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Equilibrium and stability of polarization in ultrathin ferroelectric films with ionic surface
compensation
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Thermodynamic theory is developed for the ferroelectric phase transition of an ultrathin film in equilibrium
with a chemical environment that supplies ionic species to compensate its surface. Equations of state and
free energy expressions are developed based on Landau-Ginzburg-Devonshire theory, using electrochemical
equilibria to provide ionic compensation boundary conditions. Calculations are presented for a monodomain
PbTiO3 (001) film coherently strained to SrTiO3 with its exposed surface and its electronically conducting bottom
electrode in equilibrium with a controlled oxygen partial pressure. The stability and metastability boundaries of
phases of different polarization are determined as a function of temperature, oxygen partial pressure, and film
thickness. Phase diagrams showing polarization and internal electric field are presented. At temperatures below a
thickness-dependent Curie point, high or low oxygen partial pressure stabilizes positive or negative polarization,
respectively. Results are compared to the standard cases of electronic compensation controlled by either an
applied voltage or charge across two electrodes. Ionic surface compensation through chemical equilibrium with
an environment introduces new features into the phase diagram. In ultrathin films, a stable nonpolar phase
can occur between the positive and negative polar phases when varying the external chemical potential at fixed
temperature, under conditions where charged surface species are not present in sufficient concentration to stabilize
a polar phase.
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I. INTRODUCTION

The equilibrium polarization structure of an ultrathin
ferroelectric film is strongly affected by the nature of the charge
compensation of its interfaces. When there is insufficient free
charge at the interfaces, a locally polar state can be stabilized
by formation of equilibrium 180◦ stripe domains that reduce
the depolarizing field energy.1–6 When electrodes are present,
electronic charge at the interfaces can stabilize a monodomain
polar state, provided that the effective screening length in
the electrodes is sufficiently small compared with the film
thickness.6–14 In both cases, the Curie point TC is expected to
be increasingly suppressed as film thickness decreases because
of the residual depolarizing field energy.

Even when the surface electrode is missing, it has been
experimentally observed that a monodomain polar state can
be stable in ultrathin ferroelectric films.15–18 This has been
attributed to the presence of ionic species at the surface that
provide charge compensation and reduce the depolarizing
field energy,16 similar to the adsorbates observed on bulk
ferroelectric surfaces.19 Furthermore, experiments have shown
that the sign of the polarization can be inverted by changing
the chemical environment in equilibrium with the surface.20,21

Recently22 it was found that when the polarization is inverted
by changing the external chemical potential, switching can oc-
cur without domain formation and at an internal field reaching
the intrinsic coercive field for certain ranges of film thickness
and temperature. Thus, through either kinetic suppression of
domain nucleation, or the structure of the equilibrium phase
diagram, an instability point of the initial polar state can be
reached. This is in sharp contrast to switching by applied
field across electrodes, where the consensus has been that
polarization inversion occurs only by domain nucleation and
growth at fields well below the instability.23

These studies motivate the need to understand the polar-
ization phase diagrams and metastability limits for ultrathin
ferroelectric films with ionic surface compensation, in chemi-
cal equilibrium with their environment. While the energy and
structure of ferroelectric surfaces compensated by ions have
been predicted by ab initio calculations,16,20,24,25 these zero-
temperature results have been extrapolated to experimental
temperatures using simple entropy estimates, and to date have
not included the effects of interaction with the ferroelectric
phase transition and TC . Here we develop a thermodynamic
theory for the ferroelectric phase transition of an ultrathin film
in an environment that supplies ionic species to compensate
the polarization discontinuity at the surface of the ferroelectric.
We use an approach based on Landau-Ginzburg-Devonshire
(LGD) theory for the ferroelectric material,3 with boundary
conditions that include both the depolarizing field effects that
arise in ultrathin films and the creation of ionic surface charge
through electrochemical equilibria. This new chemical bound-
ary condition is based on a Langmuir adsorption isotherm for
ions.26 We develop an expression for the free energy of the
system and use it to determine the equilibrium monodomain
polarization states and their stability. For simplicity we do not
include additional “intrinsic” surface effects or polarization
gradients in the ferroelectric.27 We compare and contrast
our model for ionic compensating charge controlled by an
applied chemical potential with existing models for electronic
compensating charge controlled by either an applied voltage
or fixed charge, to elucidate how the present predictions for
ionic compensation differ from prior work.

We find that the equilibrium phase diagram of a mon-
odomain ferroelectric film as a function of temperature and
chemical potential can have a different form than the standard
phase diagrams as a function of temperature and applied
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voltage or charge. We present calculations for PbTiO3 (001)
films with a conducting bottom electrode (e.g., SrRuO3),
coherently strained to SrTiO3, and with a surface compensated
by excess or missing oxygen ions.16,20 For sufficiently thin
films, we find that a nonpolar state becomes stable between the
positive and negative polar states, within the range of external
oxygen partial pressures where there is insufficient surface
charge to stabilize a polar state. Under these conditions the
Curie temperature depends strongly on the oxygen chemical
potential.

II. THERMODYNAMIC MODEL

In this section we establish the electrostatic boundary
condition, the ferroelectric constitutive relation, and the free
energy expressions used to describe an ultrathin ferroelectric
film. We consider a uniformly polarized, monodomain film
with uniaxial polarization oriented out-of-plane (normal to
the interfaces). This should apply to systems such as PbTiO3

(001) coherently strained to SrTiO3, since LGD theory3,28

predicts that compressive in-plane strain favors this “c domain”
polarization orientation. Even if out-of-plane polarization is
suppressed by depolarization field effects, in this system the
in-plane “a domain” polarization orientation is less stable than
the nonpolar phase22 at temperatures above 360 K. For this
case all fields can be specified by scalars since their in-plane
components are zero.

To include the effects of incompletely neutralized depolar-
izing field, we use the simple electrostatic model illustrated in
Fig. 1. The spatial separation between the compensating free
charge in the electrodes and the bound charge at the outer
surfaces of the ferroelectric leads to residual depolarizing
field in the film even when the external voltage Vex is zero
(i.e., short-circuit conditions). Figure 1 shows the polarization
P and displacement D in a ferroelectric film of thickness t
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FIG. 1. Schematic of polarization, displacement, electric field,
and electric potential in the bulk and at the interfaces of a ferroelectric
film of thickness t and polarization P . Compensating planes of charge
density σ can be considered to reside at a separation λ equal to the
effective screening length in the electrodes.

sandwiched on the top and bottom by planes of compensating
free charge of density ±σ , at a distance λ � 0 outside the
ferroelectric. The planes of bound and free charge lead to steps
in P and D, respectively. In Fig. 1, P and D are positive and
the free charge on the top electrode σ is negative. The electric
field and potential can be calculated from E = (D − P )/ε0

and ∇φ = −E, where ε0 is the permittivity of free space. The
internal field in the ferroelectric film is Ein = −(σ + P )/ε0,
while the field just outside the film is Eλ = −σ/ε0.

In a series of early papers, Batra, Wurfel, and Silverman7–9

showed that the results of a more complex model taking into
account the space charge distribution and nonzero screening
length in nonideal metal electrodes could be reproduced
by this simple model in which ideal metal electrodes are
separated from the ferroelectric by a vacuum gap of width
equal to the screening length, and all bound and free charges
reside at the interfaces. This model has been discussed
extensively6,10,11,15 and used to parametrize the results of
ab initio calculations.12 An alternative description in terms
of interfacial capacitance14,29 is equivalent if the interfacial
capacitance per unit area is identified with ε0/λ. Recent
calculations13,14,30 have shown that the screening length for
the electrode material can be generalized to be an effective
screening length for a given ferroelectric/electrode interface.

We can relate the external voltage Vex across the structure
to σ and P by integrating the field to give

ε0Vex = 2λσ + t(σ + P ). (1)

The field in the ferroelectric can then be expressed as a function
of P and either σ or Vex using

Ein = −(σ + P )/ε0

= −Vex + 2λP/ε0

2λ + t
. (2)

In the latter expression, the second term in the numerator
gives the voltage from the residual depolarizing field that is
proportional to (and opposes) the film polarization.

In this simple electrostatic model, we assume that the two
interfaces have the same screening length and work function.
In a polarized material, these quantities can depend upon the
polarization magnitude and orientation with respect to the
surface, and differences between the two interfaces may arise
even if the electrode materials are identical.13,30 Since to first
order these effects simply add a term to 2λ in the numerator
of Eq. (2), which is already a variable parameter in our model,
we have neglected these differences. The approximations in
this electrostatic model are not critical in determining the
new behaviors we find below for ionic surface compensation
(which occur even for λ = 0), but do provide simple, analogous
electronic compensation models for comparison.

To determine the equilibrium polarization in the film,
the values of field and polarization inside the ferroelectric
must simultaneously satisfy both the electrostatic boundary
condition Eq. (2) and the Ein(P ) constitutive relation for the
ferroelectric. For PbTiO3 this can be written as3

Ein = f ′(P ) = 2α∗
3P + 4α∗

33P
3 + 6α111P

5, (3)
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TABLE I. Material parameters3,32,33 for PbTiO3.

T0 752.0 (K) Q11 8.9 × 10−2 (m4/C2)
C 1.5 × 105 (K) Q12 −2.6 × 10−2 (m4/C2)
α11 −7.25 × 107 (Vm5/C3) s11 8.0 × 10−12 (m2/N)
α111 2.61 × 108 (Vm9/C5) s12 −2.5 × 10−12 (m2/N)

where f ′(P ) is the derivative of the bulk LGD free energy
density

f (P ) ≡ α∗
3P

2 + α∗
33P

4 + α111P
6, (4)

and the coefficients α∗
i are those for a coherently-strained

film,31

α∗
3 = T − T0

2ε0C
− 2xmQ12

s11 + s12
,

(5)

∗α∗
33 = α11 + Q2

12

s11 + s12
,

where xm is the epitaxial misfit strain of the zero polar-
ization state, T0 is the temperature at which α∗

3 changes
sign for xm = 0, C is the Curie constant, and Qij and sij

are the electrostrictive and elastic compliance coefficients,
respectively.3,32,33 Values of these material parameters for
PbTiO3 are listed in Table I. The misfit strain xm has a
somewhat temperature-dependent value3 of about −0.01 for
PbTiO3 coherently strained to SrTiO3. While for unstressed
bulk PbTiO3 the fourth-order polarization coefficient α11 is
slightly negative, indicating a weakly first-order transition as a
function of T at Ein = 0, for coherently strained films the
coefficient α∗

33 has a positive value of 5.0 × 107 Vm5/C3,
indicating that the transition is second order.31

The strain normal to the film can be calculated from the
polarization using the expression3

x3 = Q11P
2 + 2s12

(
xm − Q12P

2
)
/(s11 + s12). (6)

If the effects of depolarizing field are neglected (i.e., for ideal
electrodes with λ = 0), the Curie temperature T ◦

C is determined
by the change in sign of α∗

3 , which gives

T ◦
C = T0 + 4ε0CQ12xm/(s11 + s12). (7)

Using the xm(T ) appropriate for epitaxially strained PbTiO3

on SrTiO3, this gives T ◦
C = 1023 K, about 270 K higher than

in the xm = 0 case.
We can determine which of the equilibrium solutions is sta-

ble, metastable, or unstable by considering the appropriate free
energy of the system. For a closed system (e.g., fixed charge),
the Helmholtz free energy is minimized at equilibrium. The
Helmholtz free energy per unit area A can be written as3

A = t[f (P ) + ε0

2
E2

in] + 2λ
ε0

2
E2

λ

= t

[
f (P ) + (σ + P )2

2ε0

]
+ λσ 2

ε0
, (8)

where the two terms are for the ferroelectric film and
surrounding screening regions. For an open system (e.g., fixed
potential), the Gibbs free energy is minimized at equilibrium.
The Gibbs free energy per unit area G is given by3

G = A − Vexσ, (9)

where the difference between the Gibbs and Helmholtz free
energies −Vexσ is the electrical work done on the system by
the external circuit. This difference is in accord with that in a
recent derivation34 of the energy functionals to be minimized
in first-principles calculations at fixed D and fixed E.

III. FERROELECTRIC FILM WITH
ELECTRONIC COMPENSATION

In this section we present the equations of state and phase
diagrams for ferroelectric films with electronic compensation
under controlled voltage or charge conditions, as background
for development of theory for ionic compensation. Some of
the more subtle differences between fixed voltage and fixed
charge boundary conditions are highlighted.

Figure 2 graphically shows the equilibrium polarization
and field values that simultaneously satisfy the constitutive
relation, Eq. (3), and either the fixed Vex or the fixed σ

boundary condition. A temperature of 644 K was chosen
to match one of the experimental conditions previously
studied.20,22 Each line in Fig. 2(a) is the fixed Vex boundary
condition from the second equality of Eq. (2) for a particular
value of Vex. The deviation of this line from vertical reflects
the nonzero value of λ/t = 10−4 used to model the screening
length in the electrodes. As Vex is varied, this boundary
condition translates along the horizontal Ein axis. For |Vex| less
than a certain value, there are three intersections representing
equilibrium solutions; at larger |Vex|, there is only a single
solution. The marked intersections correspond to solutions that
are not unstable, as described below. Each line in Fig. 2(b) is
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FIG. 2. (Color online) Polarization vs. internal field. Straight red
lines show (a) fixed Vex (at t = 3.2 nm and λ/t = 10−4) or (b) fixed
σ boundary conditions from Eq. (2), for the three values of the fixed
quantity given in the legend. In each case, the “S” shaped blue curve
is the constitutive relation, Eq. (3), for PbTiO3 coherently strained
to SrTiO3 at 644 K. Marked intersections correspond to stable or
metastable equilibrium solutions.
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FIG. 3. (Color online) Gibbs free energy G vs. P and Vex for a
t = 3.2 nm PbTiO3 film coherently strained to SrTiO3 at 644 K, with
λ/t = 10−4. Color scale gives values of G.

the fixed σ boundary condition from the first equality of Eq. (2)
for a particular value of σ . These lines are nearly horizontal,
showing that the field dependence of P at constant σ is
negligible. As σ is varied, this boundary condition translates
along the vertical P axis. In this fixed, uniform σ case, there
is a single equilibrium solution at all σ and T values. The
behavior is independent of λ and t , and, as described below,
the equilibrium solution is always stable.

A. Phase diagram for controlled Vex

At constant Vex, the equilibrium polarization value is that
which minimizes G. Using Eq. (1) to eliminate σ gives an
expression for G in terms of Vex and P ,

G = tf (P ) − ε0V
2

ex

2(2λ + t)
+ tPVex

2λ + t
+ λtP 2

ε0(2λ + t)
. (10)

Figure 3 shows G as a function of P and Vex corresponding to
Fig. 2(a). The equilibrium polarization Peq can be determined
by setting the first derivative ofG at constant Vex to zero, giving
the equation of state

0 = 1

t

∂G
∂P

∣∣∣∣
Vex

= f ′(P ) + Vex + 2λP/ε0

2λ + t
. (11)

This agrees with the simultaneous solution of the constitutive
relation and boundary condition shown above, Eqs. (2)
and (3).

The stability of the equilibrium solutions of Eq. (11) is
determined by the sign of the second derivative of G at that
value of P ,

1

t

∂2G
∂P 2

∣∣∣∣
Vex

= f ′′(P ) + 2λ

ε0(2λ + t)
. (12)

When this is negative, the solution is unstable; when it is
positive, the solution is stable or metastable. In particular,
when there are three solutions, as shown in Fig. 2(a), the middle
one near P = 0 is unstable. The values of P and Vex at the
instability (limit of metastability) are given by the condition
that both the first and second derivatives of G are zero. At this
value of P , the P (Ein) curve of the constitutive equation,
Eq. (3), has the same slope as the constant Vex boundary
condition line, Eq. (2), in Fig. 2(a). The value of Ein at the
instability is the intrinsic coercive field for the film/electrode
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FIG. 4. (Color online) Equilibrium solutions for (a) polarization
P , (b) strain x3, and (c) Gibbs free energy G as a function of Vex,
calculated for PbTiO3 coherently strained to SrTiO3 at 644 K with
t = 3.2 nm and λ/t = 10−4. Red (blue) curves are positive (negative)
polarization; solid (dashed) segments are stable (metastable); closed
(open) circles show equilibrium transition (instability) points.

system with parameters t and λ, taking into account the effect
of depolarizing field.

The solution of Eq. (12) for P = 0 gives the condition for
the Curie temperature TC which can differ from the value T ◦

C

for λ = 0. The change in TC due to a nonzero screening length
is given by8

�T ≡ TC − T ◦
C = −2λC

2λ + t
. (13)

Because the Curie constant C is much larger than T ◦
C for typical

ferroelectrics, stability of the polar phase requires λ � t . Even
a ratio λ/t = 0.001 gives �T = −300 K for PbTiO3. Effective
screening lengths λ calculated from first principles12,14 vary
between zero and 0.02 nm for various electrode-ferroelectric
interfaces.

Figure 4 shows the equilibrium polarization, strain, and free
energy of the stable and metastable solutions as a function of
Vex. These indicate the possible polarization hysteresis and
strain butterfly loops. Two equilibrium solutions (one stable
and one metastable) corresponding to oppositely polarized
states exist when |Vex| is smaller than the instability. The
stable solution switches between positive and negative po-
larization at Vex = 0. At values of Vex in the metastable region
between the equilibrium and instability points, polarization
switching requires nucleation of domains of the opposite
polarity. The nucleation barrier becomes zero when Vex reaches
the instability.35 At values of Vex exceeding the instability,
switching occurs by a continuous process without nucleation.

Figure 5 shows the equilibrium polarization phase diagram
as a function of Vex and T . While there is a first-order transition
phase between positive and negative polar ferroelectric (F+
and F−) phases, this terminates at TC in a second-order
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FIG. 5. (Color online) Equilibrium polarization phase diagram
as a function of Vex and T for PbTiO3 coherently strained to SrTiO3

with t = 3.2 nm and λ/t = 10−4. Color scale gives polarization of
stable phase. Solid black line is phase boundary between positive and
negative polar ferroelectric (F+ and F−) phases, terminating at TC .
Dashed red and blue curves are metastability limits of the F+ and F−
phases, respectively.

transition to the nonpolar paraelectric (P) phase.36 When T

is varied at nonzero values of Vex, there is no phase transition
between the nonpolar and the stable polar phase. The dashed
red and blue curves are the limits of the metastable F+ and F−
phases, respectively. The polarity switching transition driven
by changing Vex at fixed T requires nucleation under conditions
inside (below) these curves, and is continuous (non-nucleated)
outside (above) these curves.

The nonzero screening length λ not only depresses TC

below T ◦
C , but also produces inverted electric fields in the film

in the region near the phase boundary (small |Vex|). Figure 6
shows the internal field as a function of Vex and T in the
vicinity of TC . The inverted electric fields extend into the
nonpolar phase in the region between TC and T ◦

C . Thus, when
a small external voltage is applied to a film in this region, the
equilibrium field in the film is opposite to the applied field.
Close to TC , the magnitude of this inverted field is larger than
that of the applied field, producing an (internal) voltage gain
in a passive device that diverges as TC is approached. It has
been proposed that such “negative capacitance” could be used

FIG. 6. (Color online) Internal field in region near the Curie point,
corresponding to Fig. 5. Color scale gives electric field in stable phase.
Dashed black curves show conditions for zero field, which intersect
at T ◦

C (open circle), the Curie point for a film without depolarizing
field (λ = 0).

FIG. 7. (Color online) Helmholtz free energy A vs. polarization
P and surface charge σ for a t = 3.2 nm PbTiO3 film coherently
strained to SrTiO3 at 644 K, with λ/t = 10−4. Color scale gives
values of A. To emphasize the equilibrium solutions, only the region
near P = −σ is plotted since A is very large outside this region.

to improve the performance of nanoscale transistors.37 The
conditions for zero field, shown as black dashed curves in
Fig. 6, can be obtained from Eq. (2) as Vex = −(2λ/ε0)P0,
where P0 is the zero-field spontaneous polarization of the
epitaxially strained film.3 Unlike TC , these boundaries are
independent of film thickness.

B. Phase diagram for controlled σ

An alternative to controlling the voltage Vex across the
electrodes is to control the current flow to the electrodes, and
hence the free charge σ . The equilibrium polarization at fixed
σ is determined by minimizing the Helmholtz free energy for
the system given by Eq. (8). This is plotted as a function of P

and σ in Fig. 7. Setting to zero the derivative of A at constant
σ gives the equation of state

0 = 1

t

∂A
∂P

∣∣∣∣
σ

= f ′(P ) + σ + P

ε0
. (14)

This agrees with the constitutive relation, Eq. (3), verifying
that the correct equilibrium states are predicted by this free
energy for fixed σ . Since C/T ◦

C is very large for typical
ferroelectrics, there is a only one minimum at each value of
σ . The equilibrium values of A and Vex are plotted versus σ

in Fig. 8. To a good approximation, this equilibrium solution
corresponds to Peq ≈ −σ , and

Aeq ≈ tf (σ ) + λσ 2

ε0
,

(15)
V eq

ex ≈ tf ′(σ ) + 2λ
σ

ε0
.

If these approximate expressions were plotted with the exact
results in Fig. 8, the curves would be indistinguishable.

The stability of this equilibrium solution with respect to
variations in P can be evaluated from the sign of the second
derivative of A with respect to P ,

1

t

∂2A
∂P 2

∣∣∣∣
σ

= f ′′(P ) + 1

ε0
. (16)
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FIG. 8. (Color online) Equilibrium solutions for (a) external
voltage Vex and (b) Helmholtz free energy A as a function of
surface charge σ corresponding to Fig. 7. Red (blue) curves are
positive (negative) polarization; all values are stable with respect
to P variations when σ is spatially uniform. Closed (open) circles
show the equilibrium transition (instability) points when σ can be
nonuniform.

Because C/TC is very large, the first term is negligible, and
the second derivative is always positive. Unlike the fixed Vex

case, the equilibrium solution Peq ≈ −σ is never unstable with
respect to fluctuations in P , and there is no phase transition.
This point is often not recognized—if the surface charge is
controlled and kept uniform, any value of P in the film may be
stably formed.

While at fixed surface charge density σ the equilibrium
solution is always stable with respect to polarization variations,
instability can occur with respect to spatial nonuniformity in
σ . The free energyAeq of Eq. (15) is a double well, as shown in
Fig. 8(b). The minima occur at values σmin given by solutions
of

0 = 1

t

dAeq

dσ
≈ f ′(σ ) + 2λσ

tε0
. (17)

This gives V
eq

ex (σmin) = 0. If the controlled parameter is the
net charge density on the electrode σ̄ , then for |σ̄ | < |σmin|
the system can lower its free energy by forming a two-phase
mixture of domains of opposite polarity. The extent of this
two-phase region is shown by the black dotted lines in Fig. 8.
The local surface charge σ = ±|σmin| will have opposite sign
for oppositely polarized domains. At equilibrium, the fraction
of positive domains xpos will be xpos = (1 − σ̄ /|σmin|)/2. The
equilibrium value of Vex is zero in this polydomain region and
the free energy densities of the oppositely polarized domains
are equal.

Here we assume that the in-plane size of the domains is
sufficiently large compared with the film thickness that we can
neglect the excess free energy of the domain walls and the
in-plane components and non-uniformity of the polarization
and field near the domain walls. When there is incomplete
neutralization of the depolarizing field by compensating
charge (e.g., when λ is not zero), the free energy can in
some cases be reduced by the formation of equilibrium 180◦
stripe domains1,3,6 with an in-plane size similar to or less than

FIG. 9. (Color online) Equilibrium phase diagram as a function
of net surface charge σ̄ and T when σ can be nonuniform, for PbTiO3

coherently strained to SrTiO3 with t = 3.2 nm and λ/t = 10−4. Color
scale gives polarization in single-phase region. Solid black line is
phase boundary between positive and negative polar ferroelectric
(F+ and F−) phases and a two-phase field, which terminates at TC

(filled circle). Dashed red and blue curves are metastability limits of
the F+ and F− phases, respectively.

the film thickness. For such fine-scale domain structures, the
domain wall energies and field variations are not negligible.
For simplicity, we do not consider these cases here.

The surface charge density is a conserved order parameter,
so instability with respect to spatial non-uniformity occurs for
magnitudes of σ smaller than the spinodal values given by

0 = 1

t

d2Aeq

dσ 2
≈ f ′′(σ ) + 2λ

tε0
. (18)

Since λ � t , this expression gives the same result as the
instability with respect to uniform P variations at constant
Vex, Eq. (12).

Figure 9 shows the equilibrium polarization phase diagram
as a function of σ̄ and T , while Fig. 10 shows the internal
field in the vicinity of TC . These exhibit a two-phase field
between the single-phase positive and negative polar phases
(F+ and F−). The dashed red and blue spinodal curves are
the metastability limits of the F+ and F− phases, respectively.
The polarization behavior is especially simple, since we have

FIG. 10. (Color online) Internal field in the region near the Curie
point, corresponding to Fig. 9. Color scale gives electric field in
single-phase region. Dashed black curves show conditions for zero
field.
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P ≈ −σ in the single-phase regions, independent of T . The
suppression of TC is the same as in the controlled Vex case,
and the equilibrium and instability curves correspond exactly.
However, transformations driven by controlling either Vex or
σ̄ follow different paths. If Vex is kept constant, the parent
phase will remain metastable and will be entirely consumed
by the stable phase. If σ̄ is kept constant, Vex will decrease
to zero as the fraction of inverted domains grows, reaching
an equilibrium two-phase state. The controlled potential and
controlled charge phase diagrams for ferroelectrics, Figs. 5
and 9, are directly analogous to controlled chemical potential
and controlled composition phase diagrams for an alloy or
fluid exhibiting phase separation.35 In particular, the instability
in ferroelectrics is a spinodal boundary, and the continuous
transition that occurs at fixed Vex in the unstable region is
equivalent to spinodal decomposition of an alloy held at
constant chemical potential. In this case, unlike the usual fixed
average composition constraint for an alloy, the continuous
transition will result in a single-phase (monodomain) final
state. Spinodal transitions from monodomain to polydo-
main states in ferroelectrics at fixed σ̄ have recently been
modeled.38

While the conclusion that the P ≈ −σ solution is always
stable with respect to P fluctuations for any constant σ

may seem practically irrelevant for the electronic compen-
sation case where the system is unstable with respect to
σ nonuniformity, in the case of ionic compensation this
conclusion can be important. As we shall see, for ionic
compensation the system can be stable against σ nonuni-
formity, and the phase transition to a polar state can be
completely suppressed for a range of applied chemical
potential.

IV. FERROELECTRIC FILM WITH IONIC
SURFACE COMPENSATION

Now we consider a ferroelectric film without a top elec-
trode, but with its surface exposed to a chemical environment
that can supply free charge from ionic species. The amount of
free charge supplied will depend on the chemical composition
of the environment and the external voltage Vex that it
sees on the surface. We will use the same electrostatic
boundary condition, Eq. (1), constitutive relation, Eq. (3),
and free energy, Eq. (8), employed above for the electronic
compensation cases, treating the ions as residing in a plane
at a distance λ above the surface. Rather than solving for the
polarization for a given value of Vex or σ , we wish to obtain
the equilibrium polarization for a given composition of the
environment.

To obtain the relationship between σ and Vex due to this
chemical equilibrium, we develop an expression based on
those for adsorption of ions used in electrochemical systems.26

We treat the external chemical environment as an electrolyte
that is in contact with both the surface of the film and the
bottom electrode (e.g., via pinholes in the film away from
the region of interest). In order for surface ions from the
chemical environment to produce an electric field across the
sample, as observed in experiments,20–22 the electrons involved
in creating the surface ions must have such a path to reach the
bottom electrode.

We can write a generalized surface redox reaction between
oxygen in the environment and a particular surface ion i,

IonSite + 1

ni

O2 ↔ zie
− + Ionzi , (19)

where ni is the number of surface ions created per oxygen
molecule, and zi is the charge on the surface ion. In this
formalism, ni and zi change sign depending upon whether
positively or negatively charged surface species are involved.
For example, if the surface ion is a doubly-negatively-charged
single-atom adsorbed oxygen, O2−

ad , so that ni = 2 and zi =
−2, the redox reaction is

Vad + 1
2 O2 + 2e− ↔ O2−

ad , (20)

while if the surface ion is a doubly-positively-charged single-
atom missing surface oxygen, V2+

O , so that ni = −2 and zi = 2,
the redox reaction is

OO ↔ 1
2 O2 + 2e− + V2+

O . (21)

In these reactions Vad represents a vacant oxygen ion adsorp-
tion site on top of the film and OO represents an occupied
oxygen site in the outermost layer of the film. We include
these sites in the equilibrium so that the concentration of ions
saturates when all sites in the relevant surface layer are filled.
The concentrations of surface ions, θi ≡ [Ion], are defined so
that their saturation levels are θi = 1 and the concentrations of
the surface sites are [IonSite] = 1 − θi .

One can write mass-action equilibria for these redox
reactions, taking into account the external voltage difference
between the bottom electrode and the surface (since the
electrons are assumed to reside at the bottom electrode, while
the ions reside at the surface). These are given by

θi

1 − θi

= p
1/ni

O2
exp

(−�G◦
i − zieVex

kT

)
, (22)

where �G◦
i is the standard free energy of formation of

the surface ion at pO2 = 1 bar and Vex = 0, and e is the
magnitude of the electron charge. This expression is analogous
to the Langmuir adsorption isotherm used in interfacial
electrochemistry26 for adsorption of neutral species onto a
conducting electrode exposed to ions in a solution. Here, we
consider adsorption of ions onto a polar surface exposed to
neutral species in a chemical environment. Thus our Vex is the
potential of the adsorbed ions relative to the electrons, rather
than the potential of the electrons relative to the ions in solution
as in the typical electrochemical case.

The standard free energies can depend not only on temper-
ature but also on the polarization of the film, since the surface
structure changes with P . For simplicity we assume that they
can be all described by the same parameter λ′ using

�G◦
i ≡ �G◦◦

i (T ) + (zieλ
′/ε0)P. (23)

If λ′ is positive, then a more positively polarized film tends to
stabilize negative surface ions, and vice versa. Note that the
effect of λ′ is in addition to the electrostatic energy already
included through the zieVex term in Eq. (22). The density of

064107-7



G. BRIAN STEPHENSON AND MATTHEW J. HIGHLAND PHYSICAL REVIEW B 84, 064107 (2011)

TABLE II. Values of ionic surface compensation coefficients used
in displayed plots.

�G◦◦
⊕ 1.00 (eV) �G◦◦

� 0.00 (eV)
n⊕ −2 n� 2
z⊕ 2 z� −2
A⊕ 1.6 × 10−19 (m2) A� 1.6 × 10−19 (m2)
λ 0 (m) λ′ 0 (m)

free charge on the surface is the sum of those from the various
surface ions, giving

σ =
∑

i

zieθi

Ai

, (24)

where the A−1
i are the saturation densities of the surface ions.

Using Eqs. (22)–(24) and Eq. (1), the surface ion concen-
trations θi can be calculated for given Vex and pO2 . Parameter
values for a system with one positive surface ion i = ⊕ and
one negative surface ion i = � are given in Table II; here
�G◦◦

⊕ and �G◦◦
� are taken to be independent of temperature.

We have assumed that the saturation densities of the surface
ions A−1

i are both one per PbTiO3 unit cell area. For divalent
surface ions, this saturation density would provide more than
twice the charge density needed to fully compensate the typical
polarization of PbTiO3.

Figure 11 shows θi as a function of Vex for several different
values of pO2 . Changing pO2 shifts the external voltage
scale by [kT /(zinie)]� ln pO2 for each ion. Figure 12 shows
the corresponding surface charge density σ . Three plateaus
occur—two at extreme values of Vex, where one or the other
of the ionic surface concentrations θi saturates at unity, and a
third near zero surface charge over the range of Vex for which
both θi are small compared to unity. From the shape of the
charge vs. voltage curves in Fig. 12, one can see that this fixed
pO2 boundary condition has regions that correspond to fixed
σ separated by regions that correspond approximately to fixed
Vex. Thus fixed pO2 does not correspond to either fixed σ or
fixed Vex. As we shall see, this strongly affects the equilibrium
phase diagram.
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FIG. 11. (Color online) Concentrations of positive θ⊕ (red curves)
and negative θ� (blue curves) surface ions as a function of Vex,
calculated for the values of pO2 (bar) given in the legend at T = 644 K,
t = 3.2 nm. Parameter values used are given in Table II.
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FIG. 12. Surface charge density σ as a function of Vex at three
values of pO2 , corresponding to the concentrations shown in Fig. 11.
Parameter values used are given in Table II.

The values of pO2 and Vex that give σ = 0 can be obtained
by solving Eqs. (22)–(24) for σ = P = 0, θi � 1, to give

ln

(
pO2

p◦◦
O2

)
= n�n⊕(z⊕ − z�)

n� − n⊕

eVex

kT
, (25)

where p◦◦
O2

is the temperature-dependent oxygen partial pres-
sure that gives σ = P = 0 at Vex = 0,

ln p◦◦
O2

≡ −n�n⊕
n� − n⊕

[
�G◦◦

� − �G◦◦
⊕

kT
+ ln

(
z⊕A�

−z�A⊕

)]
.

(26)

As shown below, this value of pO2 marks the transition between
oppositely polarized films on the phase diagram.

A. Equilibrium solutions at controlled oxygen partial pressure

Equilibrium solutions can be calculated by obtaining a
relationship between Ein and P due to the fixed pO2 chemical
boundary condition, and solving it simultaneously with the
constitutive relation for the ferroelectric, as we did for the
electronic case in Fig. 2. The solution for σ as a function
of Vex shown in Fig. 12 along with Eqs. (1) and (2) gives
a relation between Ein and P for a given pO2 , which can
be solved simultaneously with Eq. (3) to obtain the overall
equilibrium. This is illustrated in Fig. 13, where the chemical
boundary condition for three values of pO2 is shown. Changing
pO2 shifts the boundary condition curve along the Ein axis. The
boundary condition curve is centered on P = 0, Ein = 0 when
pO2 is equal to p◦◦

O2
of Eq. (25).

An approximate expression for the chemical boundary
condition can be obtained by making some simplifying
assumptions. The dependence of σ on Vex obtained from the
depolarizing field, Eq. (1), is negligible compared with that
obtained from the chemical equilibria, Eq. (24), shown in
Fig. 12. One can approximate Eq. (1) as σ ≈ −P . In addition,
we can neglect one of the ion concentrations θ⊕ or θ� relative
to the other, depending on the sign of the film polarization.
This leads to the limiting expressions

Vex ≈ −kT

zie
ln

−AiP/zie

1 + AiP/zie
− �G◦◦

i

zie

− λ′

ε0
P + kT ln pO2

zinie
, (27)
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FIG. 13. (Color online) Polarization vs. internal field relation-
ships arising from the constitutive relation for the ferroelectric film
(blue “S” shaped curve) and from the chemical boundary condition
(red curves with plateau) for pO2 values shown in legend (bar).
Marked intersections correspond to stable or metastable equilibrium
solutions. Parameter values used are given in Tables I and II, with
T = 644 K, t = 3.2 nm.

for i = � or ⊕ (positive or negative film polarization,
respectively). For the parameters used in Fig. 12, e.g., far below
TC , the approximation (27) is very close to the exact solution
obtained numerically. Substituting the approximation (27)
into Eq. (2), one obtains relationships between field and
polarization given by

ε0Ein ≈
ε0

(
kT
zie

ln −AiP/zie

1+AiP/zie
+ �G◦◦

i

zi e
− kT ln pO2

zinie

)
− 2λ†P

2λ + t
,

(28)

for i = � or ⊕. Here we have introduced a new parameter, λ†,
defined by

λ† ≡ λ − λ′/2. (29)

If λ′ is positive then λ† is smaller than λ, and in particular λ†

can be negative.

B. Stability of equilibrium solutions

Because of the plateau in the P (Ein) shape of the chemical
boundary condition shown in Fig. 13, there can be as many as
five equilibrium solutions given by the intersections. A total
free energy function that is minimized at equilibrium can be
used to determine which solutions are stable, metastable, and
unstable. The Gibbs free energy consistent with the above
treatment of ionic surface compensation is

G = t

[
f (P ) + (σ + P )2

2ε0

]
+ λ†σ 2

ε0

+
∑

i=�,⊕

kT

Ai

[
θi�G◦◦

i

kT
− θi ln pO2

ni

+ θi ln θi + (1 − θi) ln(1 − θi)

]
. (30)

Minimizing this G with respect to P at constant pO2 , θ�, and
θ⊕ (and therefore constant σ ) gives

0 = 1

t

∂G
∂P

∣∣∣∣
θ⊕,θ�,pO2

= f ′(P ) + σ + P

ε0
. (31)

This agrees with the constitutive relation, Eq. (3), like the
case for electronic compensation, Eq. (14). As in that case,
because of the large value of C/TC for PbTiO3, the equilibrium
polarization is given to a good approximation by P ≈ −σ . The
free energy expression then becomes

G ≈ tf (σ ) + λ†σ 2

ε0

+
∑

i=�,⊕

kT

Ai

[
θi�G◦◦

i

kT
− θi ln pO2

ni

+ θi ln θi + (1 − θi) ln(1 − θi)

]
. (32)

When the derivatives of this free energy with respect to θ⊕
and θ� at fixed pO2 are set to zero, this yields the equilibrium
relations given above in Eqs. (22)–(24), where Vex of Eq. (1)
is now given by Vex ≈ 2λσ/ε0 + tf ′(σ ).

The global minimum of the free energy G of Eq. (32)
with respect to θ� and θ⊕ typically occurs either at θ� ≈ 0
or θ⊕ ≈ 0. The generality of this result can be evaluated by
re-expressing the θ� and θ⊕ terms in the free energy Eq. (32)
using new variables σ and δ ≡ z⊕eθ⊕/A⊕ − z�eθ�/A�.
Minimizing G with respect to δ at fixed σ gives

0 = 2e
∂G
∂δ

∣∣∣∣
σ,pO2

=
(

�G◦◦
⊕

z⊕
− �G◦◦

�
z�

)

+
[
kT

z⊕
ln

(
θ⊕

1 − θ⊕

)
− kT

z�
ln

(
θ�

1 − θ�

)]

+
(

z⊕n⊕ − z�n�
z⊕n⊕z�n�

)
kT ln pO2 . (33)

The first term is positive in cases such as the one we
consider, when there is a region of intermediate pO2 with low
concentrations of both positive and negative surface ions. The
third term is zero for typical values of the zi and ni . Thus
the equilibrium condition requires that the second term be
negative, which occurs only when either θ� or θ⊕ is very
small. Substituting this result into Eq. (32) gives

G ≈ tf (σ ) + λ†σ 2

ε0
+ σ

zie

(
�G◦◦

i − kT ln pO2

ni

)

+ kT

Ai

[
Aiσ

zie
ln

(
Aiσ

zie

)
+

(
1 − Aiσ

zie

)

× ln

(
1 − Aiσ

zie

) ]
, (34)

where i = � for θ⊕ ≈ 0, positive P , and negative σ , or i =
⊕ for θ� ≈ 0, negative P , and positive σ . The third term
is proportional to σ , like a field term, but the constant of
proportionality changes when σ changes sign and the ionic
species at the surface change between positive and negative
ions. This change in slope of G(σ ) at σ = 0 can produce a
stable or metastable minimum.
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FIG. 14. (Color online) Free energy as a function of σ and
pO2/p

◦◦
O2

. Parameter values used are given in Tables I and II, with
T = 644 K, t = 3.2 nm. Color scale gives values of G.

The free energy of Eq. (34) is plotted versus pO2/p
◦◦
O2

and
σ in Figs. 14 and 15. At intermediate values of pO2 , there are
three (meta)stable solutions corresponding to local minima
in G(σ ), at positive, zero, and negative polarization. These
equilibrium solutions satisfy the equations of state

0 = ∂G
∂σ

≈ tf ′(σ ) + 2λ†σ

ε0
+ 1

zie

(
�G◦◦

i − kT ln pO2

ni

)

+ kT

zie

[
ln

(
Aiσ

zie

)
− ln

(
1 − Aiσ

zie

)]
, (35)

and the limits of metastability of these solutions can be
obtained from

0 = ∂2G
∂σ 2

≈ tf ′′(σ ) + 2λ†

ε0
+ kT

zieσ
(

1 − Aiσ

zie

) , (36)

where i = � or ⊕ as in Eq. (34). Figure 16(a), (b) shows
the polarizations and energies of these solutions as a function
of pO2/p

◦◦
O2

. The energy of the solution at P = 0 is zero,
while the energies depend on pO2/p

◦◦
O2

for the other two
solutions. For the parameters used here, e.g., a 3.2 nm film
thickness, the energies of all three solutions are almost equal
at pO2/p

◦◦
O2

= 1. The P = 0 solution will be the stable (global
minimum) solution for thinner films at intermediate pO2 . Here
this solution is stable against σ non-uniformity, unlike the
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FIG. 15. (Color online) Free energy as a function of σ at three
given values of pO2/p
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. Parameter values used are given in Tables
I and II, with T = 644 K, t = 3.2 nm.
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FIG. 16. (Color online) Polarization P and free energy G of
the (meta-)stable equilibrium solutions as a function of pO2/p
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.
Blue, green, and red curves are for negative, zero, and positive
polarization solutions; solid and dashed regions are stable and
metastable, respectively. Parameter values used are given in Tables
I and II, with T = 644 K, and t = 3.2 nm for plots (a) and (b),
t = 1.67nbsp;nm for plots (c) and (d).

electronic compensation case. For example, Fig. 16(c), (d)
shows the results for a 1.6 nm thick film, with all other param-
eters the same. In such thin films, where the central flat region
of the boundary condition P (Ein) curve spans a large range of
Ein, the positive and negative solutions do not overlap, and the
P = 0 solution is the only solution for the range of pO2 where
both θ⊕ and θ� are small.

For the polar phases, the last term of Eq. (36) is typically
small enough, except near TC , that this condition for the insta-
bility is very similar to those for the electronic compensation
cases, Eqs. (12) and (18). Thus at the metastability limit of
the polar phases, the internal field reaches the same intrinsic
coercive field in the ionic compensation case as it does in the
electronic compensation cases.

C. Phase diagram for controlled pO2

The effect of ionic surface compensation on the ferroelectric
phase transition can be explored by solving for the polarization
and field as a function of temperature as well as pO2 and
film thickness. As can be guessed from the fixed-temperature
results shown above, the temperature dependences of P , Ein,
and the Curie point TC (i.e., the temperature of the equilibrium
boundary between the polar and nonpolar phases) all vary with
the pO2 of the environment.

Figure 17 shows equilibrium polarization phase diagrams
as a function of T and pO2/p

◦◦
O2

for various film thicknesses.
In addition to the stable and metastable equilibrium phase
boundaries, the metastability limits of the polar and nonpolar
phases are shown. These phase diagrams are calculated using
parameter values given in Table II. The oxygen pressure scale
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FIG. 17. (Color online) Phase diagrams as a function of pO2/p
◦◦
O2

and T for three thicknesses of PbTiO3 coherently strained to SrTiO3,
using parameters in Tables I and II. Color scale gives polarization. Solid and dash-dot black curves are stable and metastable phase boundaries,
respectively, between non-polar paraelectric (P) and positive and negative polar ferroelectric (F+ and F−) phases. Dashed red, blue, and white
curves are metastability limits of the F+, F−, and P phases, respectively.

has been normalized to p◦◦
O2

(T ), which produces symmetric
diagrams when n� = −n⊕, z� = −z⊕.

The equilibrium phase diagrams as a function of pO2

for ionic compensation, Fig. 17, differ qualitatively from
the standard second-order ferroelectric phase diagrams as a
function of Vex or σ for electronic compensation, Figs. 5
and 9. The ionic phase diagrams show temperature ranges
where the nonpolar phase is stable at intermediate pO2

separating the positive and negative polar phases at high and
low pO2 , respectively. As film thickness becomes smaller, this
“wedge” of nonpolar phase extends to lower temperature,
reaching 0 K for thicknesses less than about 1 nm for the
parameter values used here. For films with smaller thickness,
an inverted ferroelectric transition remains at extreme values
of pO2 , with the polar phase stable at temperatures above
the phase boundary, and the nonpolar phase stable below the
boundary. For thicker films, there is a triple point where the
first order transitions between the positive and negative polar
and non-polar phases meet at pO2/p

◦◦
O2

= 1, while at extreme
values of pO2 there is no phase transition as a function of T

between the polar and nonpolar phases, similar to the case at
nonzero Vex in Fig. 5 for electronic compensation. For all film
thicknesses, the high temperature ends of the polar/nonpolar
phase boundaries terminate at two critical points. In a range
of temperature below these critical points, the regions of
(meta)stability of the positive and negative polar phases do
not overlap. Here, switching transitions between oppositely
polarized states at fixed T driven by changing pO2 must occur
through an intermediate nonpolar state.

The appearance of the nonpolar phase between the polar
phases at lower temperature is directly related to the nonlinear
dependence of surface charge σ on ln(pO2 ) at fixed Vex. This
has a plateau at a value near σ = 0 for intermediate pO2 values,
where the concentrations of both positive and negative surface
ions are small. The low value of σ in this region can be
insufficient to stabilize either polar phase.

Figure 18 shows the temperatures as a function of film
thickness of the critical points, the polar phase instabilities
at pO2/p

◦◦
O2

= 1, and the triple point. The triple point is the
minimum equilibrium TC . At temperatures between the triple

point and the critical points, the nonpolar phase intervenes
between the polar phases at equilibrium. An expression for
the temperatures Tcr of the critical points can be obtained by
setting the second and third derivatives of the free energy
simultaneously to zero, Eq. (36) and

0 = ∂3G
∂σ 3

≈ tf ′′′(σ ) −
kT

(
1 − 2Aiσ

zie

)
zieσ 2

(
1 − Aiσ

zie

)2 , (37)

where i = � or ⊕ as in Eq. (34). In the approximation that σ

is small at the critical point, these reduce to

0 ≈≈
(

α∗
3 (Tcr) + λ†

ε0t

)3

+ 2α∗
33

(
9kTcr

4t |zi |e
)2

. (38)

We use the double ≈≈ symbol to indicate a rough approx-
imation, in this case because it becomes invalid at small
t . Nonetheless, Eq. (38) shows that the temperatures of the
critical points for the ionic compensation case are suppressed
by an additional thickness-dependent term not present in the
electronic compensation case, Eq. (13). Even if the effective
screening length is zero, λ† = 0, the Tcr are changed by an
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FIG. 18. The temperatures of the critical points Tcr, the polar
phase instabilities at pO2 = p◦◦

O2
, and the triple point, as a function of

film thickness.
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FIG. 19. (Color online) Internal field for t = 1.6 nm, correspond-
ing to Fig. 17(b). Color scale gives electric field in stable phase.
Dashed black curves show conditions for zero field, which intersect
at T ◦

C (open circle).

amount

�Tcr ≡ Tcr − T ◦
C ≈≈ −2ε0C(2α∗

33)1/3

(
9kTcr

4t |zi |e
)2/3

. (39)

Using the LGD parameters3 for PbTiO3 coherently strained to
SrTiO3, |zi | = 2, and a thickness of t = 3.2 nm, one obtains
�Tcr ≈≈ −115 K.

Figure 19 shows the internal field (along with the phase
boundaries) as a function of pO2/p

◦◦
O2

and T for a 1.6 nm thick
film. Like the electronic compensation cases, Figs. 6 and 10,
the internal electric field is inverted in the polar phases near
the phase boundaries because of the incompletely neutralized
depolarizing field. While the electronic compensation model
requires a nonzero screening length λ to produce an inverted
field, the ionic compensation model does not. The magnitude
of the inverted field at the phase boundary is much larger for
ionic than for electronic compensation in the cases shown. In
all cases the inverted field regions extend above the critical
point(s). The oxygen partial pressure corresponding to zero
internal field can be obtained by setting the numerator in
Eq. (28) to zero, giving

ln p
Ein=0
O2

≈ −2nizieλ
†P0

ε0kT
+ ni ln

( −AiP0/zie

1 + AiP0/zie

)

+ ni�G◦◦
i

kT
, (40)

where P0 is the T -dependent zero-field spontaneous polariza-
tion of the epitaxially strained film given by the solution to
Eq. (2) with Ein = 0, and i = � or ⊕ for positive or negative
values of P0. As for electronic compensation, the conditions for
zero field are independent of film thickness, and they intersect
at T ◦

C . Rough values of the oxygen partial pressure at the
critical points pcr

O2
can be obtained by assuming that the field is

zero and neglecting the first two terms in Eq. (40). This gives
kTcr ln pcr

O2
≈≈ ni�G◦◦

i , where i = � for positive P (high
pO2 ) and i = ⊕ for negative P (low pO2 ).

D. Phase diagram for controlled surface oxygen density

It is instructive to plot equilibrium phase diagrams for ionic
compensation as a function of the net excess surface oxygen

FIG. 20. (Color online) Phase diagram as a function of net excess
surface oxygen density ρO and T for 1.6 nm of PbTiO3 coherently
strained to SrTiO3, corresponding to Fig. 17(b). Color scale gives
polarization in single-phase region; three two-phase regions are
marked. Solid and dash-dot black curves are stable and metastable
phase boundaries, respectively, between non-polar paraelectric (P)
and positive and negative polar ferroelectric (F+ and F−) phases.
Dashed red, blue, and black curves are metastability limits of the F+,
F−, and P phases, respectively.

density, defined by

ρO ≡
∑

i

2θi

niAi

. (41)

In the typical case where we can neglect one or the other of
the θi for positive or negative σ , one obtains ρO ≈ 2σ/nizie,
for i = � or ⊕, so that ρO is simply proportional to σ for each
range. Figures 20 and 21 show the polarization and internal
field plotted as a color scale on ρO vs. T axes for t = 1.6 nm.
These correspond to the pO2 vs. T diagrams shown in
Figs. 17(b) and 19. Such controlled ρO diagrams can be
obtained using the Helmholtz free energy

A = G + ρO

2
kT ln pO2 ≈ tf (σ ) + λ†σ 2

ε0
+ σ�G◦◦

i

zie

+ kT

Ai

[
Aiσ

zie
ln

(
Aiσ

zie

)
+

(
1 − Aiσ

zie

)
ln

(
1 − Aiσ

zie

)]
,

(42)

where i = � or ⊕ as in Eq. (34).

FIG. 21. (Color online) Internal field corresponding to Fig. 20.
Color scale gives electric field in stable phase. Dashed black curves
show conditions for zero field, which intersect at T ◦

C (open circle).
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Because ρO is a conserved order parameter, the phase
boundaries occuring on the controlled potential diagrams
become two-phase fields on Figs. 20 and 21, as in the electronic
compensation case for controlled surface charge, Figs. 9 and
10. These show the phase separation that would occur in a
closed system if the net amount of excess surface oxygen is
fixed, rather than the external pO2 . The phase diagram for
ionic compensation is more complex than that for electronic
compensation; there are two equilibrium two-phase fields
between polar and non-polar phases above a tie-line at the
triple point temperature.

V. DISCUSSION

The new parameters in the model developed above for ionic
surface compensation are ni , zi , Ai , and �G◦◦

i for i = � and
⊕, as well as λ′. These can be related to the locations of the fea-
tures on the phase diagram. Approximate expressions are given
above that show how the �G◦◦

i determine p◦◦
O2

and the pcr
O2

,
which give the center and width of the phase diagram in pO2

coordinates. These expressions are particularly simple when
the phase diagram is symmetric in coordinates of pO2/p

◦◦
O2

versus T , i.e., when n⊕ = −n�, z� = −z⊕, and A� = A⊕.
In this case one obtains ln p◦◦

O2
= n�(�G◦◦

� − �G◦◦
⊕ )/(2kT ),

ln(pcr
O2

/p◦◦
O2

) ≈≈ ±n�(�G◦◦
� + �G◦◦

⊕ )/(2kTcr). The value of
λ′ affects the critical temperatures Tcr, which may be sup-
pressed or enhanced relative to the electronic compensation
value.

Although the phase diagrams we have shown are symmetric
when plotted in pO2/p

◦◦
O2

versus T coordinates, the value of
p◦◦

O2
is expected to be a function of T . Thus experimental

phase diagrams obtained as a function of pO2 versus T are not
expected to be symmetric. Figure 22 shows the trajectories of
constant pO2 on the same T vs. pO2/p

◦◦
O2

axes used to plot the
phase diagrams. Note that we have neglected any temperature
dependence of �G◦◦

i in these calculations. Such temperature
dependence might be expected since the entropy of O2 in
the environment may be different than that of the adsorbed
ions.
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FIG. 22. Curves show fixed values of pO2 (bar) given in the
legend, plotted using same normalized axes used for the phase
diagrams, with parameters corresponding to Table II.

While the Gibbs free energy expressions for the ionic and
electronic compensation cases are very similar, the phase
diagrams differ qualitatively because a different parameter is
fixed. If we neglect the polarization dependence of the �G◦

i so
that λ′ = 0 and we consider θi � 1 for both i = � and ⊕, then
by using the mass action equilibria Eqs. (22) one can show that
the Gibbs free energy for ionic compensation, Eq. (30), reduces
to Eq. (9) used for the fixed Vex case. However, the fixed Vex and
fixed pO2 conditions lead to different equilibrium free energy
surfaces, Figs. 3 and 14, even in the case of λ′ = 0 and θi � 1.
The relationship between the fixed Vex and fixed pO2 conditions
can be seen from Eq. (27). Here pO2 enters into the expression
for Vex simply through the term kT ln pO2/(zinie). In general,
however, fixed pO2 does not correspond to fixed Vex because
there are other terms and they depend upon polarization. In
particular, if the value of �G◦◦

i /(zie) differs for positive and
negative surface ions, then there is an abrupt jump in Vex

when crossing P = 0. Thus fixed Vex and fixed pO2 constraints
produce different equilibrium behavior even when the free
energy expression for both cases is the same.

The form of the phase diagrams in Fig. 17 in which a
stable nonpolar phase intervenes between the polar phases
is due to the appearance of a third local minimum in G(σ )
near σ = 0 as shown in Fig. 15. This is conceptually similar
to the behavior of a ferroelectric with a first-order transition,
for which the coefficient of P 4 in the free energy expression
is negative.36,39 For example, Figs. 23 and 24 in Appendix
show the phase diagrams for controlled internal field Ein

and net surface charge σ̄ for unstressed bulk PbTiO3 with
ideal electrodes (λ = 0). Here the topology of the equilibrium
phase boundaries is similar to that in Figs. 17(a), 17(b), and
20, with a triple point and two critical points. However, the
range of temperatures spanned by this structure in ultrathin
films with ionic compensation can be much larger than in
bulk PbTiO3. Furthermore, the polarization of the paraelectric
phase at temperatures below the critical points is much closer
to zero in ultrathin films with ionic compensation, because of
the sharp minimum in G(σ ) at σ = 0.

The appearance of a stable nonpolar state between the
polar states on the pO2 vs. T phase diagram can affect
the mechanism of switching and the internal field at which
switching occurs (i.e., the coercive field). During switching
by ramping pO2 , the film may first become unstable with
respect to the nonpolar state before reaching pO2 values that
stabilize the opposite polarization, thus suppressing nucleation
of oppositely polarized domains. In this case the internal field
could reach the intrinsic coercive field and switching occur by
a continuous, spinodal mechanism without nucleation. This
could produce the recently observed crossover to a continuous
mechanism22 through an equilibrium pathway not requiring
kinetic suppression of nucleation.

The model developed here contains several assumptions
that could be relaxed in future extensions. We assume that
the effective screening length λ is not negative, so that
electronic interfacial effects tend to suppress rather than
enhance polarization in ultrathin films. We also neglect
any polarization dependence of λ. Ab initio calculations14,30

indicate that in some systems the interfaces enhance film
polarization, which can be modeled with a negative λ, and
that λ depends on P . These effects could be included by

064107-13



G. BRIAN STEPHENSON AND MATTHEW J. HIGHLAND PHYSICAL REVIEW B 84, 064107 (2011)

modifications to our electrostatic boundary conditions and
free energy expressions. We constrain the free and bound
charge at each interface to reside in single planes, so that
there is no space charge. Such space charge could be included
as has been done previously in models with semiconducting
ferroelectric films and/or electrodes.7–9,40 Since the screening
layer of thickness λ is a conceptual construct rather than
an actual dielectric layer in our model, we do not consider
tunneling of free charge across this layer, which has been
recently considered for systems with a dielectric separating the
electrode from the ferroelectric.41 These effects could be added
for such systems. We also neglect the possibility of equilibrium
180◦ stripe domain formation1–6 in which nanoscale domain
structures reduce the depolarizing field even when there is
little or no electronic or ionic compensation charge at one or
both interfaces. A full treatment of equilibrium stripe domains
for the ionic compensation case would be valuable in future
work.

VI. SUMMARY AND CONCLUSIONS

Ionic compensation of a ferroelectric surface due to chem-
ical equilibrium with an environment introduces new features
into the phase diagrams, Figs. 17 and 20, not present in the
standard phase diagrams for a second-order transition in a film
with electronic compensation, Figs. 5 and 9. The constant pO2

chemical boundary condition shown in Fig. 13 is a hybrid
between the constant Vex and constant σ boundary conditions
shown in Fig. 2. Because the surface concentrations of ionic
species θi are limited to values between zero and unity, constant
surface charge regimes occur when the θi are saturated. In the
regimes where one of the θi is varying between these limits, the
boundary condition is similar to a fixed Vex condition. There
are two independent relations for the surface charge σ as a
function of pO2 , depending upon whether positive or negative
surface ions predominate. In the pO2 region where there is
insufficient surface charge of either sign to stabilize a polar
state, the nonpolar state becomes stable between the positive
and negative polar states, producing two critical points, a triple
point, and a strong dependence of TC on pO2 . Large inverted
internal fields occur at equilibrium in the polar phases near the
phase boundaries with the non-polar phase. Manipulation of
ultrathin ferroelectric films via controlled ionic compensation
may thus allow experimental access to exotic non-polar and
high-field states such as those modeled in recent ab initio
calculations34,42 that would not be stable under electronic
compensation conditions.
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FIG. 23. (Color online) Region near critical points on equilibrium
polarization phase diagram as a function of Ein and T for unstressed
bulk PbTiO3 with ideal electrodes (λ = 0). Color scale gives
polarization of stable phase. Solid and dash-dot black curves are stable
and metastable phase boundaries, respectively, between nonpolar
paraelectric (P) and positive and negative polar ferroelectric (F+
and F−) phases. Dashed red, blue, and white curves are metastability
limits of the F+, F−, and P phases, respectively.

APPENDIX: PHASE DIAGRAMS FOR FIRST-ORDER
FERROELECTRIC

The phase diagrams for a bulk ferroelectric that has a
first-order transition at zero field are similar to those for
ultrathin films with ionic surface compensation. Here we
present calculated phase diagrams showing the region near
the critical points for the weakly first-order transition in
unstressed bulk PbTiO3. The features in these phase diagrams
can be compared with those for ultrathin epitaxially strained
films shown above, which have a second-order transition for
electronic compensation but a strongly first-order transition
for ionic surface compensation.

FIG. 24. (Color online) Region near critical points on equilibrium
polarization phase diagram for unstressed bulk PbTiO3 with ideal
electrodes (λ = 0) corresponding to Fig. 23, here plotted as a function
of net surface charge σ̄ and T . Color scale gives polarization in single-
phase region, which is separated by phase boundary (solid black
curve) from three two-phase fields; metastable phase boundaries are
dash-dot curves, and two critical points are marked by filled circles.
Dashed red, blue, and black curves are metastability limits of the F+,
F−, and P phases, respectively.
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These phase diagrams are calculated using the Landau-
Ginzburg-Devonshire expression for the free energy per unit
volume of unstressed bulk PbTiO3 with ideal electrodes having
zero screening length (λ = 0),

Gv = α1P
2 + α11P

4 + α111P
6 + ε0E

2
in/2 − EinP (A1)

with α1 = (T − T0)/2ε0C, where the parameters are given
in Table I of the main paper. Figure 23 shows the phase
diagram for controlled internal field Ein and Fig. 24 shows

the phase diagram for controlled net surface charge σ̄ . These
are typical for a ferroelectric with a first-order transition, for
which the coefficient of P 4 in the free energy expression is
negative. The topology of the equilibrium phase boundaries
is similar to the ionic compensation case, Figs. 17(a), 17(b),
and 20, with a triple point and two critical points. However,
the paraelectric phase above the triple point has a much wider
range of polarization around zero in this case, reflecting the
relatively broad minimum in Gv near P = 0.
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