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Symmetry analysis for the Ruddlesden-Popper systems Ca3Mn2O7 and Ca3Ti2O7
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We perform a symmetry analysis of the zero-temperature instabilities of the tetragonal phase of Ca3Mn2O7 and
Ca3Ti2O7 which is stable at high temperature. We introduce order parameters to characterize each of the possible
lattice distortions to construct a Landau free energy which elucidates the proposed group-subgroup relations for
structural transitions in these systems. We include the coupling between the unstable distortion modes and the
macroscopic strain tensor. We also analyze the symmetry of the dominantly antiferromagnetic ordering which
allows weak ferromagnetism. We show that in this phase the weak ferromagnetic moment and the spontaneous
ferroelectric polarization are coupled, so that by rotating one of these orderings by applying an external electric
or magnetic field one can rotate the other ordering. We discuss the number of different domains (including phase
domains) which exist in each of the phases and indicate how these may be observed. First-principles calculations
of Yildirim corroborate our assertion that domain walls in the nonferroelectric phase are narrow.
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I. INTRODUCTION

Ruddlesden-Popper (RP) systems1 are compounds of the
form An+1BnC3n+1, where n is an integer, and the valences of
the ions are usually A = +2, B = +4 and C (usually oxygen) =
−2. Systems like SrTiO3 can be regarded as being n = ∞.
At high temperatures T ≈ 800 K, their crystal structure is
tetragonal, consisting of n-layer units, each layer consisting of
vertex sharing oxygen octahedra at whose center sit a B ion,
as shown in Fig. 1. (For an alternative illustration, see Ref. 2).
As the temperature is lowered these systems can undergo
structural phase transitions into orthorhombic structures.3–7

These structural transitions usually involve reorientation of
oxygen octahedra, a subject which has a long history,2 of
which the most relevant references for the present paper
are those8–10 which deal with the general symmetry aspects
of these transitions. One reason for the continuing interest
in octahedral reorientations is because they are important
for many interesting electronic properties, such as high-
Tc superconductivity,11 colossal magnetoresistance,12 metal-
insulator transitions,13 and magnetic ordering.14

Here we will focus on the n = 2 RP systems, Ca3Mn2O7

(CMO) and Ca3Ti2O7 (CTO), which present less complex
scenarios than the n = 1 systems. It seems probable7,15 that
well above room temperature the crystal structure of CMO
is that of the tetragonal space group I4/mmm, #139 (space
group numbering is that of Ref. 16), and at room temperature
that of space group Cmc21 (#36) Ref. 17). The theory
of isotropy subgroups18 strongly forbids a direct transition
from I4/mmm to Cmc21. In fact, first-principles calculations
on these systems by Benedek and Fennie (BF)19 and on
other systems20 indicate that the transition from I4/mmm

to Cmc21 should proceed via an intermediate phase which
may be either Cmcm (#63) or Cmca (#64) consistent with
Ref. 18. Up to now no such intermediate phase has been
observed for CMO or CTO. Unlike the other phases, the
Cmc21 phase does not possess a center of inversion symmetry
and is allowed to have a spontaneous polarization. Recent
measurements on ceramic Ca3Mn2O7 find a clear pyroelectric
signal consistent with the onset of ferroelectric order close
to T ∗ = 280 K (Ref. 21). Therefore T ∗ is identified as the

temperature at which Cmc21 appears. Since this ferroelectric
transition seems to be a continuous and well-developed one
and since a direct continuous transition between I4/mmm and
Cmc21 is inconsistent with Landau theory,18 the seemingly
inescapable conclusion is that the phase for T slightly greater
than T ∗ is not I4/mmm, but is some other phase which
does not allow a spontaneous polarization. Thus the phase at
temperature just above T = 280 K may be the long sought for
intermediate phase. In fact, the Cmcm phase has been observed
in the isostructural compounds LaCa2Mn2O7 (Ref. 22) and
Bi0.44Ca2.56Mn2O7 (Ref. 23) at room temperature. In view of
the results of Refs. 7 and 15, it is possible that the intermediate
phase may exist only over a narrow range of temperature. As
the temperature is further lowered, an antiferromagnetic phase
is observed.14,24 In this phase, which appears at T = 115 K
(Ref. 14), the antiferromagnetic order is accompanied by weak
ferromagnetism.14,24

Theoretically, there have been efforts to understand systems
like these from first-principles calculations. For instance, the
authors of Ref. 25 found the nearest neighbor exchange Jnn

within a bilayer to be Jnn/kB = −39 K, giving a Curie-
Weiss � = −244 K, whereas the authors of Ref. 26 found
Jnn/kB = 200 K. The former calculation agrees much better
with the experiment27 which gave θ = −465 K. Both groups
studied the electronic band structure but it was not entirely
clear what space group their calculations predicted. More
detailed information on the symmetry of the structures comes
from the first-principles calculations of BF some of which
included spin-orbit interactions. These calculations give a
weak ferromagnetism of 0.18μB (Ref. 19) per unit cell28

(containing four magnetic Mn ions). This value is somewhat
smaller than the observed14 (0.4 ± 0.2)μB per spin. However,
the inclusion of spin-orbit interactions enabled BF to obtain
the correct symmetry of the magnetoelectric behavior. Here
we discuss in detail the symmetry properties of the various
phases and experimental consequences such as the interactions
between various order parameters (OP’s) and the number and
symmetry of the various domains which may be observed.
Several of these issues were discussed by BF, but a more
complete and systematic analysis is given here.
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FIG. 1. (Color online) The unit cell of the RP (n = 2) system
(left) and the (n = 1) system (right). The black dots represent C
(oxygen) ions at the vertices of the octahedra at whose center sit the
B ions. The green squares represent A ions.

Our approach to symmetry is similar to that of the authors
of Ref. 20 in connection with the Aurivillius compound
SrBi2Ta2O9 (SBTO): We adopt the high-temperature tetrag-
onal structure as the “reference” structure and analyze the
instabilities at zero temperature which lead to the lower
temperature phases. Although CMO and CTO do differ from
SBTO, their crystal symmetry is the same as SBTO and
hence many of the results we find here are similar to those
for SBTO. Here we emphasize some of the experimental
consequences of the symmetries we find (such as the enumer-
ation of the different possible structurally ordered domains)
and also we explore the nature of the macroscopic strains,
the ferroelectric polarization, the magnetic ordering, and the
coupling between structural distortions and these degrees of
freedom.

Briefly, this paper is organized as follows. In Sec. II we
outline the basic approach used to analyze the symmetry of
the systems in question. In Sec. III we give a symmetry
analysis of the resulting phases which result from the structural
instabilities of the irreducible representations (irreps) found
by BF. This analysis closely parallels that of Perez-Mato
et al.20 In Sec. IV we discuss the second structural transition
in which the other two irreps condense to reach the Cmc21

phase. In Sec. V we discuss the symmetry of the magnetic
ordering. We also explore the coupling between the distortions
and the strains, the polarization, and the magnetic ordering.
Throughout the paper we point out experiments which are
needed to remove crucial gaps in our understanding of
the structural phase diagram of these systems. In Sec. VI
we enumerate the possible domains that can occur. Here we
argue that domain walls are most stable when they are perpen-
dicular to the orthorhombic [110] directions and that such walls
are expected to be narrow. This result is supported by the first-
principles calculations of Yildirim, which are summarized in

Appendix C. The conclusions of this paper are summarized in
Sec. VII.

II. SYMMETRY ANALYSIS

Our symmetry analysis will be performed relative to
the tetragonal I4/mmm structure which is stable at high
temperatures. In this high-temperature reference structure
one has atoms at their equilibrium positions R(0)(n,τ ),
where

R(0)
α (n1,n2,n3; τ ) ≡ n1R1,α + n2R2,α + n3R3,α + τα,

where the lattice vectors are

R1 ≡ (−1/2,1/2,1/2), R2 ≡ (1/2, −1/2,1/2),

R3 ≡ (1/2,1/2, −1/2),

α labels Cartesian components, real space coordinates are
expressed as fractions of lattice constants [so that, for instance,
R1 denotes (−a/2,a/2,c/2)], and the number τ labels sites
within the unit cell at the position vector τ , as listed in
Table I. The associated tetragonal reciprocal lattice vectors
are

G1 = (0,1,1), G2 = (1,0,1), G3 = (1,1,0),

in reciprocal lattice units so that, for instance, G1 denotes
2π (0,1/a,1/c).

This work was stimulated by the first-principles calcu-
lations of BF on the instabilities at zero temperature of
the reference tetragonal system. For CMO the instabilities
at zero temperature occur for the irreps X−

3 and X+
2 at

the zone boundary X points which are K = (1/2,1/2,0) ≡
q1 and K = (1/2, −1/2,0) ≡ q2. (The superscript indicates
the parity under inversion about the origin.) Since −qn is
equal (modulo a reciprocal lattice vector) to qn, the vectors
q1 and q2 exhaust the star of X. Also a zone center
phonon of the two-dimensional irrep �−

5 is nearly unstable.

Cmc2    (36)

I4/mmm (139)

Cmca (64) F2mm (42) Cmcm (63)

XX
−+ Γ−

5 32

1

FIG. 2. The group-subgroup structure arising from the first-
principles calculations. The transitions from I4/mmm are labeled
with the irrep that is condensing. In the final transition to Cmc21

we show below (in Sec. IV) that whichever irrep is the second to
condense out of I4/mmm, it induces the condensation of the third
irrep. Thus, in Cmc21 all three irreps have condensed. This diagram
does not deal with magnetic ordering.
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TABLE I. Basis functions �
(Z)
1 (R,τ ) = �

(Z)
1,n (τ ) cos(q · R) and �

(Z)
2 (R,τ ) = �

(Z)
2,n (τ ) cos(q · R) for the distortion vector under irrep Z,

where Z = 5,3,2 indicates irrep �−
5 , X−

3 , and X+
2 , respectively, and n = x,y,z (in that order) labels the components of the distortion. The

�’s are normalized according to Eq. (1). For the X irreps the wave vector of �
(X)
k,n (R,τ ) is qk . For �−

5 the wave vector is q = 0. For each site
τ we give the three components (n = 1,2,3) of the vector displacement. The values of the displacements in this table are not restricted by
symmetry. The values of the structure parameters for CMO, taken from Ref. 7, are ρ = 0.189, ξ = 0.098, χ = 0.205, and τ = 0.087 and the
lattice constants are a = 3.6834 Å and c = 19.575 Å.

τ τ �
(5)
1,n(τ ) �

(5)
2,n(τ ) �

(3)
1,n(τ ) �

(3)
2,n(τ ) �

(2)
1,n(τ ) �

(2)
2,n(τ )

A sites

1 (0,0,ρ + 1/2) u 0 0 0 u 0 a −a 0 −a −a 0 0 0 0 0 0 0
2 (0,0, −ρ + 1/2) u 0 0 0 u 0 a −a 0 −a −a 0 0 0 0 0 0 0
3 (0,0,1/2) v 0 0 0 v 0 b −b 0 −b −b 0 0 0 0 0 0 0

B sites

4 (0,0,ξ ) w 0 0 0 w 0 c −c 0 −c −c 0 0 0 0 0 0 0
5 (0,0, −ξ ) w 0 0 0 w 0 c −c 0 −c −c 0 0 0 0 0 0 0

O sites

6 (0,0,0) x 0 0 0 x 0 d −d 0 −d −d 0 0 0 0 0 0 0
7 (0,0,χ ) y 0 0 0 y 0 e −e 0 −e −e 0 0 0 0 0 0 0
8 (0,0, −χ ) y 0 0 0 y 0 e −e 0 −e −e 0 0 0 0 0 0 0
9 (0,1/2,τ ) z1 0 0 0 z2 0 0 0 f 0 0 f −h −g 0 −h g 0
10 (0,1/2, −τ ) z1 0 0 0 z2 0 0 0 −f 0 0 −f −h −g 0 −h g 0
11 (1/2,0,τ ) z2 0 0 0 z1 0 0 0 −f 0 0 f g h 0 −g h 0
12 (1/2,0, −τ ) z2 0 0 0 z1 0 0 0 f 0 0 −f g h 0 −g h 0

These results suggest the group-subgroup structure shown
in Fig. 2, which is similar to that for SBTO (Ref. 20). We
therefore consider structures having distorted positions given
by

Rα(n,τ ) = R(0)
α (n,τ ) + uα(τ )eiq·(∑k Rknk)

+
∑

β

eαβ

∑
k

Rk,βnk,

where q is the wave vector of the distortion mode, u(τ ) is
the distortion taken from Table I, and εαβ is the macroscopic
strain tensor. The leading terms in the Landau expansion of the
free energy of the distorted structure relative to the reference
tetragonal structure will have terms quadratic in the strains
eαβ and the microscopic displacements u(τ ) within the unit
cell. The fact that the free energy has to be invariant under all
the symmetry operations of the “vacuum” (i.e., the reference
tetragonal structure) restricts the microscopic displacements
at a phase transition to be a linear combination of the basis

vectors of the irrep in question. The basis functions are listed
in Table I and the representation matrices for the generators of
the irreps are given in Table II29 in terms of the Pauli matrices

σ x =
[

0 1
1 0

]
, σ y =

[
0 −i

i 0

]
, σ z =

[
1 0
0 −1

]
.

Using the basis functions �
(Z)
1 and �

(Z)
2 listed in Table I one

can check that the matrices of Table II do form a representation,
so that for an operator O we have

O
[

�
(Z)
1

�
(Z)
2

]
=

[
M11(O) M12(O)

M21(O) M22(O)

] [
�

(Z)
1

�
(Z)
2

]
,

where the �’s are normalized∑
nτ

�
(Z)
k,n (τ )2 = 1 Å

2
. (1)

We now introduce OP’s Q
(Z)
1 and Q

(Z)
2 as amplitudes of these

normalized distortions, so that a distortion �Z of the irrep Z

TABLE II. Representation matrices M (3), M (2), and M (5) for the generators of the irreps X−
3 , X+

2 , and �−
5 , respectively. Here r′ = Or and

the σ ’s are the Pauli matrices. These matrices are related to those of Ref. 18 (see Ref. 30) by a unitary transformation which, for �−
5 takes

(σ x,σ y,σ z) into (−σ x, −σ y,σ z). For X+
2 and X−

3 the unitary transformation takes (σ x,σ y,σ z) into (−σz,σy, −σx). Unlike Ref. 18 we choose
a representation in which the matrices representing the translations Tn are diagonal.

O = R4 md mz T1 T2 T3

r′ = (y,x,z) (y,x,z) (x,y,z) (x + 1,y,z) (x,y + 1,z)
(
x + 1

2 ,y + 1
2 ,z − 1

2

)
M(3)(O) = −iσ y −σ z 1 −1 −1 −σ z

M(2)(O) = σ x −1 1 −1 −1 −σ z

M(5)(O) = iσ y σ x 1 1 1 1
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can be written as �Z = Q
(Z)
1 �

(Z)
1 + Q

(Z)
2 �

(Z)
2 and

O�Z ≡ O
[
Q

(Z)
1 �

(Z)
1 + Q

(Z)
2 �

(Z)
2

]
= [

M
(Z)
11 (O)Q(Z)

1 + M
(Z)
21 (O)Q(Z)

2

]
�

(Z)
1

+ [
M

(Z)
12 (O)Q(Z)

1 + M
(Z)
22 (O)Q(Z)

2

]
�

(Z)
2 .

We now interpret this as defining how the order parameters
transform when the �(Z)

n are regarded as fixed. Thus we have

O
[

Q
(Z)
1

Q
(Z)
2

]
=

[
M

(Z)
11 (O) M

(Z)
21 (O)

M
(Z)
12 (O) M

(Z)
22 (O)

] [
Q

(Z)
1

Q
(Z)
2

]
. (2)

Note that the OP’s transform according to the transpose of the
irrep matrices.

III. UNSTABLE IRREPS

A. X−
3

The irrep X−
3 of the little group (of the wave vector) is

one dimensional. However, since there are two wave vectors
in the star of X, we will follow Ref. 18 and construct the
two-dimensional irrep which incorporates both wave vectors
in the star of X. The resulting two-dimensional matrices are
given in Table II. From the basis functions for irrep X−

3 given in
Table I, one sees that the distortion can describe the alternating
tilting of the oxygen octahedra about a (1,1,0) direction if
q = q1 and about a (1,1,0) direction if q = q2, as shown in
Fig. 3. We now construct the form of the free energy when the
distortion is given by31

� = Q−
3 (q1)�(3)

1 + Q−
3 (q2)�(3)

2 .

+

2 q = (1/2,1/2,0) = q1

+

+

+

+
+

+
+

+

+

+

+

Y
ZY

Z

+

x = −1           0                 1                2x = −1           0                 1                2

+

+

+

+ +
+

q = (−1/2,1/2,0) = q

z = 0

z = 1/2

y 
=−

1 
   

   
   

0 
   

   
   

1 
   

   
   

2

+

+

+

+

++

+

+

+

+

+

+
+

+

+

+

FIG. 3. (Color online) Schematic diagram of the displacements
�

(3)
1 (R,τ ), at left and �

(3)
2 (R,τ ), at right, of the oxygen octahedra.

For each octahedron the arrow represents the displacement of the
apical oxygen at (0,0,χ ), which is the same as that at (0,0, − χ ). The
displacement of the shared apical oxygen at (0,0,0) is not shown. In
this structure each octahedron shares a vertex (an oxygen ion) with
each of its neighbors. All coordinates are in the parent tetragonal
system. The + and − signs represent the algebraic sign of the
displacements collinear with the z axis of the equatorial oxygen at
(x,y,τ ) in the unit cell. The displacement of the oxygen at (x,y, −τ )
is the negative of that at (x,y,τ ). The orthorhombic axes for Cmcm

are X, Y , and Z. The distortion of the left panel is obtained from that
of the right panel by a 90◦ rotation about the positive z axis.

To construct the form of the free energy for this structure,
note that wave vector conservation requires that the free energy
be a function of Q3(q1)2 and Q3(q2)2 because 2q1 and 2q2 are
reciprocal lattice vectors but q1 + q2 is not a reciprocal lattice
vector. Then, using the irrep matrices given in Table II, one
can check that the free energy in terms of the X−

3 OP’s must
be of the form

F(X3) = a

2
(T − T3)[Q3(q1)2 + Q3(q2)2]

+1

4
u[Q3(q1)2 + Q3(q2)2]2

+v[Q3(q1)Q3(q2)]2 + O(Q6), (3)

where a > 0 and T3 is the temperature at which this irrep
becomes active if it is the only relevant OP. The first-principles
calculations of BF indicate that u > 0. To treat the coupling
between the Q’s and the strains we consider the strain-
dependent contribution to the free energy FQε . The term
whereby the Q’s induce a strain is linear in the strain and
thus we write FQε as

FQε = 1

2

∑
nm

cnmεnεm +
∑
klm

γklmεklQ
−
3 (qm)2

≡ 1

2

∑
nm

cnmεnεm + VQε,

where the first term is in Voigt32 notation, where 1 ≡ x,x, and
so on and only c11, c12, c13, c33, c44, and c66 are nonzero under
tetragonal symmetry and

VQ,ε = αεxy[Q−
3 (q1)2 − Q−

3 (q2)2] + [β(εxx + εyy)

+γ εzz][Q
−
3 (q1)2 + Q−

3 (q2)2], (4)

where α, β, and γ (and similarly below) are arbitrary constants.
The sign of the shear deformation εxy depends on the sign of
Q−

3 (q1)2 − Q−
3 (q2)2, a result similar to that given in Ref. 33.

As the temperature is reduced through the value T3, a
distortion of symmetry X−

3 appears. For v > 0 either one, but
not both, of Q3(q1) and Q3(q2) are nonzero, so that εxy �= 0
and a detailed analysis shows that the resulting structure is
Cmcm (#63). The first-principles calculations of BF imply
that v > 0, so, as indicated by Fig. 2, this possibility is
the one realized for the RP systems we have studied. If v

had been negative, then we would have had a “double-q”
state (i.e., a state simultaneously having two wave vectors)
with |Q3(q1)| = |Q3(q2)|, so that εxy = 0 and the distorted
structure would be the tetragonal space group P 42/mnm

(#136). These two space groups are listed in Ref. 18 as possible
subgroups of I4/mmm which can arise out of the irrep X−

3 .
These directions in OP space [Q3(q1) − Q3(q2) space] are
stable with respect to perturbations due to higher-order terms in
Eq. (3) which are anisotropic in OP space as long as T is close
enough to T3 so that these perturbations are sufficiently small.
We note that Ref. 18 lists Pnnm (#58) as an additional possible
subgroup. This subgroup would arise if v were exactly zero,34

in which case, even for T arbitrarily close to T3, the OP’s would
be determined by higher-order terms in Eq. (3) and would then
not be restricted to lie along a high symmetry direction in OP
space. However, to realize this possibility if the transition is
continuous requires the accidental vanishing of the coefficient
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X

x

y

z

Z
Y

FIG. 4. (Color online) The tetragonal axes (lower case) and the
axes (capitals) we use to describe the orthorhombic phases.

v and the analogous sixth-order anisotropy. This possibility
should be rejected unless additional control parameters, such
as the pressure or an electric field, are introduced which allow
access to such a multicritical point.10 As of this writing,
the Cmcm phase (or any other phase intermediate between
I4/mmm and Cmc21) has not been observed, although it
has been observed in the isostructural systems LaCa2Mn2O7

(Ref. 22) and Bi0.44Ca2.56Mn2O7 (Ref. 23)
For future reference, it is convenient to introduce or-

thorhombic axes, so we arbitrary define them as in Fig. 4.
If we condense Q3(q1), the tilting is about Y , the tetragonal
[1 1 0] direction, whereas if we condense Q3(q2), the tilting
is about Z, the tetragonal [1 1 0] direction. The sign of the
OP indicates the sign of the tilting angle. Note that there are
four domains of ordering, depending on which wave vector has
condensed and the signs of the OP. These correspond to the
four equivalent initial orientations of the tetragonal sample.
In Ni3V2O8, such a domain structure for two coexisting
OP’s was confirmed experimentally,35 and it would be nice
to do the same here. In Sec. VI we give a more detailed
discussions of domains. Here we note that changing the sign
of the OP Q3(q1) is equivalent to a unit translation along
x̂ or ŷ. Thus, as for an antiferromagnet, the phase of the
order parameter within a single domain has no macroscopic
consequences.

Since the Cmcm structure has a center of inversion
symmetry, it can not have a nonzero spontaneous polarization
and an interaction VQ,P which is linear in the polarization does
not arise. It may seem mysterious that when we introduce
a distortion which is odd under inversion, we still have a
structure which is even under inversion. The point is that the
distortion due to X−

3 is odd under inversion about the origin,
but is even under inversion with respect to (1/2,0,0), about
which point the parent tetragonal structure also has a center
of inversion symmetry. To see the inversion symmetry of the
distortion about (1/2,0,0) from Fig. 3, note that inversion
displaces the arrows and reverses their direction in such a way
as to leave the pattern of arrows unchanged. Since a plus sign
represents a positive z distortion at z = τ and a negative z

distortion at z = −τ , inversion takes a plus into a plus and a
minus into a minus.

B. X+
2

As in the case of X−
3 we construct the two-dimensional irrep

which incorporates both wave vectors in the star of X, whose

1

y 
=

1 
   

   
   

0 
   

   
   

1 
   

   
   

2

z = 0

z = 1/2

O’

O
O

O’

x = 1              0                 1                 2 x = 1              0                 1                2

q   = ( 1/2,1/2,0)2
q   = (1/2,1/2,0)

FIG. 5. (Color online) Schematic diagram of the displacements
for X+

2 , which are confined to the x-y plane. All coordinates are in the
parent tetragonal system. The large black arrows give the rotational
distortion. The much smaller anisotropic radial distortion (which is
allowed in X+

2 ) is shown in magenta. In both panels the distortions are
shown for sites in the planes z = ±τ and z = 1/2 ± τ . The distortion
is an even function of τ . The distortion of the right panel is obtained
from that of the left panel by a 90◦ rotation about the z axis. The
orthorhombic translation vectors in the x-y plane are (1,1,0) and
(1, − 1,0). In the left panel the translation vector �r (which takes O
into O′ and obeys exp(iq · �r) = 1) is (1/2,1/2,1/2) and in the right
panel it is (−1/2,1/2,1/2). These two wave vectors thus give rise to
the two settings of the side-centered orthorhombic lattice.

matrices are given in Table II. The allowed basis functions
are given in Table I and are represented in Fig. 5. Once the
configuration for one wave vector is determined, that of the
other wave vector follows from a 90◦ rotation about the z

axis. So these are two different configurations (one for each
X wave vector) which have the same free energy. These two
configurations differ in their stacking (which takes point O into
point O′). This stacking degeneracy means that this transition
takes the I4/mmm structure into one of two different settings
of the space group which we identify below as Cmca. One sees
that in this distortion the oxygen octahedra are rotated about
the crystal c axis as if they were interlocking gears. Notice that
in the left panel of Fig. 5 all the clockwise turning octahedra
have rx > ry and all the counterclockwise ones have rx < ry ,
whereas in the right panel the clockwise turning octahedra have
ry > rx and the counterclockwise ones have ry < rx , where rx

is the radius of the elliptically distorted octahedra along x

(or nearly x) and ry is the radius along y. Symmetry does
not fix the sign of the radial distortion. Changing the sign of
the radial distortion would lead to a different (inequivalent)
structure in which the sign of all the radial arrows for both
wave vectors would be changed. It would be interesting to
observe this radial distortion in either (or both) calculations and
experiment.

As before, we introduce OP’s Q2(q1) and Q2(q2) by
considering the free energy for which the distortion from
tetragonal is given by Q2(q1) times the distortion for q1
plus Q2(q2) times the distortion for q2. As in Eq. (2), the
transformation properties of these OP’s are determined by
the matrices of Table II. As before, wave vector conservation
requires that the free energy be a function of Q2(q1)2 and
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Q2(q2)2. Using the transformation properties of the OP’s, we
find that

F(X2) = a′

2
(T − T2)[Q2(q1)2 + Q2(q2)2]

+1

4
u′[Q2(q1)2 + Q2(q2)2]2

+v′[Q2(q1)Q2(q2)]2 + O(Q6),

where a′ > 0, u′ > 0, and T2 is the temperature at which this
irrep would become active, if it were the only relevant irrep.
The free energy of the coupling to strains is

VQ,ε = α′εxy[Q2(q1)2 − Q2(q2)2] + [β ′(εxx + εyy)

+γ ′εzz][Q2(q1)2 + Q2(q2)2],

where α′, β ′, and γ ′ are arbitrary coefficients. The coupling to
the shear strain is allowed because both εyx and Q2(q1)2 −
Q2(q2)2 are odd under R4 and even under md . The term
[εxx − εyy][Q2(q1)2 − Q2(q2)2] is not allowed because it is
not invariant under md . Since this structure is even under
inversion it can not have a spontaneous polarization, so FQ,P,
the interaction linear in the polarization is zero.

Now we discuss the phases which Landau theory predicts. If
v′ > 0, then either Q2(q1) = 0 or Q2(q2) = 0, so that εxy �= 0
and a detailed analysis shows that the resulting structure is
Cmca (#64). Similarly, if v′ < 0, then one has a double-q
state with |Q2(q1)| = |Q2(q2)|, the orthorhombic distortion
vanishes, and we have the structure P 4/mbm (#127). The
other possibility listed in Ref. 18 is Pbnm (#35). As before,
we ignore this possibility because it requires the accidental
vanishing of v′ if the phase transition is continuous. The first-
principles calculations of BF indicate that v′ > 0 as required
by Fig. 2.

C. �−
5

The allowed distortion of the two-dimensional irrep �−
5 is

given by the basis functions of Table I and this distortion breaks
inversion symmetry. As before, we assume that the distortion
� from I4/mmm is given by Q5,1 times the distortion �

(5)
1

plus Q5,2 times the distortion for �
(5)
2 , where the �’s are

given in Table I and are seen to transform similarly to x or y.
It follows that the OP’s Q5,1 and Q5,2, transform as x and y,
respectively. So under tetragonal symmetry the expansion of
the free energy F of the distortion � in powers of Q5,1 and
Q5,2 assumes the form

F(�5) = a′′

2
(T − T5)

(
Q2

5,1 + Q2
5,2

) + 1

4
u′′(Q2

5,1 + Q2
5,2

)2

+v′′Q2
5,1Q

2
5,2 + O(Q6), (5)

where a′′ > 0, u′′ > 0, and T5 is the temperature at which
irrep �5 would become active (if it were the only relevant
irrep). Since BF found that �−

5 is not actually unstable for
CMO, T5 < 0. Using the fact (see Tables I or II) that Q5,1 and
Q5,2 transform like x and y, we see that

VQε = αεzz

(
Q2

5,1 + Q2
5,2

) + β(εxx + εyy)
(
Q2

5,1 + Q2
5,2

)
+ γ (εxx − εyy)

(
Q2

5,1 − Q2
5,2

) + δεxyQ5,1Q5,2. (6)

Because this phase is not centrosymmetric, it can support a
nonzero spontaneous polarization. This will be discussed in a
later section.

The free energy of Eq. (5) gives rise to two principal
scenarios. If v′′ > 0, then either Q5,1 or Q5,2 (but not both)
condense at T5. Then Eq. (6) indicates that εxy = 0 and
εxx �= εyy and a detailed analysis of the distortions indicates
that we condense into space group Imm2 (#44). Alternatively,
if v′′ < 0 then Eq. (5) indicates that |Q5,1| = |Q5,2|. Equation
(6) implies that εxy �= 0 and εxx = εyy and we condense into
space group F2mm (#42). As before, these distorted space
groups agree with the results in Ref. 18. However, an additional
subgroup is listed as realizable from this irrep, namely Cm

(#8). As before, to realize this possibility if the phase transition
is continuous requires the accidental vanishing of v′′, a
possibility we reject. The first-principles calculations of BF
imply that v′′ < 0 so that space group F2mm would be realized
if �−

5 were to condense first and both OP’s would have equal
magnitude. There are then four possible domains of ordering
corresponding to independently choosing the signs of Q5,1 and
Q5,2.

IV. COMBINING IRREPS

Now we consider what happens when we condense a
second irrep. Although we assume that X−

3 is the first irrep
to condense, our discussion could be framed more generally
when the ordering of condensation of the irreps is arbitrary.
We assume a quadratic free energy F2 of the form

F2 = a

2
(T − T3)[Q3(q1)2 + Q3(q2)2]

+a′

2
(T − T2)[Q2(q1)2 + Q2(q2)2]

+a′′

2
(T − T5)

(
Y 2

5 + Z2
5

)
,

where Y5 = Q5,1 − Q5,2, Z5 = Q5,1 + Q5,2, we assume that
T3 > T2 > T5. (The discussion that follows is easily modified
if the intermediate state is Cmca, for instance, so that T2 > T3.)
For the RP systems wave vector conservation and inversion
invariance implies that the cubic terms in the free energy must
be of the form

VC = Q2(q1)Q3(q1)[rQ5,1 + tQ5,2]

+Q2(q2)Q3(q2)[sQ5,1 + uQ5,2].

To make this invariant under md we require r = t and
s = −u. Invariance under R4 leads to s = r , so that we may
write

VC = −r[Q2(q1)Q3(q1)Z5 + Q2(q2)Q3(q2)Y5]. (7)

As the temperature is reduced, Q3 is the first OP to condense,
with either Q3(q1) �= 0 or Q3(q2) �= 0, as dictated by the
quartic terms we considered previously in Eq. (3). Then,
assuming Q3(q1) has condensed, we have effectively

VC = −r〈Q3(q1)〉Q2(q1)Z5 ≡ wQ2(q1)Z5,
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FIG. 6. (Color online) The symmetry of the displacements of the equatorial oxygen ions at tetragonal sites (±1/2,0,τ ) and (0, ± 1/2,τ )
and that of apical oxygens (e.g., e) at (0,0,χ ) in the Cmc21 phase. Arrows represent displacements in the xt -yt plane and the + and − signs
those in the zt direction. Each octahedron (e.g., a, b, c, d, e) is surrounded by a dash-dot oval. The tetragonal (orthorhombic) unit cell is
bounded by the dashed (full) rectangle. The spontaneous polarization P and the wave vector q are shown at the right along with the tetragonal
and orthorhombic coordinate axes. The displacements of irrep �−

5 (which contribute to P �= 0) are in parentheses. The other symbols have the
following meaning. The octahedral rotation (the largest arrows) about zt and the smallest arrows for the radial distortion come from irrep X+

2 .
The rotation about ZO (the apical arrows, the +’s, and the −’s) comes from irrep X−

3 . The only symmetries remaining in the Cmc21 phase are
mz ≡ mX = +1 and a glide plane whose mirror is the dashed line and whose displacement is the dashed arrow. The glide operation takes site
1 into site 2 and site 3 into site 4.

where 〈Q3(q1)〉 indicates the value of Q3(q1) which minimizes
the free energy. Thus the Q2 and Q5 variables are governed
by the quadratic free energy

FQ2,Z = 1
2 (T − T2)Q2(q1)2 + 1

2 (T − T5)Z2
5

− r〈Q3(q1)〉Q2(q1)Z5 + 1
2 (T − T2)Q2(q2)2

+ 1
2 (T − T5)Y 2

5 − r〈Q3(q2)〉Q2(q2)Y5.

Suppose that Q3(q1) is the first variable to condense. The
effect of the cubic term is to couple Q2(q1) and Z5 so that
the variable that next condenses as the temperature is lowered
is a linear combination of Q2(q1) and Z5. [This transition at
T̃2 preempts the potential transition at T2 where Q2(q2) would
have condensed.] If w is small compared to T2 − T5, then
the new transition temperature will be approximately T̃2 ≈
T2 + |w|/(T2 − T5) and the condensing variable Q̃2(q1) will
dominantly be Q2(q1) with a small amount of Z5 admixed to it.
The important conclusion is that we have two families of OP’s
[Q3(q1),Q2(q1),Z5] and [Q3(q2),Q2(q2),Y5]. At the highest
transition one OP (we assume it to be Q3) of one of the two
families will condense. At a lower temperature the two other
OP’s of that family will condense. Independently of which OP
first condenses one will reach one of the equivalent domains
of the same final state, as Fig. 2 indicates. There are eight36

such equivalent domains because we can independently choose
between (a) the wave vectors q1 and q2, (b) the sign of Q3(q),
and (c) the sign of Q̃2(q). These domains are discussed in
detail in Sec. VI. For simplicity, we do not extend this analysis
to include several copies of the various irreps involved. The
symmetry of the displacements when the irreps of the q1 family
are present is shown in Fig. 6.

The cubic term of Eq. (7) guarantees that when Q3(qn)
condenses, the lower-temperature transition always involves
the condensation of Q2(qn) and the appropriate �−

5 OP. We
selected this cubic interaction to be dominant to arrive finally
at the observed Cmc21 phase, as discussed in Appendix A.
There is also a cubic interaction of the form

V ′
C = r[Q2(q1)Q3(q2)V (qM ) + Q2(q2)Q3(q1)W (qM )],

where qM = (1,0,0) and VM and WM are operators that
transform according to the appropriate two-dimensional irrep
(M−

5 ) so that V ′
C is an invariant. This interaction (in contrast

to VC) involves a doubling of the size of the unit cell at T̃2.
Since no such doubling has been seen, we conclude that V ′

C is
dominated by VC .

It is interesting to consider the mean-field temperature
dependence of Q3(q1), for example, from the free energy

F = a

2
(T − T3)Q3(q1)2 + 1

4
uQ3(q1)4 − rQ3(q1)Q2(q1)Z5.

For T slightly below T3 one has |Q3(q1)| ∼ (T3 − T )1/2. For
T near T̃2 we treat the term in r perturbatively and find for
T < T2 that37

Q3(q1) ≈ [(a/u)(T3 − T )]1/2 − rQ2(q1)Z5

2a(T3 − T )
. (8)

Slightly below T̃2 the variables Q2(q1) and Z5 ≡ (Q5,1 +
Q5,2) are proportional (with different constants of proportion-
ality) to (T̃2 − T )1/2. Thus the second term in Eq. (8), which
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FIG. 7. (Color online) Upper curve: The temperature dependence
of Q3 for T near T3 and for T near T̃2. Lower curve: Q2 and Q5 for
T near T̃2, as discussed below Eq. (8) and P near T̃2 as described by
Eq. (10).

is only nonzero for T < T̃2, is proportional to (T̃2 − T ). These
results are illustrated in Fig. 7.

One can similarly analyze the temperature dependence of
the strains. From Eq. (4) we see that the strain εxy (in tetragonal
coordinates) is zero for T > T3. Just below T3 one has

εxy = α[Q−
3 (q2)2 − Q−

3 (q1)2]/c44.

Since Q3 ∝ (T3 − T )1/2, this indicates that just below T3 one
has

εxy ∝ ±(T3 − T ),

the sign depending on which Q3(qn) has condensed. In
addition, the coupling between strains and the orientational
OP’s indicate that at the structural transitions there will be a
jump in slope of the diagonal strains εαα .

V. COUPLING TO DIELECTRIC AND MAGNETIC ORDER

In the following two sections we consider the coupling
between the lattice distortions and (a) the spontaneous polar-
ization and (b) magnetic long-range order.

A. Dielectric coupling

The dielectric free energy is

FD = 1
2χ−1

E [ P ]2 + VD,

where VD is the coupling with the distortion modes which is
linear in the spontaneous polarization P. This coupling will be
zero for a structure which has a center of inversion symmetry.
�−

5 is the only irrep which, by itself, breaks inversion and for
it we have

V
(5)
D = −λ[Q5,1Px + Q5,2Py].

This follows because Q5,1 transforms like x and Q5,2 trans-
forms like y. Using this transformation property, we infer from
Eq. (7) a contribution to VD of the form

V
(2,3)
D = −λ′[Q2(q1)Q3(q1)(Px + Py)

+Q2(q2)Q3(q2)(Px − Py)].

These couplings indicate that

Px = λχEQ5,1 + λ′χE[Q2(q1)Q3(q1) + Q2(q2)Q3(q2)],
(9)

Py = λχEQ5,2 + λ′χE[Q2(q1)Q3(q1) − Q2(q2)Q3(q2)].

We may simplify this by minimizing the free energy
F(�5) + Vc from Eqs. (5) and (7) to write

Q5,1 = r[Q2(q1)Q3(q1) + Q2(q2)Q3(q2)]

a′′(T − T5)
,

Q5,2 = r[Q2(q1)Q3(q1) − Q2(q2)Q3(q2)]

a′′(T − T5)
.

Thus

Px = τ (T )(Q2(q1)Q3(q1) + Q2(q2)Q3(q2)),
(10)

Py = τ (T )(Q2(q1)Q3(q1) − Q2(q2)Q3(q2)),

where

τ (T ) = χE{λ′ + λr/[a′′(T − T5)]}. (11)

As shown in Appendix B, the dielectric constant will have
a small amplitude divergence at a temperature T = T̃2 near
T2, as is often seen in systems with magnetization induced
polarization.38,39 Note that there are two mechanisms for a
spontaneous polarization proportional, respectively, to λ′ and
λ. The term in λ may be viewed as being the polarization
due to displacement of the charged ions in the polar irrep
�−

5 . This displacement is induced by the presence of the other
two OP’s Q2 and Q3. The term in λ′ is the polarization due
to the modification in the electronic structure proportional
to Q2(q)Q3(q) when the displacement due to �−

5 is zero.
The numerical work of BF indicates that there is a large
(∼ 5μ C/cm2) spontaneous polarization which arises when Q5

is zero and therefore indicates that mechanism (b) is dominant.
It is amusing to note that, at least in principle, it is possible for
the spontaneous polarization to change sign as a function of
temperature, as happens for YMn2O5 (Refs. 40 and 41). Here
this change of sign can happen if λ′λr < 0.

For T slightly below T̃2, Q3 is noncritical and the other Q’s
are proportional to (T̃2 − T )1/2 within mean-field theory, as
illustrated in Fig. 7. Equation (10) indicates that P is parallel
to q and is proportional to Q2Q3, so that near T̃2 one has the
mean-field result that |P| ∼ (T̃2 − T )1/2, as shown in Fig. 7.
From the work of Mostovoy,42 magnetically induced polar-
ization was not expected to have P ‖ q, although P ‖ q, was
found experimentally43 and explained from general symmetry
arguments.43,44 Equation (9) indicates that a polarization will
be induced parallel to q along one of the four (1,1,0) directions
according to the signs of the OP’s as indicated by Eq. (9).

B. Magnetism

We now discuss the magnetic structures that can appear in
this system. Ca3Mn2O7 becomes antiferromagnetic at TN =
115 K.14 For this discussion we will work relative to the
parent tetragonal lattice but will introduce the orthorhombic
coordinates for the spin vectors so that

(SX)o = (Sz)t , (SY )o = (Sx)t − (Sy)t ,

(SZ)o = (Sx)t + (Sy)t .

In the simplest approximation the antiferromagnetic structure
of a single bilayer (consisting of one layer of Mn ions at
zt = xo = ξ and another at zt = xo = −ξ ) is that of two square
lattice antiferromagnets stacked directly on top of one another
[sites at (0,0,ξ ) and (0,0, − ξ )], so that all near neighbor
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FIG. 8. (Color online) A single bilayer of Mn ions in a GX

configuration. The stacking of adjacent bilayers (not shown) is such
that they are displaced transversely by (1/2,1/2,0) relative to one
another. The phase of antiferromagnetic order in adjacent bilayers
is determined by the wave vector which is either q1 or q2. This
configuration of pseudovectors is odd under inversion about the origin
(x = y = z = 0).

interactions proceed via nearly 180◦ antiferromagnetic Mn-
O-Mn bonds. The first-principles calculations of BF and the
data from Ref. 14 indicate that dominantly the spins are
perpendicular to the plane. This structure is shown in Fig. 8.
Therefore we assume that the dominant order parameter is
G(q), where we use the Wollan-Koehler45 symbols to represent
the configurations of a single bilayer shown in Fig. 9. In the
Gz ≡ GX configuration one can have either q = q1 or q = q2.
The difference between GX(q1) and GX(q2) is in the different
phase of one bilayer relative to the other. In any case all
five magnetic nearest neighbors of a central spin are oriented
antiparallel to it.

We will accommodate the following magnetic structures
based on the parent tetragonal lattice. We have choices for the
wave vector, namely q = 0, q = q1 and q2 and Sα(0,0,ξ ) =
±Sα(0,0, − ξ ). So for each component of spin we have six
candidate structures. If q = 0 and Sα(0,0, − ξ ) = S(0,0,ξ ),
then we have the “F” (ferromagnetic) structure. If q = 0 and
Sα(0,0, − ξ ) = −S(0,0,ξ ), then we have the “A” structure
shown in Fig. 9. If q = qn, then each plane of the bilayer
consists of a square lattice antiferromagnet. The two planes of
the bilayer can be coupled either so that adjacent spins in the
planes are parallel (this is the “C” structure) or so that they are

y
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+
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z

FIG. 9. The A, C, F, and G configurations of spin components for
a single bilayer in the Wollan-Koehler45 scheme.
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FIG. 10. Spin states of a bilayer of Mn ions. The plus and minus
signs represent the signs of any component of spin. Left: The “A”
configuration. Right: The “C” configuration. The circled symbols
represent the spins in planes at z = 1/2 + ξ and z = 1/2 − ξ for q =
q1. For q = q2 the circled + and circled − signs of the C configuration
are interchanged.

antiparallel (this is the “G” structure), as shown in Fig. 9. The
C and G structures each come in two versions depending on
whether q = q1 = (1/2,1/2,0) or q = q2 = (1/2, − 1/2,0),
as discussed in the caption to Fig. 10. We now introduce
orthorhombic coordinates, so that SX = Sz, SY = Sx − Sy ,
and SZ = Sx + Sy . Then we have the symmetries given in
Table III.

The magnetic free energy is F = FG + V , where FG is the
free energy of the G structure

FG = 1

2

∑
α

[
(T − TN + Kα)

∑
n

Gα(qn)2

−α′ ∑
n

Gα(qn)2Q3(qn)2
]

+ O[G(qn)4], (12)

and

V = 1

2

∑
α

[
μαF 2

α + ναCα(q1)2 + ταA2
α

]
. (13)

The term in FG proportional to α′ > 0 is such as to ensure that
the magnetic ordering wave vector is the same as the wave
vector of the octahedral tilting, as shown by the experiment of
Ref. 14. Also in Eq. (12) KX < 0 is the dominant anisotropy
that forces the spins to be perpendicular to the plane of the
bilayer. Now we want to see what other magnetic OP’s are
induced by the condensation of the dominant G ordering in the

TABLE III. The symmetry for components X, Y , and Z of the
spin, a pseudovector. Here SX = Sz, SY = Sx + Sy , SZ = Sx − Sy ,
where capital letters refer to orthorhombic and lower case letters to
tetragonal.

Structure q I mz md

Y Z X Y Z X Y Z X

F 0 + + + − − + + − −
A 0 − − − + + − + − −
G q1 − − − + + − + − −
G q2 − − − + + − + − −
C q1 + + + − − + + − −
C q2 + + + − − + + − −
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presence of the nontetragonal distortions. The magnetoelastic
interaction we invoke has to be quadratic in the magnetic
variables to be time-reversal invariant. So we consider a cubic
potential which contains terms of the form

GX(qn)LαQβ,

where L is C(qn), F , or A and Q is Q+
2 (qn), Q−

3 (qn), Z5 ≡
Q5,1 + Q5,2, or Y5 ≡ Q5,1 − Q5,2. We start by considering
only terms involving q1. The terms involving q2 will later
be obtained from those involving q1 by applying the four-
fold rotation R4. The only terms which are consistent with
inversion symmetry and wave vector conservation are those of
the form

GX(q1)AαQ+
2 (q1), GX(q1)FαQ−

3 (q1), GX(q1)Cα(q1)Z5.

(Y5 = 0 for q = q1.) We now use Table III to require invariance
under md and mz, so that the interaction which has the correct
symmetry is

aGX(q1)FY Q−
3 (q1) + bGX(q1)CZ(q1)Z5. (14)

Now we use

R4GX(qn) = GX(q3−n), R4FY = −FZ,

R4CZ(q1) = CY (q2), R4Q
−
3 (q1) = Q−

3 (q2),

R4Z5 = Y5.

Thus, in all, the lowest-order magnetoelastic coupling VMQ is

VMQ = aGX(q1)FY Q−
3 (q1) + bGX(q1)CZ(q1)Z5

−aGX(q2)FZQ−
3 (q2) + bGX(q2)CY (q2)Y5. (15)

To see what this means, it is helpful to recall that q1 (q2)
lies along the orthorhombic Z (Y ) direction. Thus the weak
ferromagnetic moment F is perpendicular to q. Note that the
wave vector is already selected as soon as tetragonal symmetry
is broken. Say q1 is selected. Then, in addition, the sign
of Q−

3 (q1) was also selected when tetragonal symmetry was
broken. Then, when magnetic long-range order appears, it can
have either sign of GX(q1), but the sign of GX(q1)FY is fixed
by the interactions within the system which fix the sign of a.

Assuming the G configuration to be dominant and using
Eqs. (13) and (15), we thus have two scenarios. If q = q1,
then we have the magnetic OP’s

[GX(q1),FY ,CZ(q1)], with

FY

GX(q1)
= −aQ−

3 (q1)

μY

,
CZ(q1)

GX(q1)
= −bZ5

νZ

. (16)

If q = q2, then we have the magnetic OP’s

[GX(q2),CY (q2),FZ], with

CY (q2)

GX(q2)
= bY5

νY

,
FZ

GX(q2)
= aQ−

3 (q2)

μZ

. (17)

In all the above results, since the cubic coupling combines
Z5 with Q−

3 (q1)Q+
2 (q1) and similarly for q = q2, we should

replace Z5 by a linear combination of Z5 and Q−
3 (q1)Q+

2 (q1)
and Y5 by a linear combination of Y5 and Q−

3 (q2)Q+
2 (q2). The

results of Eqs. (16) and (17) agree with the magnetic structure
determination of Ref. 14 and with the symmetry analysis of
BF, except that here we emphasize the relation of the magnetic
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FIG. 11. (Color online) The equilibrium orientation of the
staggered magnetization (N), the polarization (P), and the weak
ferromagnetic moment (F) for q = q1 (left panel) and for q = q2

(right panel). (The sign of q is not relevant because q = −q mod a
reciprocal lattice vector.) The axes along which these vectors lie are
fixed by symmetry. However, one can find domains in which any (or
all) these vectors can be reversed since P is proportional to Q2Q3 and
F is proportional to NQ3. Thus to change only the sign of P, find a
domain in which the sign of Q2 is changed. To change only the sign
of F, change the signs of Q2 and Q3. To change only the sign of N,
change the signs of N, Q2, and Q3.

ordering to the preestablished wave vector. These results are
summarized by Fig. 11.

It is interesting to note the possibility of switching the
direction of the polarization (magnetization) by application
of a sufficiently strong magnetic (electric) field. For this
discussion it is useful to refer to Fig. 11. Suppose the sample
initially has condensed wave vector q1. (See the left panel of
Fig. 11.) Applying a magnetic field HZ in the Zdirection (i.e.,
parallel to q1) will cause the free energy of the variables �2 ≡
[PY ,FZ,GX(q2),Q2(q2)] to be less than that of the variables
�1 ≡ [PZ,FY ,GX(q1),Q2(q1)] because of the magnetic field
energy −HZFZ . Similarly, applying an electric field in the Y

direction will cause the free energy of the variables �2 to be
less than that of the variables �1. How large a magnetic or
electric field is required to rotate the system from the left to
the right panel of Fig. 11 will depend on the free energy of
the barrier separating these two states. Since these two states
differ by a gross structural reorganization, this barrier may be
too large to be practically surmounted.

Since Fα transforms like a pseudovector, one has symmetry-
allowed interactions with Fα replaced by Hα where H is
the applied magnetic field. So from Eq. (15) we have a
magnetic-field dependent contribution to the free energy of the
form

VH = c1GX(q1)Q−
3 (q1)HY − c1GX(q2)Q−

3 (q2)HZ, (18)

which indicates that when tetragonal symmetry is broken
(so that Q3 is nonzero), the magnetic field acts like a field
conjugate to the antiferromagnetic OP GX. Consequently,
∂GX/∂Hα will diverge as the lower transition is approached
for α = Y or α = Z, according to which wave vector has
condensed. This suggests a neutron scattering experiment to
measure GX near the lower transition as a function of the
magnitude and direction of H.
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FIG. 12. Domains in CMO. At T3 the value of the wave vector q
and the sign of Q3(q) are selected. At each succeeding transition a
two-state order parameter condenses to further break symmetry. The
domains for positive Q3(q) are macroscopically indistinguishable
from those for negative Q3(q) because they differ by a unit translation
in the x-y plane. The signs of the OP’s P and the weak ferromagnetic
moment M depend on the constants τ of Eq. (10) and a of Eq. (14).
For CTO (which is nonmagnetic) the section at and below TN does
not apply.

VI. DOMAINS

A. Domain structure

Here we discuss in more detail the possible domain
structures and give a brief discussion of the dynamics of
domain wall motion. We first enumerate the various domains of
order parameters which can exist as the temperature is lowered
through the various phase transitions. As a preliminary one
should note that within a single domain the phase of an OP
at wave vector qk cannot be experimentally determined. How-
ever, if more than one such OP is present, then their relative
phases can be accessed experimentally. In the discussion that
follows we will determine the phase of the OP’s relative to
that of Q3 which is not determined. As the temperature is
lowered through T3, four possible domains are created, with
the choices of sign of Q3 and the two choices for the wave
vector, as shown in Fig. 12. The value of the wave vector within
a single domain is experimentally accessible via a scattering
experiment. Although the phase of Q3(q) cannot be established
within a single domain, the fact that different such domains
do exist can be established by observation of a domain wall
separating domains having the same values of the wave vector.
Such an experiment to observe a so-called phase domain wall
has recently been done in another system.46,49

Next, as the temperature is lowered through the lower
structural transition at T = T̃2, the OP Q2 is condensed (and,
as we have seen, is accompanied by Q−

5 ), giving a total of

eight domains, four with Q3 > 0 and four with Q3 < 0. These
sets of four differ from one another only in the inaccessible
phase of the OP Q3. However, the four domains having a
given sign of Q3 can be distinguished from one another
since they correspond to the two choices of wave vector
(which is easily experimentally accessible) and the two choices
of sign of Q2 which leads to distinct orientations of the
spontaneous polarization (which is also easily experimentally
accessible).

Finally, when the temperature TN is reached, the OP
GX(q) which describes the antiferromagnetic order is also
accessible because it is coupled to the weak ferromagnetic
moment. In that way we can identify the 16 domains up to
an uncertainty in the sign of Q3. As we indicated above,
the uncertainty is, in principle, accessible in that the phase
domain wall can be observed. Note that the transformation
(Q3,Q2,Gx) → (−Q3, − Q2, − Gx) leaves the observables
P, M, and q invariant.

B. Domain walls

The above discussion assumes the existence of domains
which, unlike ferromagnetic domains, do not have an obvious
energetic reason to exist for T3 > T > T̃2, where P is zero.
However, it is possible that one may unavoidably generate
domains if long-range order develops from widely separated
seed sites. A question then arises as to whether the initial
domain structure will coarsen and eventually reach a single
domain state or whether the domain wall motion is too
restricted for this to happen.

To discuss this question we start by considering domain
walls assuming condensation of Q3(q). Due to the corrugation
of this structure the elastic constraints only permit domain
walls in certain orientations. For proper ferroelastics the list
of possible orientations of domain walls was tabulated by
Sapriel.47 Here we are dealing with an improper ferroelastic,18

and the results are similar: domain walls whose plane includes
the tetragonal z axis are perpendicular to the the tetragonal
planes x = 0 or y = 0 or to the orthorhombic planes Y = 0 or
Z = 0.

We first consider the latter case. Imagine for simplicity
the case of the RP 214 system, such as K2NiF4 in which the
bilayers of the systems considered in this paper are replaced
by single layers. Then one can imagine a sharp domain wall
as shown in Fig. 13, where the domain wall is associated
with a transverse displacement of the octahedra at the wall.
At lowest order in the distortion, this wall energy does not
involve any energy of distortion of the octahedra and therefore
this type of wall should easily exist. This wall is analogous
to a 180◦ wall in an antiferromagnet and involves no elastic
mismatch. However, when we consider systems with bilayers
of octahedra, as for CMO or CTO, this type of wall would
involve the transverse distortions of the two layers of the
bilayer having opposite signs. Since that configuration would
require a drastic distortion of the octahedra, such a wall has
very high energy and is probably not stable.

We are then left with walls perpendicular to the tetragonal
axis, as shown in Fig. 14 for the case of a sharp wall. Of
course, the wall need not be sharp. We therefore consider the
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FIG. 13. A sharp domain wall perpendicular to the Z axis for
a single layer of the RP 214 system. The displacement along the
tetragonal z axis (the same as the orthorhomic X axis) z0 of each side
of the equatorial plaquette of oxygen ions is indicated. The octahedra
in the wall are displaced perpendicularly to the tetragonal basal plane.
The domain wall energy is due to the elastic energy of this transverse
displacement. Arrows indicate the displacement of the topmost apical
oxygen of each octahedron.

wall energy functional W . For convenience we let σn denote
Q3(qn) and we write

W =
∫

W (r)d3r. (19)
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FIG. 14. As Fig. 13. A sharp domain wall perpendicular to the
tetragonal x axis. Here the displacement along z of each equatorial
oxygen ion is specified. The wall energy density, 2V , is due to the
interaction between octahedra which are nearest neighbors along the
x axis. This domain wall separates domains in which different wave
vector order parameters have condensed. It is analogous to a 90◦ wall
in an antiferromagnet.

For simplicity we will discuss the form of W (r) neglecting the
dependence on the tetragonal z coordinate. This approximation
will be valid if the domains in adjacent bilayers are independent
of one another or if domains in adjacent bilayers are locked
together. Then

W (r)=−a(T −T3)[σ1(r)2 + σ2(r)2] + w[σ1(r)2 + σ2(r)2]2

+vσ1(r)2σ2(r)2 + α
∑
m

([
∂σm

∂x

]2

+
[
∂σm

∂y

]2
)

+β

(
∂σ1

∂x

∂σ2

∂x
− ∂σ1

∂y

∂σ2

∂y

)
+γ

(
∂σ1

∂x

∂σ1

∂y
− ∂σ2

∂x

∂σ2

∂y

)
,

(20)

where α, w and v are positive and probably |β| and |γ | are
much less than α. This form satisfies the symmetries σdσ1 =
−σ1, σdσ2 = σ2, σdx = y, σdy = x, R4σ1 = σ2, R4σ2 =
−σ1, R4x = y, and R4y = −x. Here we neglected the
coupling of the wall to strains.48 (The coupling to strains will
affect the profile of the wall near its center.) Dimensional
analysis indicates that the width of the wall, ξ is of order ξ ∼√

α/(T − T3). The first-principles calculations of Yildirim
(see Appendix C) show that the energy of the sharp wall
of Fig. 14 is about 20 meV per unit cell area and also that
the wall is indeed sharp. This result leads to the estimate
that α/a2 ∼ 20 meV, where a is the lattice constant. Since
ξ ∼ √

α/(T3 − T ) and 1 meV is about 12 K in temperature
units, one sees that ξ will be of order a lattice constant unless
we are within, say 50 K of the transition at T = T3. Such sharp
walls have been observed for similar perovskite systems.49

From this example one concludes that a domain wall tends
to form in planes of “minimum contact” (i.e., in planes which
intersect the least number of shared oxygen ions). This is why
[100] walls are preferred over [110] walls for systems, such as
CMO, in which tilting occurs about a [110] direction.49 It is
possible that instead of coarsening, the system may undergo
a process of “rectangularizing” in which the domains tend to
become rectangles, as observed in Ref. 49.

VII. CONCLUSION

In this paper we have explored the rich structure of struc-
tural, magnetic, and dielectric ordering in the Ruddlesden-
Popper compound Ca3Mn2O7, using Landau theory to analyze
symmetry properties. Our approach is similar to that used by
Perez-Mato et al.20 to study the Aurivillius compounds. Most
of the symmetry relations we find are explicitly corroborated
by the first-principles calculations of Benedek and Fennie. An
important aspect of our work is to motivate a large number
of experiments which can elucidate the relations between
the various order parameters. Specifically, we summarize the
conclusions from our work as follows.

The most important aspect of our work is that we introduce
order parameters (OP’s) for all the irreducible representations
(irreps) for all the wave vectors of the star which is active in
the ordering transitions. The OP’s describe distortions from
the parent high symmetry tetragonal lattice which exists at
high temperature. This enables us to discuss the induced
(nonprimary) OP’s such as the spontaneous polarization, the
weak ferromagnetism, and the elastic strains.
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In conformity with established results18 (but rejecting
multicritical points) we treat the group-subgroup structure
obtained by the first-principles calculations of Benedek and
Fennie.19 We give an OP description of a sequence of structural
transitions for Ca3Mn2O7 and Ca3Ti2O7, namely I4/mmm →
Cmcm → Cmc21, which is the same as that found for a similar
perovskite by Perez-Mato et al.20 But the first-principles work
of Benedek and Fennie19 suggested that the intermediate state
might be Cmca.

The ordering involves two families of domains, one family
for each of the two X wave vectors. At the lower structural
transition, a ferroelectric polarization appears parallel to the
wave vector. Below that there is an independent magnetic
ordering transition to an antiferromagnetic state in which the
stacking of the magnetic bilayers depends on the wave vector
which was selected when the tetragonal symmetry was broken.
A weak ferromagnetic moment develops perpendicular to both
the staggered magnetization and the polarization.

We show that by application of an applied magnetic field
it might be possible to reorient the ferromagnetic moment
through successive 90◦ rotations, which would then induce
similar rotations of the spontaneous polarization. Likewise,
application of an external electric field could reorient the
spontaneous polarization which, in turn, would reorient the
wave vector and thereby reorient the weak ferromagnetic
moment.

Here we analyzed behavior near the phase transitions using
mean-field theory. However, non-mean-field critical exponents
can be accessed experimentally, as has been done for Ni3V2O8

(Ref. 50).
We have given a detailed enumeration (see Fig. 12) of the

domains arising from different realization of the OP’s. We
distinguish between domains whose bulk structure is macro-
scopically identifiable and those (similar to antiferromagnetic
domains) that arise from a difference in phase that is not
macroscopically accessible. We propose the association of
domain walls with planes of “minimum contact” between
octahedra.

We give plausibility arguments that the domain walls which
form when only the tilting distortion Q3(q) occurs are very
narrow. This conclusion is supported by the first-principles
calculations of Yildirim given in Appendix C.
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APPENDIX A: CRYSTAL STRUCTURE FOR Q+
2 (q1)

AND Q−
3 (q1)

Here we verify that the crystal structure when the OP’s
for irreps X+

2 and X−
3 at wave vector q1 are simultaneously

nonzero is Cmc21. (This result also applies when the OP’s are
both at wave vector q2.) From Table II we have the characters
listed in Table IV.

TABLE IV. Characters of generators of the little group for irreps
X+

2 and X−
3 at wave vector q1.

O = I md mz T1 T2 T3

X+
2 1 −1 1 −1 −1 −1

X−
3 −1 −1 1 −1 −1 −1

Now which operators transform like unity under both
irreps? We see that we may choose

T1T2, T1T
−1

2 , T −1
1 T3, mz, mdT1.

These indicate that the new primitive lattice vectors are

a1 = (1,1,0), a2 = (1,1,0), a3 = (−1/2,1/2,1/2).

Also

md = (x,y,z) → (x,y,z), mdT1 = (x,y,z) → (y,x + 1,z).

To make contact with Ref. 16 we transform to orthorhombic
coordinates

x ′ = z, y ′ = x − y

2
+ 1

4
, z′ = x + y

2
.

In this coordinate system

a′
1 = (0,0,1), a′

2 = (0,1,0), a′
3 = (1/2, − 1/2,0),

and the mirror operations are

m′
x = (x ′,y ′,z′) → (x ′,y ′,z′),

[mdT1]′ = (x ′,y ′,z′) → (x ′,y ′,z′ + 1/2),

which coincides with the specification of space group Cmc21

in Ref. 16. One might object that we have not taken into account
the fact that Eq. (7) indicates the presence of irrep �−

5 . What
that means is that this irrep is always allowed in Cmc21.

APPENDIX B: CRITICAL BEHAVIOR OF THE
DIELECTRIC CONSTANT

The following discussion parallels that given39 for the
dielectric anomaly in Ni3V2O8. We take the free energy (in
the q1 channel) for T near the lower transition [where Q3(q1)
is already nonzero] to be

F = a′

2
(T − T2)Q2(q1)2 + a′′

2
(T − T5)[Q5,1 + Q5,2]2

+w′Q2(q1)[Q5,1 + Q5,2] −
√

2λ[PxQ5,1 + PyQ5,2]

+1

2
χ−1

E P2 − λ′〈Q3(q1)〉Q2(q1)[Px + Py]

−[PxEx + PyEy]. (B1)

The coupling terms proportional to λ and λ′ suggest that the
dielectric susceptibility will be singular at the lower transition
where Q2 and Q5 appear. In this appendix we show this
explicitly. We write

PxQ5,1 + PyQ5,2 = 1
2 [Px + Py][Q5,1 + Q5,2]

+ 1
2 [Px − Py][Q5,1 − Q5,2],
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and

PxEx + PyEy = 1
2 [Px + Py][Ex + Ey]

+ 1
2 [Px − Py][Ex − Ey].

Note that in the q1 channel Q5,1 − Q5,2 = 0 and can be
dropped. Also, since Ex − Ey and Px − Py do not couple to a
critical variable we drop them too. Now set

P ≡ [Px + Py]/
√

2, E ≡ [Ex + Ey]/
√

2,

Q5 = Q5,1 + Q5,2.

Thus the above free energy is

F = a′

2
(T − T2)Q2

2 + a′′

2
(T − T5)Q2

5 + w′Q2Q5

+1

2
χ−1

E P 2 − λPQ5 − λ′′Q2P − PE,

where λ′′ = λ′〈Q3(q1)〉√2. Now minimize with respect to Q2

and Q5 to get

∂F
∂Q2

= a′(T − T2)Q2 + w′Q5 − λ′′P = 0,

∂F
∂Q5

= w′Q2 + a′′(T − T5)Q5 − λP = 0,

so that

Q2 = [λ′′a′′(T − T5) − w′λ]P/D,

Q5 = [−λ′′w′ + a′(T − T2)λ]P/D,

where

D = a′(T − T2)a′′(T − T5) − w′2.

Then the equation for P is ∂F/∂P = 0, or

−λ′′Q2 − λQ5 + χ−1
E P = E,

so that the dielectric susceptibility is

χ̃E ≡ P

E
= D[a′a′′χ−1

E (T − T2)(T − T5) − w′2χ−1
E

−λ2a′(T − T2) − λ′′2a′′(T − T5) + 2w′λλ′′]−1.

Note that χ̃E has poles at T = T̃2 (which is close to T2) and
at T̃5 (which is close to T5). When the effects of w′, λ, and λ′′
can be treated perturbatively with respect to T2 and χ−1

E , we
find that

T̃2 = T2 + w′2

a′a′′T2
+ λ′′2χE

a′ ≡ T2 + δT2,

a result which is reasonable considering the couplings propor-
tional to w′ and λ′ in Eq. (B1). For T near T̃2 we can therefore
write

χ̃E = DχE

a′a′′(T − T̃2)(T − T̃5)
= AχE

T − T̃2
,

where, in terms of D(T ), we have

A ≈ D(T = T̃2)

a′a′′T2
= a′a′′T2(δT2) − w′2

a′a′′T2
= λ′′2χE

a′ ,

which is a small amplitude attributable to the existence of the
mixing term proportional to λ′ in Eq. (B1). But this result does

TABLE V. 1 × 1 × 1 high-temperature tetragonal supercell of
Ca2MnO4. The lattice parameters a = 3.69173Å and c = 19.6251Å′

and the fractional coordinates are taken from Ref. 14.

Atom Label Fractional Coordinates

O1 (1/2,0,0)
O2 (0,1/2,0)
O3 (1/2,1/2,0.1)
O4 (1/2,1/2,−0.1)
Ca1 (0,0,0.1)
Ca2 (0,0,−0.1)
Mn (0.5,0.5,0)

confirm the expected divergence in the dielectric constant at
the lower transition where the polarization first appears.

APPENDIX C: WALL ENERGY

The first-principles calculations of Yildirim are summa-
rized in this appendix. These total energy calculations were
performed using the ABINIT package51 and the LDA + U

approach with the full localized limit (FLL) double-counting
method as described in Ref. 52. For Mn, we take U = 4.5
eV and the exchange parameter J = 1.0 eV, which are typical
values for Mn oxides.

These calculations were done on the simplest periodic
configurations from which domain wall energies could be
extracted. To simplify the calculations, we reduce the full
structure of CMO into an isolated single layer of MnO6

octahedra to form Ca2MnO4. We label the corresponding
unit cell as 1 × 1 × 1. The lattice parameters and fractional
coordinates of the atoms in this structure are given in Table V.
We then use this 1 × 1 × 1 cell to generate Nx × Ny × Nz

periodic superstructures in which the MnO6 octahedra are
rotated by ±θ around a (1,1,0) direction to create the distorted
structures. For a given rotation angle, we generate two
supercells. In the first we do not have any domain wall. In the
second we have two domain walls of the type shown in Fig. 14.
Hence the energy difference between these two structures
gives us twice the domain-wall energy. For simplicity most
calculations were done for (Nx,Ny,Nz) = (3,2,1). The total
energies for these two structures relative to that for θ = 0 are
given in Table VI.

However, to get some idea of the interaction between
walls, we repeated some of the calculations using a twice
longer cell (i.e., 6 × 2 × 1) and obtained the same wall
energy within 0.2%. This makes sense as one expects that
the domain wall energy is due to the distortion of the bond
angles near the domain wall and should be very local. Our
results are summarized in Fig. 15. The total energy E0 of the
structure with no domain versus MnO6 rotation angle shows
the expected instability against tilting. The results for the
energy per unit cell (see the lowest curve in Fig. 14) were
fit to

�E0(θ ) ≡ E0(θ ) − E0(0)

Nuc
=

[
− A

2
θ2 + B

4
θ4

]
, (C1)
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FIG. 15. (Color online) Results based on the data of Table VI.
Lower curve: The energy per unit cell �E0(θ ) for a single domain
with no domain wall. The solid line is the fit according to Eq. (C1).
Upper curve: Wall energy per unit cell area, Ew(θ ), deduced from
the energy in the presence of two domain walls of the type shown in
Fig. 14. Results from (Nx,Ny,Nz) = (3,2,1) are indicated by filled
blue dots and those from (Nx,Ny,Nz) = (6,2,1) by filled red triangles
which overlap the blue dots. The solid line is a fit to Eq. (C3).

where Nuc = NxNyNz = 6, with A = 2.2605 meV/degree2

and B = 0.054040 meV/degree4 and the optimum rotation
angle was

√
A/B = 6.5◦. The wall energy Ew per unit area

(area in unit cells) is expressed as

Ew(θ ) = E2(θ ) − E0(θ )

NwAw

, (C2)

TABLE VI. First-principles energy versus angle of tilting θ for
a periodic system consisting of NxNyNz supercells, where Nx = 3,
Ny = 2, and Nz = 1. E0 is the energy for no walls and E2 is the
energy with two walls. Both energies are given relative to their value
for θ = 0.

θ (degrees) E0(meV) E2(meV)

0.0 0.0 0.0
1.0 −6.41 −4.47
2.0 −25.62 −17.84
3.0 −54.82 −37.22
4.0 −87.91 −56.34
5.0 −118.72 −68.81
5.6 −132.87 −69.75
6.5 −141.83 −55.57
8.0 −102.02 32.36

where Nw = 2 is the number of walls present, E0 and E2 are
the energies of the configurations with zero and two walls,
respectively, as given in Table VI, and Aw is the wall area (in
unit cells) NyNz. The wall energy density was fit by

Ew(θ ) = 1
2aθ2 + 1

4bθ4, (C3)

with a = 0.9650 meV/degree2 and b = 0.00265
meV/degree.4 It is noteworthy that b/a for walls is about ten
times smaller than B/A for the interior of domains. This is
because b/a has negligible contribution from the distortion of
octahedra, in contrast to B/A which is characteristically large
in perovskites.10

Thus the domain-wall energy is obtained (for θ = 6.5◦) as
about 20 meV per unit cell area. This energy is quite small.
Note that only if the sharp domain wall energy is large does
it pay (energetically) to spread out the domain wall. This toy
model calculation is thus consistent with the observation of
sharp domain walls in similar systems.49
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