)|2+ηi (�k)si (−�k)

)∏
�x

eβ �h(�x)· �S(�x)

]

(3)

= NTrS

[ ∫
dNnη exp

(
N2

2β

∑
�x,�y

V −1(�x − �y)�η(�x) · �η(�y)

+N
∑

�x
�η(�x) · �S(�x) + β

∑
�x

�h(�x) · �S(�x)

)]
, (4)

with V −1(�x) the inverse Fourier transform of 1/v(�k) and N a
numerical prefactor. The physical motivation in performing
the duality to the HS variables is that we wish to retain
the exact character of the theory [i.e., the exact form of the
interactions and the O(n) constraints concerning the spin
normalization at all lattice sites]. It is for this reason that we
do not resort to a continuum approximation (such as that of
the canonical φ4 theory that we will discuss for comparison
later on) where normalization is not present. Another reason
to choose to work in the dual space is the correspondence with
field theories which, in the dual space, becomes clearer in the
high-temperature limit (in which the quartic term of the φ4

theories becomes irrelevant). Further details are in Ref. 11.
For O(n) spins,

Z = N ′
∫

dNnη

×
[

exp

(
N2

2β

∑
�x,�y

V −1(�x − �y)�η(�x) · �η(�y)

)

×
∏

�x

In/2−1[
√

n|N �η(�x) + β �h(�x)|]
[
√

n|N �η(�x) + β �h(�x)|]n/2−1

]
. (5)

The second factor in Eq. (5) originates from the trace over the
spins and as such embodies the O(n) constraints (the trace in
Eq. (4) is performed over all configurations with [�S(�x)]2 = n

at all sites �x). Here, Iν(x) is the modified Bessel function
of the first kind. In the Ising (n = 1) case, the argument
of the product in Eq. (5) is a hyperbolic cosine. Up to an
innocuous additive constant, Eq. (5) corresponds to the dual
Hamiltonian

Hd = − N2

2β2

∑
�x,�y

V −1(�x − �y)�η(�x) · �η(�y)

− 1

β

∑
�x

ln

(
In/2−1[

√
n|N �η(�x) + β �h(�x)|]

[
√

n|N �η(�x) + β �h(�x)|]n/2−1

)
. (6)

Our interest is in the h → 0 limit. The first term in Eq. (6)
is the same for all n. This term dominates, at low β, over the
(second) n-dependent term. As we will see, this dominance
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will enable us to get universal results for all n. From Eq. (2)
and the identity

d

dx

[
Iν(x)

xν

]
= Iν+1(x)

xν
,

we find that

G(�x − �y) = δ�x,�y + (1 − δ�x,�y)

〈 �η(�x) · �η(�y)

|�η(�x)||�η(�y)|

× In/2[N
√

n|�η(�x)|]In/2[N
√

n|�η(�y)|]
In/2−1[N

√
n|�η(�x)|]In/2−1[N

√
n|�η(�y)|]

〉
d

, (7)

where the average (〈·〉d ) is performed with the weights
exp(−βHd ). Now, here is a crucial idea regarding our exact
dual forms. From Eq. (3), at high temperature, the variables
ηi(�k) strictly have sharply peaked Gaussian distributions of
variance,

〈|ηi(�k)|2〉d ≈ −βv(�k)

N
as β → 0. (8)

Importantly, this variance tends to zero as β → 0. By Parse-
val’s theorem and translational invariance,

〈[ηi(�x)]2〉d = 1

N

∑
�x

〈[ηi(�x)]2〉d

= 1

N2

∑
�k

〈|ηi(�k)|2〉d ≈ −βV (0)/N2.

Thus, at high temperature, 〈[ηi(�x)]2〉 � 1. It is therefore useful
to perform a series expansion in the dual variables η and this
will give rise to a high-temperature series expansion in the
correlation function. The Hamiltonian in dual space is given
by,

Hd = − N2

2β2

∑
�x,�y

V −1(�x − �y)�η(�x) · �η(�y) − N2

2β

∑
�x,i

ηi(�x)2,

= − N

2β2

∑
�k,i

1

v(�k)
|ηi(�k)|2 − N

2β

∑
�k,i

|ηi(�k)|2, (9)

with errors of O(1/T ). Expanding Eq. (7) to O(1/T 2),

G(�k) = kBT

v(�k) + kBT
+ 1

N

∑
�k′

v( �k′)

v( �k′) + kBT
. (10)

Equation (10) leads to counterintuitive consequences for
systems with long-range interactions. The second term in
Eq. (10) is independent of �k and ensures that G(�x) = 1 for
�x = �0. Inverting this result enables us to find the microscopic
(spin exchange or other) interactions from the knowledge of
the high-temperature correlation function. We thus flesh out
(and further generalize for multicomponent systems such as
spins) the mathematical uniqueness theorem of Henderson for
fluids,12 for which a known correlation function G(�x) leads
to a known pair potential function V (�x) up to an innocuous
constant. Equation (10) leads to a correlation function which
is independent of V (0). Therefore, we can shift v(�k) for all �k’s

by an arbitrary constant or equivalently set V (0) to an arbitrary
constant. To O(1/T ), for V (0) = 0, we have

v(�k) = kBT

G(�k)
− 1

N

∑
�k′

kBT

G( �k′)
. (11)

The leading term of this expression for v(�k) does not scale
with T . This is so as [1 − G(�k)] ∝ 1/T at high temperatures.
Correlation functions obtained from experimental data can be
plugged into the right-hand side to obtain the effective pair
potentials. Alternatively, in real space, for �x �= �0,

V (�x) = −kBT G(�x) + kBT
∑
�x ′ �=0,�x

G( �x ′)G(�x − �x ′). (12)

Note that the two terms in Eq. (12) are O(1) and O(1/T ),
respectively, since G(�x) is proportional to 1/T at high
temperature for �x �= �0. Extension to higher orders may enable
better comparison to experimental or numerical data. Our
expansion is analytic in the high-temperature phase (i.e., so
long as no transitions are encountered as 1/T is increased
from zero). The Gaussian form of Eq. (9) similarly leads to
the free energy density,

F = kBT

2N

∑
�k

ln

∣∣∣∣kBT

v(�k)
+ 1

∣∣∣∣ + O(1/T ). (13)

Armed with Eqs. (9) and (10), we can compute any correlation
function with the aid of Wick’s theorem. For example, for
unequal �ki’s, we have 〈[�s(k1) · �s(−k1)] · · · [�s(km) · �s(−km)]〉 =
(Nn)m

∏m
i=1 G( �ki).

It is straightforward to carry out a full high-temperature
series expansion of the correlation function to arbitrary order.
This is outlined in Appendix A. For example, when V (�x =
0) = 0, the real space correlation function for separations
�x �= 0 is, to order O(1/T 3), given by

G(�x) = −V (�x)

kBT
+ 1

(kBT )2

∑
�z

V (�z)V (�x − �z)

− 1

(kBT )3

[∑
�y,�z

V (�y)V (�z)V (�x − �y − �z)

− 2V (�x)
∑

�z
V (�z)V (−�z) + 2

[V (�x)]3

n + 2

]
. (14)

V. HIGH-TEMPERATURE CORRELATION LENGTHS

We now illustrate that (i) in systems with short- (or finite-)
range interactions, the correlation length tends to zero in the
high-temperature limit and (ii) in systems with long-range
interactions13 the high-temperature correlation length tends to
the screening length and diverges in the absence of screening.

A. Decaying length scales

We consider first the standard case of short-range in-
teractions. On a hypercubic lattice in d spatial dimen-
sions, nearest-neighbor interactions have the lattice Laplacian
	(�k) = 2

∑d
l=1(1 − cos kl), with kl the lth Cartesian com-

ponent of the wave vector �k as their Fourier transform. In

064124-3



SAURISH CHAKRABARTY AND ZOHAR NUSSINOV PHYSICAL REVIEW B 84, 064124 (2011)

the continuum (small-k) limit, 	 ∼ |�k|2. Generally, in the
continuum, arbitrary finite-range interactions of spatial range
p have v(�k) ∼ |�k|2p with p > 0 (and superpositions of such
terms) as their Fourier transforms. In general finite-range
interactions, similar multinomials in (1 − cos kl) and in k2

l

appear on the lattice and the continuum, respectively. For
simplicity, we consider v(�k) ∼ |�k|2p. Correlation lengths are
determined by the reciprocal of the imaginary part of the
poles of Eq. (10), |Im{k∗}|−1. We then find that in the
complex k plane (k∗)2p ∼ −kBT . Poles are given by k∗ ∼
(kBT )1/(2p) exp[(2m + 1)πi/(2p)] with m = 0,1, . . . ,2p − 1.
Correlation lengths then tend to zero in the high-temperature
limit as ξ ∼ T −1/(2p)/| sin(2m + 1)π/(2p)|—there are p such
correlation lengths. Similarly, there are p periodic modulation
lengths scaling as LD ∼ 2πT −1/(2p)/| cos(2m + 1)π/(2p)|.
The usual case of p = 1 corresponds to an infinite LD [i.e.,
spatially uniform (nonperiodic) correlations] and ξ ∼ T −1/2.

B. Diverging length scales

An unusual feature arises in the high-temperature limit of
systems with long-range interactions where v(�k) diverges in
the small-k limit. Such a divergence enables the correlator of
Eq. (10) to have a pole at low k and consequently, on Fourier
transforming to real space, to have a divergent correlation
length. In the presence of screening v(�k) diverges and G(k) has
a pole when the imaginary part of k is equal to the reciprocal
of the screening length. The correlation length then tends to
the screening length at high temperature. For concreteness,
we consider generic screened interactions where the Fourier-
transformed interaction kernel vL(k) ∼ 1

(k2+λ−2)p′ with p′ > 0
and λ the screening length. Perusing the poles of Eq. (10), we
find that, for all p′, the correlation lengths tend to the screening
length in the high-temperature limit,

lim
T →∞

ξ (T ) = λ. (15)

From Eq. (15), when λ becomes arbitrarily large, the cor-
relation length diverges. Physically, such correlations enable
global “charge neutrality”14 for the corresponding long-range
interactions (Coulomb or other). This general divergence of
high-temperature correlation lengths in systems with long-
range interactions is related to the effective range of the
interactions. At high temperature, the correlation function
matches the “direct” contribution, e−βVeff (�r) − 1 ∼ −βVeff(�r).
If the effective interactions between two fields have a range
λ, then that is reflected in the correlation length. In Coulomb
systems, the Debye length λD sets the range of the interactions
(for large distances, the interactions are screened). As stated
earlier, at high temperature, λD diverges. As we see by
Fourier-transforming Eq. (10), although the imaginary part
of the poles tends to zero (and thus the correlation lengths
diverge), the prefactor multiplying e−|�x|/ξ is a monotonically
decaying function of T . Thus in the high-temperature limit
the real space correlator G(�x) monotonically decays with
temperature (as it must). For instance, for p′ = 1 in d = 3
dimensions, the pair correlator G(x) ∼ e−x/λ/(T x) tends, for
any non-zero x, to zero as T → ∞.15 That is, the amplitude
vanishes in the high-temperature limit as (1/T ). We find
similar results when we have more than one interaction. For

instance, in the presence of both a short- and a long-range
interaction, (at least) two correlation lengths are found. One
correlation length (or, generally, set of correlation lengths)
tends to zero in the high-temperature limit (as for systems
with short-range interactions) while the other correlation
length (or such set) tends to the screening length (as we find
for systems with long-range interactions). An example of a
system where this can be observed is the screened “Coulomb
frustrated ferromagnet,”15–17 given by the Hamiltonian H =
[−J

∑
〈�x,�y〉 S(�x)S(�y) + Q

∑
�x �=�y VL(|�x − �y|)S(�x)S(�y)], with

J,Q > 0 and the long-range interaction VL(x) = e−x/λ

x
in

d = 3 dimensions and VL(x) = K0(x/λ) in d = 2, with λ

the screening length and K0 a modified Bessel function
of the second kind. Similar dipolar systems18–20 have been
considered. Apart from the usual correlation length that
vanishes in the high-temperature limit, we find an additional
correlation length that tends to the screening length λ.

VI. GENERALIZED DEBYE LENGTH
(AND TIME) SCALES

We now introduce the notion of generalized Debye length
(and time) scales that are applicable to general systems with
effective or exact long-range interactions. These extend the
notion of a Debye length from Coulomb-type system where it
is was first found. If the Fourier space interaction kernel v(k)
in a system with long-range interactions is such that 1

v(k) is
analytic at k = 0, then the system has a diverging correlation
length ξlong at high temperature. To get the characteristic
diverging length scales, we consider the self-consistent small-k
solutions to kBT /v(k) = −1 for high temperature (which gives
the poles in the correlation function). Thus, as T → ∞, ξlong

diverges as p
√

kBT , where p is the order of the first nonzero
term in the Taylor series expansion of 1

v(k) around k = 0. This
divergent length scale could be called the generalized Debye
length. If the long-range interactions in the system are of
Coulomb type, then this corresponds to the usual Debye length
λD where p = 2. A more common way to obtain this result
is as follows. Suppose we have our translationally invariant
system which interacts via pairwise couplings as in Eq. (1).
We can define a potential function for this system as

φ(�x) =
∑
�y,�y �=�x

V (|�x − �y|)S(�y). (16)

The “charge” S(�x) in the system is perturbed by an amount
Ŝ(�x), and we observe the response φ̂(�x) in the potential
function φ(�x), assuming that we stay within the regime of
linear response. We assume that S(�x) follows a Boltzmann
distribution, i.e., S(�x) = A exp[−βCφ(�x)], where C is a
constant depending on the system. It follows that Ŝ(�x) =
−βCS(�x)φ̂(�x). At this point, we can ignore the fluctuation in
S(�x) as it does not contribute to the leading-order term. Thus,
Ŝ(�x) = −βCS0φ̂(�x), where S0 = 〈S(�x)〉. In Fourier space, this
leads to the relation

φ̂(�k) = −βCS0v(�k)φ̂(�k). (17)

The modes with nonzero response are therefore given by

−v(�k) ∝ kBT . (18)
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For a Coulomb system, these modes are given by (−k−2) ∝
kBT , yielding a correlation length λD ∝ √

kBT .
As a brief aside, we discuss what occurs when the

above considerations (and also those to be detailed anew in
Sec. VIII A) are applied to an imaginary time action of a
complex field ψ that has the form,

Saction = 1

2

∫
dτdτ ′ddxddx ′

× [ψ(x,τ )K(x − x ′,τ − τ ′)ψ(x ′,τ ′)] + · · · . (19)

In the above, the imaginary time coordinates 0 � τ,τ ′ � β

with a kernel K that is long range in space or imaginary
time and the ellipsis denoting higher-order terms (e.g., generic
|ψ |4-type terms) or imposing additional constraints on the
fields ψ [such as normalization, which we have applied thus far
for O(n) systems]. In such a case, the associated Debye length
(or imaginary time) scale may diverge in the weak-coupling
(i.e., K → aK with a → 0+) limit. In an analogous way,
repeating all of the earlier calculations done thus far for
spatial correlations, we find divergent correlation times in the
low-coupling limit for systems with a kernel K that is long
range in |τ − τ ′|. An action such as that of Eq. (19) may
also describe a system at the zero-temperature limit (whence
β → ∞) and the (imaginary) time scale is unbounded.

In Appendix B, we will relate the divergence of the
generalized Debye-type length scales in the high-temperature
limit to a similar divergence in the largest correlation length in
systems with long-range interactions.

A. Confining potentials

We discussed long-range interactions (with, in general, a
screening which may be set to be arbitrarily small) such as
those that arise in plasma, dipolar systems, and other systems
in condensed matter physics. In all of these systems, the
long-range potentials dropped monotonically with increasing
distance. Formally, we may consider generalizations which
further encompass confining potentials such as those that
capture the effective confining potentials in between quarks
in quantum chromodynamics (QCD) as well as those between
charges in one-dimensional Coulomb systems (where the
effective potentials associated with the electric flux tubes
in one dimension lead to linear potentials). The derivations
that we carried through also hold in such cases. For instance,
in a one-dimensional Coulomb system, the associated linear
potential V (x) ∼ |x| leads to the usual Coulomb Fourier space
kernel v(k) ∼ k−2. In general, for a potential V (x) ∼ |�x|−a in
d spatial dimensions, the corresponding Fourier space kernel
is, as in the earlier case, v(k) ∼ |�k|−p, where p = d − a. Fol-
lowing the earlier discussion, this leads, at asymptotically high
temperatures (and for infinitesimal screening), to correlation
lengths that scale as ξ ∼ p

√
T . In the presence of screening,

the correlation length at infinite temperature saturates and is
equal to the screening length. Similarly, as seen by Eq. (18), the
generalized Debye sreening length scales in precisely the same
manner. In Eq. (B2), we comment on the relation between the
two scales.

VII. GENERALIZATIONS

Here we illustrate how our results can be generalized to
systems which do not fall into the class of systems introduced
in Sec. III.

A. Disorder

When Eq. (1) is replaced by a system with non-
translationally-invariant exchange couplings V (�x,�y) ≡
〈�x|V |�y〉, then V will be diagonal in an orthonormal basis
(|�u〉) different from the momentum space eigenstates, i.e.,
V |�u〉 = v(�u)|�u〉. Our derivation will be identical in the |�u〉
basis. In particular, Eq. (10) will be the same with v(�k)
replaced by v(�u).

B. Fluids

Our results can be directly applied to fluids. In this case
the spin at each site in Eq. (1) may be replaced by the local
mass density. The pair structure factor S(k) is the same as the
Fourier space correlation function G(k).21 For r �= 0, the pair
distribution function g(r) is related to the correlation function
G(r) defined above as

g(r) = G(r) + 1. (20)

For r = 0, g(r) = 0.

C. General multicomponent interactions

In the case of systems with multiple interacting degrees
of freedom at each lattice site, we have a similar result.
We consider, for instance, the non-rotationally-invariant O(n)
Hamiltonian

H = 1

2

∑
�x �=�y

∑
a,b

Vab(�x,�y)Sa(�x)Sb(�y), (21)

where the interactions Vab(�x,�y) depend on the spin com-
ponents 1 � a,b � n as well as the locations �x and �y. By
fiat, in Eq. (21), Vab(�x = �y) = 0. Non-rotationally-symmetric
interactions such as those of Eq. (21) with a kernel Vab

which is not proportional to the identity matrix in the internal
spin space 1 � a,b � n appear in, e.g., Dzyaloshinsky-Moriya
interactions,22 isotropic23 and nonisotropic compasses,24 and
Kugel-Khomskii-23,25 and Kitaev-type26 models. Such in-
teractions also appear in continuous and discretized non-
Abelian-gauge backgrounds (and scalar products associated
with metrics of curved surfaces) used to describe metallic
glasses and cholesteric systems.27–36 The lattice “soccer ball”
spin model27 is precisely of the form of Eq. (21). Replicating
the calculations leading to Eq. (A6), for �x �= �y, to O(1/T 2),
we find that

Gab(�x,�y) = 〈Sa(�x)Sb(�y)〉 = −Vab(�x,�y)

kBT

+ 1

(kBT )2

∑
c,�z

Vac(�x,�z)Vcb(�z,�y). (22)
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Correspondingly, in Fourier space, this explicitly takes the
form

Gab(�k) = δab − vab(�k)

kBT
+ 1

(kBT )2

∑
c

vac(�k)vcb(�k). (23)

D. Bose and Fermi gases

Here we discuss Bose and Fermi systems to illustrate
the generality of our result from Eq. (10). We consider the
Hamiltonian given by

H = H0 + HI ,

where

H0 =
∑

�x
ψ̂†(�x)

p2

2m
ψ̂(�x),

(24)

HI = 1

2

∑
�x,�x ′

ρ̂(�x)V (�x − �x ′)ρ̂(�x ′),

with ρ̂(�x) = ψ̂†(�x)ψ̂(�x) − 〈ψ̂†ψ̂〉0.
Here and throughout, 〈·〉0 denotes an average with respect to

H0 (the ideal gas Hamiltonian). The fields ψ obey appropriate
statistics(Bose-Einstein or Fermi-Dirac) depending on the
system being studied. The standard partition function is

Z = Z0

∫
Dη(�x,τ )e−β�. (25)

Here, τ is the standard imaginary time coordinate (0 � τ �
β). Z0 is the partition function of the noninteracting system
described by H0 and the η’s are the dual fields after performing
the HS transformation. We can express � as

� = − N2

2β3

∫ β

0
dτ

∑
�x,�x ′

η(�x,τ )V −1(�x − �x ′)η(�x ′,τ )

− N

β
ln

〈
Tτ exp

(
1

β

∫ β

0
dτ

∑
�x

η(�x,τ )ρ̂(�x,τ )

)〉
0

, (26)

where Tτ is the (imaginary) time-ordering operator. It is clear
that the factor of the partition function which controls high-
temperature behavior comes from the first term in �. Thus,
for small β (high temperature), � of Eq. (26) results in a
distribution of the values of η which is sharply peaked around
η = 0. Also, for small β, the integrands of Eq. (27) have little
dependence on τ . Therefore, at high temperature,

� = − N2

2β2

∑
�x,�x ′

η(�x)[V −1(�x − �x ′) + βA(�x − �x ′)]η(�x ′), (27)

where A(�x − �x ′) = 〈ρ(�x)ρ(�x ′)〉0 = Cδ�x,�x ′ , with C = ρ2
0 being

a constant. The correlation function for this system is defined
as G(�x − �y) = 〈ρ(�x)ρ(�y)〉. It is easy to show that, written in
terms of the dual variables,

G(�x − �y) =
〈
f ′(Nη(�x))

f (Nη(�x))

f ′(Nη(�y))

f (Nη(�y))

〉
d

, (28)

where f (a) = Trρ(�x)e
aρ(�x) and, as before, 〈·〉d denotes the

average with respect to the dual fields η. For small values
of the η variables (high temperature), we have, in general,

G(�x − �y) = C0 + C1〈η(�x)η(�y)〉d , with C0 chosen such that
G(�x) = C for �x = �0 and C1 defined by the statistics of ρ and
the form of the pair interaction V . Therefore, we have

G(�k) = C + C1kBT

C[Cv(�k) + kBT ]
− 1

N

∑
�k

C1kBT

C[Cv(�k) + kBT ]
.

(29)

This is similar to the classical O(n) correlation function in
Fourier space [Eq. (10)]. We can easily generalize Eq. (29)
for multicomponent or polyatomic systems as in Eq. (22).
Applied to scattering data from such systems, our results may
enable the determination of effective unknown microscopic
interactions that underlie the system. Similarly, replication of
the same derivation, mutatis mutandis, for quantum SU(2)
spins �S = (Sx,Sy,Sz) in the coherent spin representation leads
to the high-temperature result of three-component [O(n = 3)]
classical spins. This illustrates the well-known maxim that at
high temperature, details may become irrelevant and systems
“become classical.” In a similar manner, at high T , the details
underlying the classical O(n) model [the O(n) normalization
constraints concerning a fixed value of | �S(�x)| for n-component
vectors �S(�x) at all sites �x] effectively became irrelevant at high
temperature—the behavior for all n was similar.

VIII. APPROXIMATE METHODS

The exact high-temperature results that we obtained for
lattice spin systems and the generalizations that we discussed
in Sec. VII are, as we will show below, similar to those attained
by several approximate methods. This coincidence of our exact
results with the more standard and intuitive approximations
enables a better understanding from different approaches. A
corollary of what we discuss below is that the divergence of the
correlation lengths in systems with long-range interactions in
the high-temperature limit (as in Sec. V) appears in all of these
standard approximations. However, as we illustrated earlier in
our work, and in Sec. V in particular, this divergence is not a
consequence of a certain approximation but is an exact feature
of all of these systems in their high-temperature limits.

In what follows, we will specifically discuss (i) φ4 field
theories, (ii) the large-n limit, and (iii) the OZ approach for
fluids invoking the mean-spherical approximation (MSA).37

A. Ginzburg-Landau φ4-type theories

In the canonical case, the free energy density of the φ4

theory is given by

F = 1

2
[∇φ(�x)]2 + 1

2
rφ2(�x) + a

4!
φ4(�x). (30)

A finite value of a corresponds to the “soft-spin” approxima-
tion where the norm is not constrained, 〈φ2(�x)〉 �= 1. Here, r =
c(T − T0), with c a positive constant. The partition function38

is Z = ∫
Dφe−F where F = ∫

Fddx with d the spatial
dimension. At high temperature, the correlator behaves in a
standard way (the OZ form) 〈|φ(�k)|2〉 = 1

k2+r
. The irrelevance

of the φ4 term may, e.g., be seen by effectively setting φ4(�x) →
6〈φ2(�x)〉φ2(�x) in the computation of the partition function. As
〈φ2(�x)〉 is small [in fact, from Fourier transforming the above,
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〈φ2(�x)〉 = O(1/T )], the φ4 term is smaller than the (∇φ)2 term
in Eq. (30) by a factor of a/T and therefore can be neglected.
When general two-body interactions with an interaction kernel
v(�k) are present, we similarly have 〈|φ(�k)|2〉 = 1

v(�k)+r
. Our

result of Eq. (10) for interactions of arbitrary spatial range
illustrates that suggestive results for the correlation lengths
attained by soft-spin approximations are not far off the mark
for general systems in the high-temperature limit. As far as we
are aware, the high-temperature correlation length of general
theories was not known to be similar to that suggested by
various perturbative schemes [including the 1/n (Ref. 39) and
ε (Ref. 40) expansions].

B. Correlation functions in the large-n limit

We now provide a derivation of Eq. (10) as it applies in the
large-n limit. Long ago, Stanley7 demonstrated that the large-n
limit of the O(n) spins is identical to the spherical model first
introduced by Berlin and Kac.41

The single-component spherical model is given by the
Hamiltonian

H = 1

2

∑
�x �=�y

V (|�x − �y|)S(�x)S(�y). (31)

The spins in Eq. (31) satisfy a single global (“spherical”)
constraint, ∑

�x
S2(�x) = N, (32)

enforced (as an ensemble average37) by a Lagrange multiplier
μ. This leads to the functional H ′ = H + μN which renders
the model quadratic [as both Eqs. (31) and (32) are quadratic]
and thus exactly solvable; see, e.g., Ref. 16.

From the equipartition theorem, in the higher temperature
region of T � Tc [when no order onsets and no Fourier mode
is macroscopically occupied to form “a condensate” (i.e.,
〈|s(�k)|2〉/N2 → 0 for all �k in the thermodynamic (N → ∞))
limit], the Fourier space correlator

G(�k) = 1

N
〈|s(�k)|2〉 = kBT

v(�k) + μ
. (33)

The real space two-point correlator is given by

G(�x) ≡ 〈S(0)S(�x)〉 = kBT

N

∑
�k

ei�k·�x

v(�k) + μ
. (34)

To complete the characterization of the correlation functions
at different temperatures, we note that the Lagrange multiplier
μ(T ) is given by the implicit equation 1 = G(�x = �0). Thus,

kBT

N

∑
�k

1

v(�k) + μ
= 1. (35)

This implies that the temperature T is a monotonically
increasing function of μ. Equation (34) also implies that, in
the high-temperature limit,

μ = kBT . (36)

Taken together, Eqs. (33) and (36) yield Eq. (10) in the
asymptotic high-temperature limit. For completeness, we

briefly note what happens at low T (T < TC). In the spherical
model, at the critical temperature (Tc), the Lagrange multiplier
μ takes the value

μmin = − min
�k

{v(�k)}. (37)

For T < Tc, (at least) one mode �q is macroscopically occupied;
the mode(s) �q being occupied is one for which v(�k) is
minimum. The “condensate fraction” 〈|s(�q)|2〉/N2 > 0.

C. Ornstein-Zernike equation

As noted earlier, application of the MSA to the OZ equation
for fluids reproduces similar results for the “total correlation
function” h(�r). This is defined as h(�r) = g(�r) − 1, where g(�r)
is the standard radial distribution function. The OZ equation
for a fluid with particle density ρ is given by

h(�r) = C(�r) + ρ

∫
dr ′C(�r − �r ′)h(�r ′), (38)

where C(�r) is the “direct correlation function.” Using the
MSA, C(�r) = −βV (�r),37 we get in Fourier space

S(�k) = kBT

ρv(�k) + kBT
. (39)

This is similar to our result for G(�k). However, it is valid only
for systems in which the MSA is a good approximation.

IX. CONCLUSIONS

(i) We derived a universal form for high-temperature
correlators in general O(n) theories as well as Bose and Fermi
gases and quantum spin systems. This enables the extraction of
unknown microscopic interactions from measurements of the
high-temperature correlation functions. Similar considerations
may also be enacted for general Potts and other systems.

(ii) We discovered divergent correlation lengths in systems
with long-range interactions in the high-temperature limit.
This divergence is replaced by a saturation when the long-
range interactions are screened.

(iii) We introduced generalized Debye lengths (and times)
associated with such divergent correlation lengths (and decay
times).
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APPENDIX A: HIGH-TEMPERATURE SERIES EXPANSION
OF THE CORRELATION FUNCTION

We now outline in detail how we may obtain a high-
temperature (T ) series expansion of the correlation function
to arbitrary order for a general system with translational
invariance. The results we present below are valid in the
high-temperature phase of general lattice (spin or other)
and continuum systems. However, these may hold at low
temperatures provided we can analytically continue to low
temperatures from the high-temperature phase, i.e., arrive
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at these without having a phase transition. We should em-
phasize that as we set the temperature to be arbitrarily high,
the density does not have to be small, as is assumed in
methods derived from Mayer’s cluster expansion for fluids.
Our result is therefore valid for the high-temperature phase of
any system. Albeit trivial, we should remark that, formally,
for any finite size system of N sites (or of finite volume
for a continuum theory), no matter how large yet still
finite, there are no phase transitions [instead there might be
progressively sharp (as N increases), yet analytic, crossovers].
Thus, in finite size systems, the radius of convergence of
the high T expansion is infinite. In general, the long-range
character of the interactions will not enable us to invoke many
of the simplifying elegant tricks presented elsewhere. For
instance, the counting of connected contours and loops42,43

that appear in high-temperature series expansions involving
nearest-neighbor interactions cannot be applied here.

We can perform the high-temperature series expansion
directly in the original spin space. However, we find it easier
to make a transformation to a dual space where our Boltzmann
weights become Gaussian in the high-temperature limit.

The correlation function of the original theory can be
expressed in terms of the correlation function (and higher
moments) of the dual theory—we employ that in our cal-
culation. The dual theory to a nearest-neighbor ferromagnetic
system is a Coulomb gas. A nearest-neighbor ferromagnetic
system in dimensions d > 2 at low T has an ordered phase and
a small correlation length (the correlation length diverges at
T = Tc). This does not imply that the Coulomb system has a
small correlation length at high temperature. O(n) constraints
become faint at high T in the dual theory whereas, in the exact
Coulomb gas at high T, the O(n) constraints are there. The
same also applies for a soft-spin realization of the Coulomb
gas, where exp[−βu(S2 − 1)2], which is zero as β → ∞
(or T → 0) unless S2 = 1 everywhere. By contrast, in the
exact dual theory at high temperature, the relative strength
of the O(n) constraints becomes negligible relative to the
“interaction” term containing (βV )−1. Even though we can
ignore β prefactors when β = O(1) and consider dual theories
and soft-spin realization, we cannot ignore the T dependence
at high T about the infinite-T disordered limit. Otherwise we
get a contradiction, as our exact calculation with the exact dual
theory (containing the T -dependent prefactors) shows.

We will keep things general and perform the simple series
expansion of the dual Hamiltonian Hd in Eq. (6):

Hd = − N2

2β2

∑
�x,�y

V −1(�x − �y)�η(�x) · �η(�y)

− 1

β

∑
�x

ln

(
In/2−1[

√
nN |�η(�x)|]

[
√

nN |�η(�x)|]n/2−1

)

= − N2

2β2

∑
�x,�y

V −1(�x − �y)�η(�x) · �η(�y) − N2

2β

∑
�x

�η(�x) · �η(�x)

+ N4

4(n + 2)β

∑
�x

[�η(�x) · �η(�x)]2 + · · · . (A1)

In Eq. (A1), the interaction V should be thought of as a trans-
lationally invariant matrix. That is, in a Dirac-type notation,

〈�x|V |�y〉 = V (�x − �y). In Eq. (A1), V −1 is the inverse Fourier
transform of 1/v(�k), where v(�k) is the Fourier transform of
V (�x).44

Next, we separate Hd into a quadratic part Hd0 and higher-
order (interaction-type) terms which we denote by 	H . That
is,

Hd0 = − N2

2β2

∑
�x,�y

V −1(�x − �y)�η(�x) · �η(�y)

− N2

2β

∑
�x

�η(�x) · �η(�x), (A2)

	H = N4

4(n + 2)β

∑
�x

[�η(�x) · �η(�x)]2 + · · · . (A3)

The expectation value of any quantity X may be computed
by

〈X〉d = 〈Xe−β	H 〉d0

〈e−β	H 〉d0
(A4)

= 〈X〉d0 − β [〈X	H 〉d0 − 〈X〉d0〈	H 〉d0]

+ β2

2!

[〈X(	H )2〉d0 − 2〈X	H 〉d0〈	H 〉d0

+ 2〈X〉d0〈	H 〉2
d0 − 〈X〉d0〈(	H )2〉d0

] + · · · ,

(A5)

where 〈·〉d0 represents the expectation value calculated with
the Boltzmann weight associated with the Hamiltonian Hd0.
We may retain terms to arbitrary order in η2 (or corresponding
order in 1/T ). Equation (7) can be expanded to arbitrary order
in η2, where we rewrite all expectation values with respect to
the Hamiltonian Hd0. The terms become expectation values
of a product of an even number of η fields with respect to the
quadratic Hamiltonian Hd0. We can then use Wick’s theorem
to compute the expectations with respect to Hd0 to all orders.
To order 1/T 3 we obtain for �x �= �0,

G(�x) = −V (�x)

kBT

+ 1

(kBT )2

[∑
�z

V (�z)V (�x − �z) − 2V (0)V (�x)

]

+ 1

(kBT )3

[
−

∑
�y,�z

V (�y)V (�z)V (�x − �y − �z)

+ 2V (�x)
∑

�z
V (�z)V (−�z) + 3V (0)

∑
�z

V (�z)V (�x − �z)

− 5[V (0)]2V (�x) − 2
[V (�x)]3

n + 2

]
. (A6)

As a brief aside, we note that from the fluctuation dissipation
theorem the susceptibility χ = β

∑
�x G(�x). At asymptotically

high temperature, G(�x) � δ�x,0, giving rise to Curie’s law, χ ∝
1/T . The terms in Eq. (A6) lead to higher-order corrections.
To next order, χ = 1

kB (T −θC ) with the Curie temperature
θC = ∑

�x �=0 V (�x) in the weak-coupling limit. Thus far, in the
literature, the Curie-Weiss form has been invoked to ascertain
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whether a given system has dominantly ferromagnetic or
antiferromagnetic interactions (by examining the sign of θC)
and their strength (|θC |). We see that by not focusing solely
on χ = βG(�k = �0) but rather on the scattering function G(�k)
for all �k, we can in principle deduce the interaction v(�k) and
hence V (�x). We further note, in passing, that for ferromagnetic
systems (ones with V (�x) � 0), all terms in G(�x) are positive
and the correlation functions are monotonically decreasing
with T (or increasing with the inverse temperature β). This
and similar relations are consequences of extensions of the
standard Griffiths inequalities45 to general O(n) systems with
arbitrary range (ferromagnetic) interactions. The extension of
these relations to the O(n) systems discussed here follows
from, e.g., an explicit Feynman type diagrammatic expansion
(e.g., Ref. 46) that represents the high temperature series
expansion and noting that each diagram is trivially positive.
Replacing the sums for the clock model of Ref. 46, in e.g.,
O(2) systems, all angular integrals reduce to products of the
type

∫ 2π

0 dθ exp(inθ ) = 2πδn,0 � 0.
In Fourier space, the real space convolutions become

momentum space products and vice versa. Equation (A6) then
reads

G(�k) = 1 − v(�k)

kBT
+ 1

(kBT )2
[[v(�k)]2 − 2V (�x = �0)v(�k)]

+ 1

(kBT )3

[
− [v(�k)]3 + 2v(�k)

N

∑
�k1

[v( �k1)]2

+ 3V (�x = �0)[v(�k)]2 − 5[V (�x = �0)]2v(�k) − 2

N2(n+ 2)

×
∑
�k1, �k2

v( �k1)v( �k2)v(�k − �k1 − �k2)

]
− G1(0), (A7)

where G1(0) is the value obtained by inserting �x = �0 in
Eq. (A6). It should be noted that the real space correlation
function cannot change if we shift the on-site interaction
V (�x = �0), which is equivalent to a uniform shift to v(�k) for all
k. This is because the O(n) spin is normalized—| �S(�x)|2 = n

at all sites �x. This invariance to a constant shift holds for all T

and consequently, to any order in 1/T , the coefficients must
be invariant to a global shift in v(k). Among other things, we
earlier invoked this invariance11 to the shift v(�k) to enable a
HS transformation in the cases for which initially v(�k) > 0
for some values of �k. We can, of course, invoke this invariance
here also to obtain the above high-temperature series expansion
with a well-defined HS dual. The final results, as we reiterated
above, are invariant under this shift, as is also manifest in our
series expansion in powers of 1/T . Although obvious, we note
that the expansion in Eq. (A7) is performed in powers of 1/T

involving v(k) for real vectors �k. In examining the correlation
lengths via contour integration in the complex k plane, the
corresponding v(k) may be extended for complex k.

We see from the expansion in Eq. (A7) that already to
O(1/T ) it is also clear that the length scales of the system
(which are determined by the poles of the Fourier space
correlation function) are governed by the poles of v(�k) in
the complex �k space. Thus, if, e.g., v(�k) = 1/(k2 + λ−2), the

correlation length tends to λ at high temperature. It therefore
must diverge for a system with no screening.

In cases where the correlation function is known from some
experimental technique or otherwise, the series expansion for
the correlation function can be inverted to arbitrary order to
obtain the pairwise interactions. To O(1/T 2), for nonzero
separation �x, the potential function is given by

V (�x) = −kBT

[
G(�x) −

∑
�z

′
G(�z)G(�x − �z)

+
∑
�y,�z

′
G(�y)G(�z)G(�x − �y − �z)

+ 2G(�x)
∑

�z

′
G(�z)G(−�z) − 2 (G(�x))3

n + 2

]
. (A8)

The prime indicates that the sum excludes terms containing
G(0). As is evident from our earlier results and discussion, in
Eq. (A8), each correlation function G(�x) is of order (1/T ).

We reiterate that, as in our discussion in Sec. VIII, our re-
sults for lattice O(n) spin models match with the leading-order
behavior at high temperature obtained from several standard
approximate theories based on Mayer’s cluster expansion
derived for liquid systems, e.g., Born-Green theory47 and OZ
theory with the Percus-Yevick approximation48 or MSA.37 As
implicit above, our 1/T expansion can indeed be extended
to systems in which the liquid and the gas phases are not
separated by a phase transition, e.g., for pressures larger than
the pressure at the liquid-vapor critical point. As further noted
in Sec. VIII, various approximations also suggest that at high
temperature the correlation length may match the length scale
characterizing the interaction potential and, in particular, will
diverge in systems having long-range interactions (as we have
established).

APPENDIX B: RELATION BETWEEN THE GENERALIZED
DEBYE LENGTHS AND DIVERGENCE OF THE

HIGH-TEMPERATURE CORRELATION LENGTHS

An intuitive approximate approach for the understanding
of the rigorous yet seemingly paradoxical result that we
report in this work—that of the divergence of the correla-
tion lengths in the high-temperature limit of systems with
long-range interactions—is afforded by the OZ framework.
Specifically, in the language of OZ approximations, the “total”
high-temperature correlation function is the same as the
“direct” correlation function [see, e.g., Ref. 21 (Sec. 2.6)
for the definition of the direct OZ correlation functions] and
behaves as

G(�x) ∼ −βV (�x) (B1)

for �x �= �0. Thus, if the potential is screened beyond a distance
λ, the correlation length approaches λ at high temperature.
That is, if we have an effective interaction resulting, e.g.,
from higher-order effects in 1/T , such as that leading to
the Debye screening length (λD) in Coulomb systems [and
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generalizations introduced earlier in Eq. (18)], then at high
temperature, the correlation length

ξ −−−→
T →∞

λD. (B2)

This is a particular case of Eq. (15).
To O(1/T 2), Eq. (A7) is identical to Eq. (10). The poles

of G in the complex k plane can, of course, be computed
by finding those of Eq. (10) or considering directly those of
Eq. (A7): both give rise to the same answer as they must.
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