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Effects of geometrical frustration and quantum fluctuation are theoretically investigated for the proton ordering
in a quasi-two-dimensional hydrogen-bonded system, namely a squaric acid crystal. We elucidate the phase
diagram for an effective model, the transverse-field Ising model on a frustrated checkerboard lattice, by using
quantum Monte Carlo simulation. A crossover to a liquidlike paraelectric state with well-developed molecular
polarizations is identified, distinguishably from long-range ordering. The emergence of long-range order from
the liquidlike state exhibits peculiar aspects originating from the lifting of quasimacroscopic degeneracy,
such as colossal enhancement of the transition temperature and a vanishingly small anomaly in the specific
heat.
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I. INTRODUCTION

Proton ordering in hydrogen-bonded systems has long been
one of the central topics in condensed-matter physics. Each
proton is in a double-minimum potential on the hydrogen
bond, and spatial correlations among the proton configurations
strongly affect macroscopic properties of hydrogen-bonded
crystals. A famous example is the “ice-rule” configuration
of protons and its relation to the residual entropy in water
ice.1,2 Another example is the ferroelectricity due to the proton
ordering in KH2PO4.3–5 Electronic polarization emerging
from proton ordering has been studied extensively with an
emphasis on both the fundamental physics and the application
to electronic devices.6,7

Here, we focus on one such hydrogen-bonded material,
namely squaric acid crystal H2C4O4 (H2SQ). H2SQ is a
quasi-two-dimensional (2D) molecular solid. In each 2D layer,
squaric acid molecules form a network of hydrogen bonds,
as shown in Fig. 1(a).8 A particular configuration of protons
induces a polarization in each molecule, and an ordering of the
polarizations can lead to ferroelectricity. In fact, H2SQ exhibits
antiferroelectricity below Tc = 375 K, which is driven by
the 2D ferroelectric ordering with interlayer antiferroelectric
coupling.9

H2SQ has two striking aspects. One is the local constraint on
the proton positions similar to the ice rule in water ice. Each
molecule has four hydrogen bonds; two out of four protons
come close to the C4O4 unit and the other two are far. The
local constraint alone is not sufficient to determine a unique
ground state and brings about a macroscopic degeneracy, as
seen in water ice; H2SQ has geometrical frustration in nature.

The other aspect is the effect of quantum tunneling
of protons. In general, the external pressure increases the
tunneling rate of protons between two potential minima,
which reduces local polarizations, and consequently sup-
presses the ferroelectricity. Indeed, in H2SQ, Tc is sup-

pressed with increasing pressure. A peculiar intermediate
state, however, appears before the polarization is lost in each
molecule: the macroscopic polarization vanishes while the
polarization in each molecule is retained.10 Consequently, a
quantum paraelectric state is realized in the low-temperature
limit.

There have been many theoretical studies for the antiferro-
electric transition in H2SQ. The local constraint and associated
frustration were considered on the basis of vertex models
or frustrated pseudospin models.11–14 The coupling between
pseudospins and phonons was also studied.15–17 Most of the
studies, however, were limited at the mean-field level, and the
effect of geometrical frustration has not been fully clarified
yet. In particular, quantum fluctuation under the geometrical
frustration, which is presumably important for understanding
the quantum paraelectricity under pressure, has not been
seriously considered so far.

In the present study, we investigate an effective model for
H2SQ, a 2D checkerboard-lattice Ising model with transverse
field that corresponds to the application of external pressure.
With a sophisticated quantum Monte Carlo (QMC) method,
we map out the numerically exact phase diagram. We identify
a liquidlike state intervening between the ferroelectric phase
and the paraelectric phase. In the intermediate state, molecular
polarizations are well retained by ice-rule-type local correla-
tions, but they are globally disordered. The peculiar nature of
transition from the intermediate state to ferroelectric phase is
discussed.

The organization of this paper is as follows. In Sec. II,
we introduce models and methods. After introducing the
pseudospin model in Sec. II A, we describe the numerical
method and the definition of the observables in Secs. II B and
II C, respectively. The results of calculation are presented in
Sec. III. The temperature dependence of observables is given
in Sec. III A and the phase diagram in Sec. III B. Discussions
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FIG. 1. (Color online) (a) Schematic picture of a layer of H2SQ
molecules. The dashed lines represent hydrogen bonds connecting
C4O4 units, and small circles on the bonds show protons. (b) Pseu-
dospin representation of the proton displacement in (a). J1, J2, and
J3 denote the interactions in Eq. (1). (c) An example of intermediate
liquidlike states in which every molecule bears a polarization but the
system is globally disordered. (d) A ferroelectrically ordered state. In
(c) and (d), the bold arrows in the center of the plaquettes represent
the molecular polarizations. See the text for details.

on our results with the previous studies are elaborated in
Sec. IV. Section V is devoted to a summary.

II. MODEL AND METHOD

A. Pseudospin model

We consider here a pseudospin model for H2SQ following
the previous studies.13,14 In the pseudospin model, proton
displacements in a plane of the bipartite square lattice of H2SQ
molecules [Fig. 1(a)] are represented by the z component of
pseudospins as σ z

i = ±1 [Fig. 1(b)].4,5 Here the appropriate
signs are assigned so that protons belonging to A(B)-sublattice
H2SQ molecules correspond to the up (down) spins. The local
constraint similar to the ice rule in water ice1,2 (two out of
four protons are close and the other two are far) is taken into
account by the antiferromagnetic interactions between nearest
neighbors, J1, and crisscrossing next-nearest neighbors, J2,
on the checkerboard lattice.13,14 When J1 = J2, the model
is a 2D variant of the spin-ice model,18,19 in which sixfold
degeneracy in each plaquette results in a macroscopic number
of energetically degenerate ground states ∼1.5N/2. In the
present case, we take J2 > J1 since two closer protons favor
an edge of the C4O4 square, not a diagonal.13,14 J2 larger than
J1 partially lifts the degeneracy, but the ground-state degener-
acy still remains: all configurations with different stacking
of antiferromagnetic 1D diagonal chains, exemplified in
Figs. 1(c) and 1(d), give the same lowest energy. The
degeneracy is reduced but still quasimacroscopic, i.e., 4

√
N .

Hence, the present J1-J2 model does not show any long-range
order down to zero T ,11,12 although a finite-T transition was
discussed in previous mean-field studies.13,14

To stabilize a ferroelectric ordering [a stripe ordering
in terms of pseudospins, shown in Fig. 1(d)], a further
degeneracy-lifting perturbation must be included. In the
present study, we consider an intermolecular coupling orig-
inating from the distortion by forming C=C double bonds. A
C=C double bond induces a trapezoid-type distortion of C4

square, and favors a ferrotype alignment of the molecules since
a short C=C bond tends to elongate the neighboring parallel
C=C bonds in the adjacent molecules. The intermolecular
correlation is incorporated by a third-neighbor ferromagnetic
interaction J3 [Fig. 1(b)]. J3 lifts the remaining degeneracy
and selects the ferroelectrically ordered state.

By summarizing the above argument, our model is given
by the following Hamiltonian:

H = J1

∑
〈i,j〉

σ z
i σ z

j + J2

∑
[i,j ]

σ z
i σ z

j − J3

∑
{i,j}

σ z
i σ z

j + �
∑

i

σ x
i ,

(1)

where σα
i is the α component of the Pauli matrix, representing

the pseudospin operator at site i; J1,J2 > 0,J3 � 0, and
the first, second, and third sums are taken between the
nearest, second (crisscrossing), and third neighbors on the
checkerboard lattice, as shown in Fig. 1(b). Here, the last
term with the transverse field � is introduced to represent
the quantum tunneling of protons. We take J1 = 1 as the
energy unit and focus on the case with J2 = 2. The results are
qualitatively the same for J2 > J1. We analyze the 2D model
by changing J3, �, and T to clarify the nature of in-plane
ferroelectricity in H2SQ; the effect of the interplane coupling
will be mentioned later.

B. Quantum Monte Carlo method

To investigate the thermodynamics of the model given by
Eq. (1), we employ a recently developed continuous-time
QMC method with a cluster update in the imaginary-time
direction.20 In order to overcome the slow relaxation in
the present frustrated system, we use the replica exchange
method21 and the loop-flip update algorithm.22 In the replica
exchange, the replicas are chosen along the constant �/T

lines since the Boltzmann weight strongly depends on the
numbers of domain walls along the imaginary-time direction,
which are proportional to �/T . For the loop-flip algorithm,
we applied two variants of the original algorithm. One is the
original algorithm that forms a loop by connecting up spins
and down spins alternatively while treating the J1 and J2 bonds
equivalently. The other one is the diagonal flipping process; a
diagonal chain of spins connected by J2 is flipped at once. The
system sizes are taken from L = 24 to 36 (N = 4L2) under
periodic boundary conditions. Typically, MC measurements
are performed for 100 000 samplings after 30 000 initial
thermalizations. Results are divided into six bins to estimate
statistical errors by the variance among the bins.

C. Physical quantities

To distinguish the long-range order and “ice-rule”-type
local correlations, we calculate the macroscopic polarization
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P and local correlation parameter ρ. P is calculated as

P = 1

N
[S(0,π )2 + S(π,0)2]1/2 (2)

via the spin structure factor

S(k) = 1

N

∑
i,j

σ z
i σ z

j exp(−ik · rij ), (3)

which detects the stripe-type ordering in Fig. 1(d). The critical
temperature is determined by the Binder analysis23 using the
Binder parameter for P ,

gP = 1

2

(
3 − 〈P 4〉

〈P 2〉2

)
. (4)

On the other hand, ρ detects the fourfold-degenerate stable
configurations in each plaquette by

ρ = 2

N

∑
p

f (p), (5)

where the sum p runs over all the crisscrossing
plaquettes, and f (p) is a function giving 1 for the fourfold
stable states and otherwise −1/3 in pth plaquette: ρ → 0
when the spins are completely disordered, and ρ → 1 when
all the plaquettes are in the fourfold stable states. Note that ρ is
not an order parameter but characterizes a crossover associated
with the formation of molecular polarizations as demonstrated
below. We also measure the corresponding susceptibilities, χP

and χρ , from the fluctuations of P and ρ as

χP = N

T
(〈P 2〉 − 〈P 〉2), (6)

χρ = N

T
(〈ρ2〉 − 〈ρ〉2), (7)

respectively. The specific heat is calculated by

C = 1

NT 2
(〈H2〉 − 〈H〉2). (8)

III. RESULTS

A. Locally correlated liquidlike state

Figure 2 shows QMC results along the �/T = tan(π/6)
axis at J3 = 0.002 and 0.004. At the lowest T , the system
shows a ferroelectric ordering with fully saturated polarization
P , as shown in Figs. 2(a) and 2(e). With increasing T and
�, P steeply decreases and the corresponding susceptibility
χP shows a sharp peak that grows as N increases, indicating
a phase transition into a paraelectric state. The critical
temperature Tc is estimated from the crossing point of the
Binder parameter of P given by Eq. (4), as shown in Figs. 2(d)
and 2(h): Tc = 0.60(30) for J3 = 0.002 and Tc = 0.76(12) for
J3 = 0.004. On the other hand, the local correlation parameter
ρ remains to be large even above Tc and gradually decreases
for T � 1.0 [Figs. 2(b) and 2(f)]. Correspondingly, the specific
heat C divided by T has a peak, as shown in Figs. 2(c) and 2(g).
The susceptibility for ρ, χρ , shows a broad peak at a higher
T . These indicate that the system does not directly enter into a
completely disordered state at Tc but exhibits an intermediate
state in which molecular polarizations are retained; the system
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FIG. 2. (Color online) QMC results of (a),(e) P and χP (χP is
divided by 1000 and 500, respectively); (b),(f) ρ and χρ ; and (c),(g)
C/T for the system sizes N = 4L2 ranging from L = 24 to 36. The
data are at (a)–(c) J3 = 0.002 and (e)–(g) J3 = 0.004. (d) and (h)
show the Binder parameter of P in the vicinity of Tc for J3 = 0.002
and 0.004, respectively. Insets of (c),(g) show the low-T behaviors
of C/T . All the results are calculated at J2 = 2 along the axis with
�/T = tan(π/6). See the text for details.

shows a crossover to a completely disordered paraelectric state
characterized by the peak of C/T or χρ at T ∗

C/T or T ∗
χρ

. The
intermediate state is a liquidlike paraelectric state originating
from the ice-rule-type local correlations.

In the ferroelectric phase transition and crossover to
liquidlike phase, most of the entropy is released at the
crossover by forming the ice-rule-type manifold. As shown in
Figs. 2(c) and 2(g), C/T sharply decreases with the saturation
of ρ, and the peak associated with the phase transition at a
lower T is very small. In fact, as shown in the insets, the
intensity of the small peak decreases as N increases, while the
peak position approaches Tc. This suggests that the entropy
associated with the phase transition becomes vanishingly
small in the thermodynamic limit. The peculiar behavior is
understood by considering the quasimacroscopic degeneracy
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FIG. 3. (Color online) T dependences of (a) P and ρ, and
(b) χP /2000 and χρ , measured along various �/T . �/T is
parametrized by θ (degree) with �/T = tan θ . All the results are
calculated at J2 = 2 and J3 = 0.002 for N = 4 × 362 sites.

in the ice-rule-type manifold where the remaining entropy is
in the order of

√
N , not N .12

The intermediate liquidlike state is widely observed while
changing �/T . Figure 3 shows P , ρ, and their susceptibilities
along the various �/T axes. As indicated by a decrease of ρ

and a broad peak of χρ , the crossover temperature T ∗ largely
decreases with increasing �, while the data of P and χP show
that Tc does not decrease so rapidly. However, there is always
a window of the intermediate state with well-developed local
correlations and suppressed global order even for large θ .

B. Phase diagrams

The phase diagrams for �, T , and J3 are summarized in
Fig. 4. (Tc,�c) are estimated by the Binder analysis of P ,
and (T ∗,�∗) are identified by a peak of χρ or C/T . In the
case of J3 = 0, the system exhibits only the crossover into the
liquidlike state with quasimacroscopic degeneracy [the region
below T ∗

χρ
; see Figs. 2(b) and 2(f)], and remains paraelectric

down to the lowest T calculated. One might expect a quantum
order by disorder as predicted for the case of J1 = J2,24 but
it will be limited to the very low T region, if any, and is
beyond the scope of the present study. With J3 switched on,
the degeneracy is lifted and the ferroelectrically ordered phase
emerges inside the liquidlike state. The ordered state rapidly
extends with increasing J3, but a sequential change of the three
different regimes is clearly observed in the region where J3

FIG. 4. (Color online) Phase diagrams obtained for varying J3.
Each diagram for (a)–(d) corresponds to J3 = 0, 0.002, 0.004, and
0.008, respectively. The solid circles show Tc obtained by the Binder
parameter of P and triangular (square) points are T ∗ evaluated from
C/T (χρ). The dotted line shows the phase boundary of the ordered
state and the paraelectric state, and the intermediate state is assigned
as the region between T ∗

χρ
and Tc. The gradation shows the intensity

of ρ.
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is sufficiently small. With further increasing J3, Tc exceeds
T ∗ and the intermediate liquidlike state is taken over by the
long-range-ordered state.

A remarkable point of the phase diagram is the rapid growth
of Tc with J3, which is more than 100 times larger than J3.
This colossal enhancement of Tc is also ascribed to the peculiar
nature of the intermediate state with quasimacroscopic degen-
eracy; the spatial correlations are strongly enhanced along the
diagonal chains. This strong correlation reinforces the effect
of J3 as J2 and J3 are not frustrated, and the system becomes
extremely sensitive to the degeneracy-lifting perturbation J3.
Another point is the fate of the intermediate state at low
temperatures. Since the QMC simulation becomes harder for
larger �/T , it is difficult to conclude whether the intermediate
state remains at low temperatures. Nonetheless, we expect a
finite window down to low T for small J3 from the systematic
change of the phase diagram shown in Fig. 4.

IV. DISCUSSIONS

Comparing with experiments, we successfully identify the
liquidlike state with well-developed molecular polarizations,
which might account for the peculiar intermediate state in
experiments.10 Our results suggest that the intriguing physics
related with the ice-rule-type degeneracy is involved within
the 2D layers of H2SQ crystal. We note, however, that the
qualitative shape of the phase diagram appears to be different;
in experiments, both Tc and T ∗ decrease almost linearly in
applied pressure and their difference is almost independent
of pressure. This can be ascribed to the parametrization of
the realistic situation, i.e., how the model parameters change
under pressure. The first-principles calculations may help
further quantitative studies.25 Another possible origin of the
discrepancy is an ambiguity in assigning T ∗; in general, the
crossover boundary depends on how to define or detect it. With
regard to the nature of the phase transition, our results indicate
that it is second order and the associated anomaly of the
specific heat is vanishingly small. This apparent contradiction
with experiments26–28 might be reconciled by considering the
interlayer coupling or more complicated couplings to lattice
distortions, which are neglected in our model.16,29,30

Comparing with the previous theoretical research, our
results are obtained by seriously including both geometrical
frustration and quantum fluctuation, which were not fully taken
into account in previous studies. For instance, in the absence
of J3, our result shows no phase transition as expected in
the frustrated situation, in contrast to the previous research
in which a finite-temperature phase transition was predicted
because of the mean-field-type treatment. Furthermore, our
result clearly indicated the existence of the liquidlike state as
well as several significant consequences of the local correlation
on the thermodynamic properties. In particular, the absence

of an anomaly in the specific heat at Tc and the strong
enhancement of Tc by J3 are revealed by our calculations.
On the other hand, as mentioned above, our result also showed
a continuous transition as in many previous theoretical studies
using pseudospin or an equivalent approach. This suggests
that an extension of the model is necessary to account for the
first-order transition in experiments.

V. SUMMARY

To summarize, we have investigated the geometrically
frustrated transverse-field Ising model as an effective model
for squaric acid crystals. Through unbiased QMC simulations
we have identified an intermediate liquidlike state between
the ferroelectrically ordered state and the completely disor-
dered paraelectric state, in which molecular polarizations are
well preserved but they are globally disordered due to the
frustration. Furthermore, we found that the emergence of a
locally correlated state significantly affects the thermodynamic
behavior of this system. In particular, we unveiled the vanish-
ingly small anomaly in the specific heat at the transition point
and the colossal enhancement of Tc by the degeneracy-lifting
perturbation J3. To the best of our knowledge, the emergence
of such a state and the remarkable effects have never been
reported in previous theories. The liquidlike state accounts
for a peculiar intermediate paraelectric state observed under
external pressure in the squaric acid crystal.

Although our results qualitatively reproduce the peculiar
phase diagram of the squaric acid under pressure, the quan-
titative changes of the critical temperature and the crossover
temperature are different from those in experiments. Further
quantitative research is necessary. For example, a detailed
experimental analysis of the structure under pressure will be
quite important for a more quantitative comparison between
experiment and theory. Moreover, the first-principles calcu-
lation will help to identify the model parameters and their
changes under pressure more precisely. On the other hand,
our result exhibits second-order phase transition, which is in
contrast to the first-order transition observed experimentally.
This might require a further extension of the model, for
example, by including the interlayer coupling and complicated
couplings to lattice distortions. Such an extension is left for
future work.
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