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Edge dislocation mobilities in bcc Fe obtained by molecular dynamics
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In the traditional picture of plasticity in bcc metals, edge dislocations have been assumed to play a minor role
due to their high mobility with respect to screw dislocations, which then control plastic flow. 1

2 〈111〉{110} edge
dislocations indeed fit this description, as it has been shown by way of numerous atomistic simulations. However,
1
2 〈111〉{112} edge dislocations have been comparatively much less studied. The recent discovery of a possible
regime where they move slowly via thermally activated kink-pair nucleation may have implications in the plastic
behavior of bcc materials. Because dislocation mobilities are very difficult to measure experimentally, in this
paper, we provide comprehensive mobility laws for both types of edge dislocations as a function of temperature and
stress using molecular dynamics simulations. Our results confirm the existence of clearly delimited thermally
activated and phonon drag dynamic regimes for 1

2 〈111〉{112} edge dislocations and of a single viscous drag
regime for their 1

2 〈111〉{110} counterparts. We also provide an analysis to relate the difference in mobility to the
dislocation core properties. Our fitted mobility laws may be used in dislocation dynamics simulations of plastic
flow involving millions of segments.
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I. INTRODUCTION

The low-temperature behavior of body-centered-cubic
(bcc) metals is mainly controlled by the high lattice friction
experienced by dislocations. In this regime, it is typically
assumed that edge dislocations still move very rapidly and,
thus, the rate-controlling plastic mechanism is the thermally
activated motion of screw dislocations. Despite an extensive
literature on the subject (see reviews in, e.g., Refs. 1 and
2), several questions remain. For example, the nature of
anomalous slip in many bcc metals,3 the disparity between
calculated Peierls stresses and measured yield stresses,4 or the
role of nonglide stresses5 and nonscrew dislocations.

In bcc Fe, slip is known to occur mainly on {110} and
{112} planes.6–8 Activation of one or the other depends not
only on the loading orientation, but also on the critical
glide stress and the kink formation energy in each fam-
ily of planes.9 This is especially true when dislocations
move by thermally activated nucleation and propagation
of double kinks, where the lattice friction and kink en-
ergies on {110} and {112} planes may be very different.
In most bcc systems, both of these magnitudes are lower
on {110} planes and, indeed, there is ample experimental
evidence that {110} slip is preferentially observed at low
temperature,8 whereas {112} glide is only activated at higher
temperatures.

As mentioned above, in the traditional picture of bcc slip,
it is always assumed that edge dislocations are of the type
1
2 〈111〉{110} and that their motion is fast and nucleation of
kinks is athermal. These features have been confirmed in
atomistic simulations for a number of bcc materials.10–12 In
contrast, very little work has been done on edge dislocations of
the 1

2 〈111〉{112} type.13–15 Recently, Monnet and Terentyev16

have shown, using molecular dynamics (MD), that the mobility
of 1

2 〈111〉{112} edges in bcc Fe requires a nonzero critical
stress to move and that motion proceeds via a displacement

mechanism similar to the double-kink formation observed for
screw dislocations.

Despite the many physical insights provided in Ref. 16,
a fully characterized mobility function covering the entire
temperature and stress ranges for 1

2 〈111〉{112} edge dis-
location is still lacking. These functions are of interest
to parametrize dislocation dynamics (DD) simulations of
complex dislocation microstructures involving large numbers
of discrete segments.17–19 Obtaining mobility functions di-
rectly from experimental data is difficult, with only a few
studies performed for Fe.20 In a recent work, Caillard21,22

has investigated the motion of isolated screw dislocations
gliding on {110} planes using in situ transmission electron
microscopy (TEM) and has obtained velocities related to local
stress seen by the dislocation as estimated from its curvature.
Even though this represents a tremendous advance in terms
of single dislocation mobility measurements, to the authors’
knowledge, no such work exists for glide on {112} planes.

The purpose of this paper is to obtain a closed-form mobility
function for edge dislocations of the two types in bcc Fe. First,
the simulation conditions are presented in detail. Subsequently,
we verify the results against the work of Osetsky et al.12 for
1
2 〈111〉{110} edge dislocations and Monnet and Terentyev for
1
2 〈111〉{112} dislocations.16 Finally, we fit the results and the
corresponding mobility laws are presented.

II. METHODOLOGY

Our simulations adopt the same configurations proposed
by Osetsky and Bacon12 for 1

2 〈111〉{110} edge dislocations.
A perfect edge dislocation is created along the y axis in the
center of an orthorhombic box, as shown in Fig. 1. The z axis
coincides with the normal to the glide plane, which can be
either of 〈110〉 or 〈112〉 type. The x axis represents the 〈111〉
direction in both cases. Periodic boundary conditions (PBC)
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FIG. 1. (Color online) Simulation configuration used to investi-
gate the motion of edges. The dislocation is generated in the middle
of the simulation box and can belong to a {110} or a {112} slip plane.

are applied along the line direction y in order to investigate the
mobility of an infinitely straight dislocation. Periodicity is also
applied along the shear direction x. The volume is divided into
three regions. The inner region contains all mobile atoms, and
the upper and lower regions contain several layers of atoms
in the z direction and are used to apply a pure shear strain or
shear stress, depending on the desired type of loading control.
The two ±z faces are therefore necessarily free surfaces.

As discussed in Refs. 12 and 23, the use of periodic
boundary conditions along the x axis is associated to the
existence of a stress field due to the image dislocation in
the periodic cell. However, the image stresses from the
replica on the left and the one on the right are of opposite
signs and the net shear stress on the simulated dislocation
should be zero. We therefore performed preliminary tests
to ascertain that the simulation size does not affect the
displacement mechanisms or the mobility of edge dislocations.
Consequently, the dimensions of the region A are the following
at 0 K: Lx = 29.7 nm (≈120b), Ly = 20.2 nm (≈80b),
and Lz = 28.2 nm (≈114b). These dimensions account for
approximately 1.5 million mobile atoms.

Our calculations are performed using the parallel MD
code LAMMPS (Ref. 24) using the Fe potential developed
by Mendelev et al.,25 which correctly produces the compact
core of screw dislocations.26–28 All simulations are run in
the microcanonical ensemble NV E, where the total number
of atoms N , the volume V , and the total energy E of the
system are conserved. As in recent calculations,12 different
time-step values are used in our simulations: 5, 2.5, and
1 fs for temperatures of, respectively, 100 K, 200 K, and
all other temperatures. As in other recent works,12,23,29 both
stress- and strain-controlled loading conditions are used in this
investigation.

Finally, the identification of the dislocation core is per-
formed using a centrosymmetry deviation criterion. Among
the different approaches tested,30,31 the standardized factor
proposed by Li32 is the most efficient in removing thermal
vibrations in the specific configurations and temperature range
explored here. This procedure is applied every 1000 time steps
except at low temperatures, for which this is done more often.

The instantaneous and the average dislocation velocities are
then calculated by averaging the core displacements along the
dislocation line.

III. RESULTS

A. Mobility of edge dislocations on (110) planes

Both strain-16,23 and stress-controlled12,23 loading condi-
tions have been employed in previous studies, and here we
have performed a set of test simulations using both to confirm
that the results were indeed independent of the boundary
condition used for 1

2 〈111〉{110} edge dislocations. After
ascertaining this fact, we have chosen to use stress-controlled
boundary conditions for the production runs mainly because
the stress fluctuations inside the computational cell appear
to be smaller than those for strain-controlled conditions.
In addition, stress-controlled simulations provide dislocation
velocities that are not tied to any one strain rate in particular,
as dislocation velocity calculations under these conditions are
independent of the box size employed. Strain rate control,
however, remains closer to experimental conditions and is
therefore more suitable for the strengthening calculations due
to nanometric obstacles such as second-phase particles or
irradiation defects.33

Recent atomistic investigations10,14 have shown that
1
2 〈111〉{110} edge dislocations move by generation and prop-
agation of kinks. However, kink energies are very low and, at
the temperatures and stresses employed here, the dislocations
move rigidly and exhibit a dynamic behavior consistent
with a phonon drag mechanism. Indeed, our calculations
shown in Fig. 2 indicate that the dislocation moves even
at stresses as low as 1 MPa at 100 K. For all practical
purposes, this implies the existence of no threshold glide stress.
The mobility is linear with the applied stress and inversely
proportional to temperature, which is the signature of phonon
drag dynamics.34 The present results are in good qualitative
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FIG. 2. (Color online) Mobility of a 1
2 〈111〉{110} edge dislocation

in Fe for different applied shear stresses and temperatures. Our results
are represented by solid circles, whereas the results obtained by
Rodney et al. (Ref. 23) are shown as open diamonds. Results are
color coded according to the simulation temperature.
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FIG. 3. Temperature dependence of the viscous coefficient ap-
pearing in the linear mobility law of the edges.

and quantitative agreement with those reported by Rodney
et al. at 100 and 300 K.23

In the spirit of viscous damping dynamics, we write the
mobility of 1

2 〈111〉{110} edge dislocations as

v(110) = τb

B(T )
, (1)

where b is the Burgers vector magnitude and B is the
temperature-dependent damping coefficient. B can therefore
be obtained as the slope of linear fits to each of the
mobility curves in Fig. 2 at each temperature. As shown in
Fig. 3, B increases linearly with temperature, and its value
approximately triples between 100 and 450 K. From the figure,
we obtain B(T ) = 6.7 × 10−7T (Pa s). A similar temperature
dependence of B has also been observed by Rong et al.35

using the Fe potential developed by Ackland et al.36 The final
numerical expression for the mobility law for 1

2 〈111〉{110}
edge dislocations is therefore

v(110) = 370.1
τ

T
, (2)

which gives the velocities in m s−1 when τ is in MPa and
T in K.

B. Mobility of edge dislocations on (112) planes

1. Simulation results

Several time-displacement curves for a 1
2 〈111〉{112} edge

dislocation at 200 K and different applied stresses are shown
in Fig. 4. Velocities can be readily extracted from linear fits
to these curves. We have systematically obtained dislocation
velocities in this fashion for 50, 100, 200, and 300 K and
stresses ranging from 1 to 1000 MPa. The results are given in
logarithmic scale in Fig. 5.

Two regimes can clearly be distinguished at each tem-
perature. The dislocation velocity first grows exponentially
until transitioning to a more standard linear regime. The
transition stress decreases with temperature, which is a telltale
sign of a thermally activated mechanism of motion. After
this stress is reached, the mechanism of motion shifts to
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FIG. 4. (Color online) Time-displacement curve for an edge
dislocation gliding on a {112} plane at 200 K and different applied
stresses.

viscous damping dynamics. Above the transition stress, the
velocities of 1

2 〈111〉{112} edge dislocations are reasonably
similar to their 1

2 〈111〉{110} counterparts. However, at low
stresses (and low temperatures), edge dislocation glide on
(112) planes is considerably slower. As first observed by
Monnet and Terentyev,16 the velocity response displays a
directional asymmetry on the (112) plane corresponding to
the twinning-antitwinning (TD-AT) asymmetry.

2. Kink structure and analysis

To further characterize the mechanism of motion in the
thermally activated regime, we have performed a careful
analysis of the core configuration as a function of time. Results
for a dislocation at 50 K and 300 MPa of applied stress in the
twinning direction are shown in Fig. 6. The figure shows a
sequence of core configurations taken at intervals of 0.5 ps,
where episodes of double-kink nucleation and propagation
can be clearly recognized. Over 15 ps, the dislocation moved
a total distance of 3b, which corresponds to a velocity of
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FIG. 5. (Color online) Edge dislocation velocities on (112) planes
as a function of the applied stress and temperature. TD represents
twinning direction, while AT indicates antitwinning sense.
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FIG. 6. Core configurations of a 1
2 〈111〉{112} edge dislocation

at 50 K and under a constant stress of 300 MPa moving in the
antitwinning sense. Double-kink nucleation and motion can be clearly
recognized.

≈50 m s−1. Our analysis is in agreement with that of Monnet
and Terentyev,16 who observed the same kink-pair nucleation
and propagation sequences.

Double kinks are essentially the end points of finite portions
of dislocation line that jump across a relatively stiff energy
barrier from one equilibrium configuration to the next. To study
kink structure and characterize the transition path, we have
generated atomistic configurations of left- and right-handed
kinks and have measured their respective energies. The relaxed
configurations for a kink pair in a dislocation dipole are
shown in Fig. 7. The structures showcase the planar nature
of the dislocation core, which spans several {111} planes. The
energy of this double kink is 0.15 eV, which is higher than
the value of 0.08 eV calculated by Li-Qun et al.,14 but still
sufficiently low (certainly compared to screw dislocations) to
allow 1

2 〈111〉{112} edge dislocations to reach their viscous
drag dynamic regime at low stresses and relatively low
temperatures.

In addition, we have characterized the energy path attendant
to kink nucleation using the nudged elastic band (NEB)
method.37 The results are shown in Fig. 8, where two distinct
energy states can be observed. Much akin to the manner of
screw dislocations, these correspond to “easy” and “hard”
core configurations, although, as the figure shows, the energy
difference of 0.08 eV is very low and this effect is likely
to play no role at finite temperature. Thus, the periodicity
of easy (or hard) cores along the 〈111〉 direction is 2b. In
the dislocation motion sequence shown in Fig. 6, it appears
that double kinks are produced easier and in more abundance
from some configurations than others. At 50 K, this may well
be a manifestation of the existence of hard and easy cores,
which have slightly different energy barriers for kink pair
nucleation. This effect is expected to be smeared out by thermal
fluctuations at higher temperatures.

To further explore the difference between these two
nondegenerate core structures, we have calculated the core
disregistry in both cases and, from it, the Burgers vector density
as a function of distance from the dislocation core.38 Figure 9
shows that the difference between both easy and hard configu-

FIG. 7. (Color online) Atomistic structure of two single kinks in a
1
2 〈111〉{112} edge dislocation. The energy of one kink is 0.075 MeV.

rations is very subtle and, in fact, only appreciable at the point
of maximum Burgers vector density. The overall shape of the
curves is in good agreement with those published by Monnet
and Terentyev.16 We conclude that this effect is indeed negligi-
ble on the dynamics of the dislocations at temperatures larger
than 50 K.

FIG. 8. (Color online) Minimum energy path (Peierls energy) for
a rigid 1

2 〈111〉{112} edge dislocation along the 〈111〉 in the twinning
sense.
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 ρ

FIG. 9. (Color online) Density of Burgers vector calculated as in
Ref. 38. An asymmetry can be recognized in the shape of ρ(x).

What is not negligible, however, is the threshold stress
(akin to the Peierls stress for screw dislocations) required
for the dislocation to move in the twinning and antitwinning
directions. Using the same methodology as in Refs. 39 and 40,
the Peierls stress along TD is of 260 ± 10 MPa, while along
AT it is 520 ± 10 MPa. These values are significantly smaller
than the Peierls stresses for screw dislocations in Fe, but, here
too, the antitwinning stress is approximately twice the value
of the twinning stress. These values mark the zero-temperature
transition between the thermally activated and phonon drag
regimes. As we have pointed out earlier, the actual threshold
stresses at different temperatures are noticeably smaller. Next,
we analyze the data presented in Fig. 5 and obtain a stress and
temperature-dependent mobility law.

3. Fitting of the mobility function

In the low-stress regime controlled by the thermally
activated nucleation of kinks, we use the phenomenological
mobility law proposed originally for screw dislocations41,42:

v(112) = Aτn

kBT
exp

(
−�H (τn)

kBT

)
, (3)

where kB is Boltzmann’s constant and A is a fitting constant
that accounts for various effects such as the attempt frequency,
kink width, dislocation line length, etc. τn is a normalized
stress τn = τa/τd where τa and τd are, respectively, the applied
and temperature-dependent transition stresses. τd is obtained
directly from the MD results in Fig. 5 and its values are given
in Table I. Only the TD data have been fitted.

We have checked the dependence of the dislocation velocity
with the dislocation length by varying the y dimension in

TABLE I. Values of the transition stress τd between the thermally
activated and the linear regimes, estimated from the MD simulations.

T (K) 50 100 200 300
τd (MPa) 300 100 75 30
B (×10−5 Pa s) 4.5 17.0 11.3 9.4

Fig. 1 in a set of simulations at 50 K from 12 to 120 nm.
For all cases, the resulting velocity was found to be constant,
which we attribute to the fact that, once the dislocation line
surpasses the critical length for stable double-kink nucleation
(here smaller than 12 nm), the mobility is independent of the
dislocation length and kink nucleations can be considered as
uncorrelated events.

As discussed in detail by Kocks, Argon, and Ashby,41 the
activation free enthalpy �H is a decreasing function of the
applied stress. They proposed the following generic form:

�H (τa) = �H0
(
1 − τp

n

)q
, (4)

where �H0 is the zero-stress activation energy. This key
quantity can be calculated by molecular statics calculations
as the sum of the formation energy of two single, opposite
kinks.43 From the results of the previous section, here we
use a value of 0.15 eV, significantly smaller than for screws
(0.67 eV).43 For isotropic linear elasticity, p = 0.5 and q =
1.25. Here, however, we leave them also as fitting parameters to
account for nonlinear, nonelastic, and anisotropic effects found
in MD simulations. The fit consisting of Eqs. (3) and (4) does
not take into account backward jumps and provides no physical
insight about the shape of �H at intermediate stresses.
The values for p and q provide the asymptotic behavior
of �H at very low stresses and close to the Peierls stress,
respectively. However, in between, only phenomenological
assumptions can be made, of which Eq. (4) is the most widely
used.

Using Eqs. (3) and (4) and the transition stresses in Table I,
we perform a least-squares fit to the data corresponding to
simulations along the twinning sense in Fig. 5 and obtain
values of A = 1.45 m/eV s−1, p = 0.13, and q = 0.68. As
Fig. 10 shows, the resulting mobility function provides a
very good fit for the velocities corresponding to the thermally
activated regime, particularly at 50 and 100 K. The overall
fitting error is approximately 5%. It is worth mentioning that
we have also performed a fit using the thermally activated
mobility law used by Naamane et al.,17 which does account for
both forward and backward jumps and assumes p = 0.5 and
q = 1. Nevertheless, the resulting fit provides slightly worse
agreement with the MD data than the one used here. The final
mobility form in numerical form is then

v(112) = 1.68 × 104 τn(T )

T
exp

{ − 0.15[1 − τn(T )0.13]0.68
}
,

(5)

noting that the normalized stress is temperature dependent
according to the values in Table I. The reason why the transition
stress at 50 K is larger than at 0 K is not clear, although it may
be due to data scatter.

Figure 10 also shows the beginning of the linear fits
corresponding to the viscous drag regime. These simply have
been obtained as

v(112) = τab

B(T )
, (6)

and the results are given in Table I. In this case, the phonon drag
coefficient does not show a consistent trend with temperature,
which may simply be an indication that the phonon drag
regime is not fully established within the stress regime
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FIG. 10. (Color online) Comparison of the fitted edge mobility in TD (continuous line) using Eqs. (3) and (4) with the MD results in a
linear scale (red squares). The thermally activated regime is well captured by the mobility function, especially at low temperature.

explored here. The above equation was fitted without an
independent constant, except at 50 K, where one was needed
to maintain a reasonable transition stress. For T = 50 K, the
complete expression is then v(112) = 5.5τa − 1307.0, which
gives velocities in m s−1 when τa is in MPa.

For verification, we compare our values with the calcu-
lations performed by Monnet and Terentyev16 using a strain
rate-controlled MD simulation. In their calculations, when the
edge dislocation moved at an average velocity of 8.4 m s−1

at 100 and 50 K, the resulting critical stress was, respectively,
of 33 ± 14 and 125 ± 23 MPa. In the present investigation, in
order to reach the same velocity, the applied stress must be 63
and 112 MPa for the same temperatures.

IV. DISCUSSION AND CONCLUSIONS

The main findings of this paper can be summarized as
follows:

(i) For 1
2 〈111〉{110} edge dislocations, a linear mobility

is obtained consistent with viscous dynamics. The damping
coefficient increases linearly with temperature in agreement
with phonon drag theory. No threshold stress is required to
initiate dislocation motion.

(ii) For 1
2 〈111〉{112} edge dislocations, two dynamic

regimes have been identified. At low applied stress, the
dislocation moves by thermally activated nucleation of kink
pairs, in agreement with earlier works.16 The mobility displays
the characteristic twinning and antitwinning asymmetry of
(112) bcc slip. At higher stresses, a transition to a linear

mobility is found, signaling transition from thermally activated
to phonon drag dynamics. No dependence upon the dislocation
length is found.

(iii) We have identified two stable core energy states: the
easy core, being about 0.08 eV more stable than the hard core.
No appreciable differences in the atomic disregistry between
both cores have been found. In any case, the energy difference
between both states is too small to play any role, even at low
temperatures.

(iv) The threshold stresses (akin to Peierls stress for screw
dislocations) for slip on (112) planes in the TD and AT
directions were calculated using molecular statics, and values
of 260 and 510 MPa, respectively, were found. These stresses
are approximately five times smaller than the Peierls stress for
screw dislocations using the same potential.28 The double-kink
formation energy was found to be 0.15 eV, also significantly
smaller than for screw dislocations.

(v) Functional mobility laws are provided for each dynamic
regime obtained from fitting physically based expressions to
the simulation raw data.

The results obtained here for 1
2 〈111〉{110} edge dislocations

are in agreement with previous calculations and fit to the tra-
ditional idea of bcc plasticity governed by screw dislocations.
1
2 〈111〉{112} edges deviate from this idea in the sense that they
may have slow mobility owing to their thermally activated
behavior in the proper stress and temperature regimes. How
these mobilities impact the overall yield and flow strength
of bcc Fe at low temperatures is not immediately clear. DD
calculations should be performed under conditions of {112}
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slip to quantify this effect. In this sense, a 1
2 〈111〉{112}

screw dislocation mobility will be provided in a forthcoming
publication so that both types of dislocation populations can be
evolved concurrently. In addition, these mobilities are useful
to assess the temperature dependence of phenomena such as
precipitation or irradiation hardening, where dislocation glide
is hampered by obstacles. Again, our results should be seen
as useful and necessary input to calculations based on line
tension models or dislocation dynamics of large dislocation
ensembles.

ACKNOWLEDGMENTS

This work was performed under the auspices of the
U S Department of Energy by Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344. We
specifically acknowledge support from the Laboratory Di-
rected Research and Development Program under Project
No. 09-SI-003. This work was partly funded by the RCUK
Energy Programme under Grant No. EP/I501045 and the
European Communities under the contract of Association
between EURATOM and CCFE.

*queyreau1@llnl.gov
1L. Kubin, in Reviews on the Deformation Behavior of Materials,
edited by P. Feltham (Freund, Tel Aviv, 1982), Vol. 4(3), p. 181.

2J. W. Christian, Metall. Trans. 36, 29 (1983).
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