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Model for diffusion at the microcanonical superheating limit from atomistic computer simulations
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The diffusion statistics of atoms in a crystal close to the critical superheating temperature was studied in
detail using molecular dynamics and Monte Carlo simulations. We present a continuous random-walk model
for diffusion of atoms hopping through thermal vacancies. The results obtained from our model suggest that the
limit of superheating is precisely the temperature for which dynamic percolation happens at the time scale of
a single individual jump. A possible connection between the critical superheating limit and the maximization
of the Shannon entropy associated with the distribution of jumps is suggested. As a practical application of our
results, we show that an extrapolation of the critical superheating temperature (and therefore an estimation of the
melting point) can be performed using only the dynamical properties of the solid state.
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I. INTRODUCTION

While it is a fairly common phenomenon in daily life, the
complexity of the solid-liquid phase transition (melting) at the
atomic level is such that a precise physical explanation of its
nature and, in particular, its dynamics, is still lacking. Under
special conditions, it is possible to overheat a solid (in an
homogeneous way) above its melting point Tm, but there is a
critical temperature, the limit of superheating TLS, above which
melting is unavoidable. Thermodynamically, for isobaric
melting, Tm is defined by Gsolid(Tm,P ) = Gliquid(Tm,P ), G

being the Gibbs free energy. There is no such clear definition
for TLS yet.

Besides the well-known Lindemann1 and Born2 criteria for
melting, a number of additional criteria have been suggested,
as an attempt to understand either TLS or Tm and relate them
to some qualitative change in the properties of the crystal. It
seems, however, that the fulfillment of these classical criteria
is preceded by local nucleation of liquid, as has been put into
evidence by recent simulation studies.3,4

In 1979, Cotterill5 suggested, from simulations of the
Lennard-Jones liquid, that vacancies do not play any im-
portant role in melting, due to the lack of enough density
inhomogeneities found in that state. This, however, does not
rule out the presence of thermal vacancies in the superheated
phase. Nordlund and Averback6 focused on self-interstitials
and Frenkel pairs instead, finding that their concentration is
higher than expected near melting, a fact that provides an
explanation for the anomalous (non-Arrhenius) diffusion in
superheated Cu crystals. Recently, similar studies have been
performed by Forsblom et al.,7,8 finding that melting is initiated
by a few interstitials and/or vacancies.

Burakovsky and co-workers9,10 have postulated a model
that treats dislocations, in the form of closed noninteracting
loops, as the central element in the study of melting. Their
model suggests the transition from an ideal solid to an
intermediate phase, a highly dislocated solid, as the precursor
to melting.

Recently, Wang11 introduced a model where there is a criti-
cal concentration of mobile atoms triggering a local instability
in the crystal, and this model agrees with their homogeneous
nucleation catastrophe model.3 Delogu12–14 characterizes the
generation of atoms with defective coordination close to the
melting point, atoms that tend to form extended, stringlike
clusters. Atomic movement along these defect lines provides
a potential mechanism for augmented self-diffusion, which
is similar to the scenario presented by Nordlund in terms of
self-interstitials.

Our previous results on superheated solids at constant
energy15 seem to rule out the accumulation of defective or
liquidlike atoms before melting. Instead, the concentration of
defects suddenly increases at the instant melting is triggered.
Bai et al.16 compared isothermal melting and “catastrophic
melting” (induced by a fast heating rate), and found a critical
concentration of self-diffusion loops (which are not dislocation
loops), which induces melting.

It has been shown,17 using thermodynamic considerations,
that TLS is closely connected to the melting point itself,
namely that the ratio TLS/Tm tends to 1 + 1

3 ln 2 in the limit
of high pressures for monatomic solids. Thus understanding
the behavior at the superheating limit might shed some light
on the mechanism of melting. Besides this connection and all
the previously suggested scenarios, the origin and the nature
of the superheating limit itself is far from clear. We are certain
that some mechanism for augmented diffusion (be it through
thermal defects or dislocation loops) right before melting or at
the limit of superheating plays a central role in this transition.
It is also known that the population of such defects increases
as we get closer to TLS. But, can some qualitative change in
the behavior of thermal defects be ascribed as the meaning of
TLS?

In this paper, we propose a continuous random-walk model,
which is able to explain the behavior of the kind of diffusion
seen in a superheated solid. Our model suggests that, in fact,
the superheating limit might be defined as the temperature for
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FIG. 1. Example of the application of the Z method to determine
the melting temperature. The relation between Tm (lower point of
the Z-shaped isochoric curve) and TLS (higher point) is shown for an
embedded atom solid.

which the dynamic percolation threshold coincides with the
time scale of a single individual jump.

II. THE NEED FOR MICROCANONICAL SIMULATIONS
OF SUPERHEATING: THE Z METHOD

A recent approach to determining the melting point using
molecular dynamics (MD) is the Z method,17 which does
not require the simulation of a coexistence between two
phases, being in fact a one-phase method. Instead, the idea
is to perform microcanonical ensemble (constant total energy,
constant volume, and number of atoms) simulations on a single
solid system at different total energies to reach a realistic TLS,
without any external intervention on the natural dynamics
of the melting process (due, for example, to “thermostat
algorithms” used to constrain temperature). A system being
simulated in the microcanonical ensemble slightly above TLS

will eventually melt, its temperature dropping spontaneously to
the melting point Tm corresponding to the pressure conditions
imposed by the chosen density.

At a fixed volume, the (P,T ) points of the isochoric curve
draw a “Z” shape (hence the name of the method), like the one
shown in Fig. 1. In this Z-shaped curve, the sharp inflection at
the higher temperature corresponds to TLS and the one at the
lower temperature to Tm.

III. SUPERDIFFUSIVE BEHAVIOR AT TLS

For the liquid state, it is usual to compute the mean-square
displacement (MSD) of the atoms as a function of time,

〈r(τ )2〉 = 〈[�r(to + τ ) − �r(to)]2〉, (1)

where the average on the right-hand side is taken over all atoms
and all origins of time to. In a liquid, the MSD is linear with
time and the diffusion coefficient D comes directly from

〈r(τ )2〉 = 2dDτ, (2)

where d is the dimensionality of the system.
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FIG. 2. Mean-square displacement for a time interval up to 2.5 ns,
computed for the EAM solid at T = 7000 K = 0.75TLS.

An advantage of the Z method over canonical (“ther-
mostatted”) melting simulations is that we can sample the
unperturbed dynamics of the atoms just before melting is
triggered, and then it is possible to compute the MSD for
the superheated solid.

In the following, we describe the results of Z-method
simulations using both a Lennard-Jones (LJ) solid and an
embedded atom model (EAM) solid. Molecular-dynamics
simulations were performed in both cases using the DLPOLY18

and LPMD19 software packages. All the post analysis of
the simulation data, including computation of structural and
dynamical properties, was performed using LPMD.

At temperatures between Tm and TLS, we have observed
a superdiffusive regime, characterized by a mean-square
displacement 〈r2(τ )〉 that follows a power law,

〈r2(τ )〉 ∝ τ γ , (3)

with 1 < γ < 2. Figure 2 shows 〈r2〉 at a temperature near 75%
of the superheating limit, while Fig. 3 shows the dependence
of the exponent γ with the normalized temperature, T/TLS.
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FIG. 3. (Color online) Mean-square displacement exponent γ as
a function of temperature for the LJ and EAM solids.
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FIG. 4. Average radial distribution function g(r) computed for
the EAM solid at T = 7000 K = 0.75TLS.

We can see that even in the time scale of nanoseconds, there
is anomalous diffusive behavior, different from the usual γ = 1
expected in a three-dimensional, unbiased random walk over
arbitrary points in space. In fact, in this case we see a value of
γ equal to 1.98. Figure 4 shows the average radial distribution
function corresponding to the same conditions, which confirms
that the system still has a definite solid structure (note the
“shoulders”near 3.5, 5.5, and 7.5 Å), despite the superdiffusive
behavior.

It can be shown20 that, for a random walk having variable
step vectors ��r , the MSD is given by

〈r(τ )2〉 = (ωjτ )2|〈��r〉|2 + (ωjτ )〈|��r|2〉, (4)

where ωj is the frequency of jumps. This shows explicitly
that asymmetrical jumps (|〈��r〉| �= 0) are needed to obtain the
superdiffusive behavior. This implies a biased random walk.

Dealing with the possibility that the anomalous diffusion
(and the implied biased random walk) could be just an artifact
of the microcanonical MD simulations, we have performed
also microcanonical Monte Carlo (MC) simulations on the
same system, using the algorithm by Creutz.21 Figure 5
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FIG. 5. Mean-square displacement computed for the LJ solid at
T = 6200 K = 0.99TLS with Creutz’s microcanonical MC algorithm.
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FIG. 6. (Color online) Velocity autocorrelation function (VACF)
for different temperatures approaching the superheating limit TLS.
The inset shows the time scale corresponding to atomic vibrations.

shows the mean-square displacement near TLS, which again
is superdiffusive.

An explanation of the observed superdiffusion on the
mostly crystalline solid at TLS should involve the explicit
modeling of thermal defects and the “hopping” processes
they activate. A similar observation of the importance of these
isolated thermal defects (instead of whole nucleation
processes, as observed in canonical MD simulations) has
been reported by Wang et al.,11 Delogu,12–14 and recently by
Gallington et al.22

To complete the picture about dynamical properties of a su-
perheated solid, the velocity autocorrelation function (VACF)
and vibrational density of states (vDOS) were computed for
different temperatures close to TLS and also for a liquid sample.
The results are shown in Figs. 6 and 7. Figure 8 shows a com-
parison of these properties for the superheated and liquid state.
Not much of a qualitative difference is seen as temperature
increases. The only noticeable aspect is the appearance of the
zero-frequency component in the liquid vDOS (Fig. 8), which
is related to Brownian (γ = 1) self-diffusion.
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FIG. 7. (Color online) Vibrational density of states for different
temperatures approaching the superheating limit TLS.
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FIG. 8. (Color online) Comparison between superheated and
liquid vibrational properties. Left, velocity autocorrelation function.
Right, vibrational density of states.

IV. A MODEL FOR DIFFUSION

The analysis of the MSD is useful to get an overall view
of the diffusive properties of the system, but it does not give
any details about the diffusivity of individual atoms, or the
statistical distribution behind the MSD average.

For this purpose, we can define the probability distribution
of displacements J (r,τ ) as the number of atoms traveling a
distance between r and r + �r in a time interval τ . The
MSD can be obtained as the expectation value of r2 under
the probability distribution J , i.e.,

〈r(τ )2〉 = EJ (r2) =
∫ ∞

0
r2J (r,τ )dr. (5)

For the sake of brevity, we shall refer to the function J (r)
[i.e., J (r,τ ) taken at a constant τ ] as the mobility histogram of
the system for the given observation interval τ . An example
of such a histogram for two different temperatures in a solid
close to TLS = 8000 K is shown in Fig. 9. Note the decrease in
the height of the first peak (r/r0 < 0.5) and the corresponding
increase in heights for the second (0.5 < r/r0 < 1.5) and third
(r/r0 > 1.5) peaks at increasing temperature.

Considering a fixed observation interval τ , we can roughly
classify the population of atoms into three kinds: atoms with
displacement around zero, atoms with displacement around
the nearest-neighbor distance r0, and atoms with displacement
larger than r0. These three kinds of atoms will have fractional
populations J0, J1, and Jr , such that

J0 + J1 + Jr = 1. (6)

These fractional populations (or mobility components) can
be obtained from J (r,τ ) by taking the integral over r ,

J0(τ ) = 1

N

∫ ρ0

0
J (r,τ )dr, (7)

J1(τ ) = 1

N

∫ ρ1

ρ0

J (r,τ )dr, (8)

Jr (τ ) = 1

N

∫ ∞

ρ1

J (r,τ )dr, (9)
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FIG. 9. (Color online) Mobility histograms Jτ (r) obtained from
molecular-dynamics simulations of an EAM solid close to TLS.

where ρ0 is taken as the minimum distance between atoms
(due to repulsion) and ρ1 is taken as slightly higher than r0,
in order to include the whole first-neighbor shell. In practice,
both radii can be obtained from the radial distribution function
(RDF).

For an ideal solid without defects, the only displacement of
the atoms is due to thermal vibrations around their equilibrium
positions. In this case, J0(τ ) = 1. If we consider thermal defects,
depending on the observation time τ , some atoms will jump
to the nearest vacant site, or even jump further away through
a series of jumps. Those “diffusive” atoms will contribute to
J1 and Jr at the expense of decreasing J0, the fraction of
“nondiffusive” atoms.

Taking this into account, it is clear that the mobility
histogram (and its components J0, J1, and Jr ) will be highly
dependent on the number of vacant sites f available to jump,
which in the case of a finite-temperature crystal corresponds
to the equilibrium fraction of thermal vacancies,23

f = e−Ev/kBT , (10)

where Ev is the energy needed to create a vacancy-interstitial
pair in the crystal.

It will also be dependent on the average number of
successful jumps nj performed during the time interval τ .
This in turn is given by the probability of jumping Pj , as
nj =Pj (τ/τj ), where τj is the average time it takes an atom to
jump.

In a finite-temperature crystal, Pj is also given by a
Boltzmann factor,

Pj = e−Ej /kBT , (11)

where Ej is the energy barrier the atom has to cross to jump
into a neighboring vacant site.

If we consider the effects of temperature only through f (T )
and Pj (T ), we can reduce the problem of studying the statistics
of diffusion in a crystal with defects to a discrete mathematical
problem of a random walk over a percolation lattice (i.e., a
lattice where sites are connected with “open” and “closed”
bonds20). However, as the distribution of open and closed
bonds (determined by the particular spatial distribution of
thermal vacancies) is not static, but is in fact renewed with
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a certain frequency (lower than the frequency of jumping), we
should speak instead of a dynamic percolation problem.24–28

V. MATHEMATICAL DESCRIPTION OF THE RANDOM
WALK ON A LATTICE

The simpler problem of an isotropic random walk over
a lattice is fully described by the probability of reaching
a given lattice point �r , starting from the origin, in n steps.
This probability, denoted as Pn(�r), can be obtained from the
ordinary generating function

P (�r; z) =
∞∑

n=0

Pn(�r)zn, (12)

called the lattice Green’s function at the lattice point �r . For a
given lattice, P (�r; z) can be computed as20

P (�r; z) = 1

(2π )d

∫
B

e−i�k·�r

1 − zλ(�k)
d�k, (13)

where λ(�k) is the structure function for the lattice, and the
integration is performed over the first Brillouin zone, d being
the dimensionality of the lattice.

The structure function λ(�k) includes the probability of
jumping to the different sites from the origin, and is defined as

λ(�k) =
∑

i

ei�k· �Ri p( �Ri), (14)

where the summation is performed over all the allowed jump
displacements �Ri from the origin, and p(�r) is the probability
associated with the displacement �r .

If we assume the jump events follow a Poisson distribution
in time, with the average number of jumps in a time interval τ

given by

〈n(τ )〉 = Pjτ

τj

, (15)

we can obtain a model for a continuous-time random walk on a
lattice, which will be characterized by the Poisson generating
function,

G(�r; τ ) =
∞∑

n=0

Pn(�r)
(Pjτ/τj )n

n!
e−Pj τ/τj . (16)

This function gives directly the probability of reaching a
lattice point �r from the origin in a time interval τ .

From the series expansion of the 1
1−zλ(�k)

factor in Eq. (13)
and comparing with Eq. (12), we can obtain the series
coefficient

Pn(�r) = 1

(2π )d

∫
B

λn(�k)e−i�k·�rd�k. (17)

Including this into the Poisson generating function in
Eq. (16), we have

G(�r; τ ) = e−Pj τ/τj

(2π )d

∫
B

e−i�k·�r+(Pj τ/τj )λ(�k)d�k. (18)

From G(�r; τ ) we can obtain the mobility components as

J0(τ ) = G(�0; τ ), (19)
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FIG. 10. (Color online) Mobility components for the simple
random walk in a square lattice.

J1(τ ) =
nc∑

i=1

G( �Ri ; τ ), (20)

Jr (τ ) = 1 − J0(τ ) − J1(τ ), (21)

with nc the coordination number of the lattice. For the simple
case of the square lattice, Eq. (18) can be evaluated exactly at
the origin and over the first neighbors. Then J0 and J1 can be
obtained as

J0(τ ) = e−Pj τ/τj I 2
0

(
Pjτ

2τj

)
, (22)

J1(τ ) = 4e−Pj τ/τj I0

(
Pjτ

2τj

)
I1

(
Pjτ

2τj

)
, (23)

where the Ik(x) are the modified Bessel functions of the first
kind.

Figure 10 shows the mobility components obtained from
MC simulations of the isotropic random walk in a square
lattice, compared to the exact solutions [Eqs. (22) and (23)].
The observed agreement validates the MC simulations and the
assumption of Poisson statistics for the jump events.

These mobility curves can be interpreted as follows:
increasing the observation interval τ leads to a monotonic
decrease in the population of nondiffusive atoms (J0), together
with an, also monotonic, increase in the population of long-
range diffusive atoms (Jr ). However, J1, the population
of atoms sitting one nearest-neighbor distance from their
equilibrium positions, reaches a maximum value Jc and
then decreases. This marks out two regimes, one where the
atoms mainly hop following closed paths, quickly returning to
their starting positions (recurrent random-walk states), and
another where the atoms wander far away following open
paths, eventually percolating through the entire system if the
observation interval is large enough (transient random-walk
states).20,29

This scenario is reminiscent of the picture proposed by
Bai et al.,16 in which a critical concentration of self-diffusion
“loops” (either open or closed) triggers melting. It is also
compatible with the picture by Delogu,12 characterized by
pairs of atoms having defective coordination that form ex-
tended “channels” (compare with Bai’s open loops) enabling
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self-diffusion. Their MD simulations, however, were per-
formed under NPT (constant pressure, constant temperature)
conditions, so despite the qualitative similarity of the picture,
it is difficult to compare quantitatively to our results in terms
of mobility histograms.

Another alternative scenario involves the formation of dis-
location lines just before melting.9,10 Our previous simulations
of superheating in the microcanonical ensemble15 revealed
that defective atoms just before melting are relatively scarce
and spatially isolated, a picture that is different from the one
expected in the case of dislocation lines. This disagreement
with the recent evidence for dislocations as a precursor of
melting is just apparent, as, again, they discuss the initiation
of melting in the canonical ensemble, under a much lower
TLS than ours and, therefore, under conditions where more
complex, higher-energy defects are allowed to form. In our
case, at such high TLS, a single open loop percolating through
the system might be enough to initiate melting.

From the curves in Fig. 10, we can define two characteristic
observation intervals, or crossing times, τ0 and τ1, such that

J0(τ0) = Jr (τ0), (24)

J0(τ1) = J1(τ1). (25)

The crossing time τ1 is the average time interval needed
to observe a single jump. It only depends on the frequency of
attempts to jump τ−1

j and the probability of jumping Pj . The
crossing time τ0 is the average time interval needed to jump
beyond the first-neighbor shell. So, for τ < τ1, the atoms are
just oscillating around their equilibrium positions; for τ1 <

τ < τ0, the atoms are mostly jumping back and forth; and
for τ > τ0, the atoms are diffusing away from their starting
positions.

VI. MONTE CARLO SIMULATIONS

The presence of vacancies mediating the jumps can be
included by modifying the structure function λ(�k) to include a
finite probability to jump, which will depend on the availability
of vacancies around the starting point,

λ′(�k; f ) =
∑

i

ei�k· �Ri F (f ; nc)p( �Ri) = F (f ; nc)λ(�k), (26)

where F (f ; nc) represents the probability of having at least
one available neighbor vacancy to jump into. We can model F

under the Ansatz

F (f ; nc) ≈ 1 − e−f nc ,

which comes from assuming that, around each atom, vacancies
are Poisson-distributed with average number f nc.

In this way, the new Poisson generating function G(�r; τ,f )
can be expressed as

G(�r; τ,f ) = e−Pj τ/τj

(2π )d

∫
B

e
−i�k·�r+ Pj τF (f ;nc )

τj
λ(�k)

d�k, (27)

and the mobility components as simple corrections over
Eqs. (22) and (23),

J0(τ ; f ) = e−Pj τ/τj I 2
0

(
PjτF (f ; nc)

2τj

)
, (28)

0 100 200 300 400 500
Time interval (steps)

0

0.2

0.4

0.6

0.8

1

M
ob

il
it

y 
co

m
po

ne
nt

s

J0 (MC, 71x71)
J1 (MC, 71x71)
Jr (MC, 71x71)
J0 (Exact simple RW corrected for vacancies)
J1 (Exact simple RW corrected for vacancies)
Jr (Exact simple RW corrected for vacancies)

FIG. 11. (Color online) Mobility components for the vacancy-
mediated random walk in a square lattice.

J1(τ ; f ) = nce
−Pj τ/τj I0

(
PjτF (f ; nc)

2τj

)
I1

(
PjτF (f ; nc)

2τj

)
.

(29)

To confirm the validity of this expression, we performed
MC simulations of the discrete vacancy-driven random walk
on a lattice.

In this approach, the system consists of a lattice of N points,
where initially every point has a probability f of being an
empty site (a vacancy) and 1 − f of being an occupied site
(an atom). For the Markov chain, the move consists simply
of attempting to exchange a vacancy with an occupied site,
with probability Pj . In this way, the total number of vacancies
Nf is kept constant during the simulation. Figure 11 plots
Eqs. (28) and (29) against the results from MC simulations
of the square lattice. There is an overall agreement, except
for small deviations around the maximum of J1, precisely the
region where open paths become important.

Tables I and II show the values of the maximum height
of J1(τ ), denoted by Jc, obtained from MC simulations for
three-dimensional and two-dimensional lattices, respectively.

It is interesting to note that Jc for ideal structures seems to
have only two possible values: either close to 0.46 for the close-
packed structures [fcc and hcp structures in three dimensions
(3D), hexagonal structure in two dimensions (2D)] or close to
0.38 for the loose-packed ones.

The explanation for this discrete behavior of Jc could be
related to the enumeration of closed jump paths20 implicit in
Pn(�0). For a loose-packed structure, there is no closed graph
on the lattice with an odd number of edges. However, for a

TABLE I. Jc versus coordination number nc, obtained from MC
simulations for several 3D lattices.

Structure nc Jc

sc 6 0.38385
bcc 8 0.38645
fcc 12 0.46082
hcp 12 0.45791
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TABLE II. Jc versus coordination number nc obtained from MC
simulations for several 2D lattices.

Structure nc Jc

Honeycomb 3 0.38738
Square 4 0.37771
Hexagonal 6 0.46132

closed-packed structure, there are closed graphs with an odd
and even number of edges. The number of closed graphs is
directly related to J0(τ ) and also indirectly to J1(τ ), because
every n-step random-walk trajectory contributing to J1 can be
mapped to an (n + 1)-step closed trajectory (by adding the
edge that closes the loop).

To see that our discrete-jump model captures the essence
of the dynamics of the crystal, we compare the mobility
components for MC simulations of an ideal fcc structure with
molecular-dynamics simulations of a Lennard-Jones solid. The
results are shown in Fig. 12.

In terms of the finite-temperature crystal, as temperature
increases, both f and Pj will increase as well, according to
Eqs. (10) and (11). Eventually the concentration of thermal
defects and the rate of barrier crossing events will be high
enough that the system will cross its dynamic percolation
threshold τ0, the population Jr overcoming J0. Given that
the spatial distribution of vacancies and atoms changes over
time, it is possible to achieve percolation even when the
concentration of vacancies is less than the “static” site
percolation threshold.30,31

To study the connection of this kind of diffusion with the
superheating limit, we have computed the temporal evolution
of J0, J1, and Jr , as well as the exponent γ , during several MD
simulations at increasing temperatures, near TLS. The mobility
components are shown in Fig. 13 for the case in which the
crystal melts, and Fig. 3 shows the thermal dependence of γ .

We can see that, according to the drop in instantaneous
temperature, the instant when melting is triggered corresponds
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FIG. 12. (Color online) Comparison between the Ji curves as a
function of observation time for Lennard-Jones MD (Ar, 108 atoms)
and the MC geometrical model.
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FIG. 13. (Color online) (a) Instantaneous temperature as a func-
tion of time during melting. (b) Jump diffusion components as a
function of time.

precisely to the crossing of J0 and Jr . This is valid for every
observation interval τ large enough to see contributions to J1.

VII. CONNECTION BETWEEN TLS AND
THE MOBILITY COMPONENTS

From MD simulations at TLS, we note that the mobility
curves J0, J1, and Jr always seem to cross at the same time
interval τD = τ0 = τ1, whereas for T above or below TLS there
is a clear separation between the different diffusion time scales
τ0 and τ1. This is shown in Fig. 14.

The behavior of τ0 and τ1 with increasing temperature is
shown in Fig. 15. It is clear that, as one approaches TLS, not
only does τ0 decrease, but it becomes closer and closer to τ1.
Eventually at T = TLS we have τ0 = τ1 = τD , and then

J0(τD) = J1(τD) = Jr (τD) = 1
3 . (30)

This “collapse” of the three Ji curves to 1/3 does not
arise from our simple geometric MC model, as in this model
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FIG. 14. (Color online) Mobility components computed from
MD simulations as a function of the normalized observation time
τ/τ0, (a) at T < TLS in the solid isochore, (b) at TLS, and (c) in the
liquid isochore. The dotted line J = 1/3 is drawn for clarity.
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FIG. 15. (Color online) Characteristic observation times τ0 and
τ1 on increasing temperatures, close to TLS. The star corresponds to
the measured TLS and τ = τD .

the positions on the crystal lattice are fixed; only exchanges
between atoms and vacancies are allowed as moves in the
Markov chain process. In that case, Jc = J1(τ0) is always
close to either 0.38 (for loose-packed structures) or 0.46 (for
close-packed ones). We know from the MC model that Jc

is directly related to the distribution of closed random-walk
paths, therefore the fact that Jc tends to 1/3 at TLS in MD
simulations seems to suggest that the crystal becomes even
less packed (in terms of the possible closed trajectories) than
the original structure just prior to melting.

Interestingly, one could also speculate that the collapse of
the Ji curves corresponds to the maximization of the Shannon

entropy associated to J (r,τD),

SJ = −
∫ ∞

0
J (r,τD) ln J (r,τD)dr, (31)

because, at this point, it is equally probable for a given atom
to be in any of the three diffusion populations: J0, J1, or Jr .
This hypothesis and its implications remain to be explored.

VIII. CONCLUSIONS

We have developed and tested a model to explain jump-
mediated diffusion due to thermal vacancies near TLS and
its role in defining it. The application of our model to MD
simulations suggests that TLS is the temperature at which the
change in diffusion behavior, from recurrent random walks
to transient random walks, takes place at a particular time
scale τD , which can be determined solely from the mobility of
the atoms in the solid phase. A possible connection between
the critical superheating limit and the maximization of the
Shannon entropy associated with the mobility histogram J (r)
is suggested.
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10L. Gómez, A. Dobry, C. Geuting, H. T. Diep, and L. Burakovsky,
Phys. Rev. Lett. 90, 095701 (2003).

11L. W. Wang, L. Zhang, and K. Lu, Philos. Mag. Lett. 85, 213 (2005).
12F. Delogu, J. Phys. Chem. B 109, 15291 (2005).
13F. Delogu, J. Phys. Chem. B 110, 12645 (2006).
14F. Delogu, Phys. Rev. B 73, 184108 (2006).
15A. B. Belonoshko, S. Davis, N. V. Skorodumova, P. H. Lundow,

A. Rosengren, and B. Johansson, Phys. Rev. B 76, 064121 (2007).
16X. M. Bai and M. Li, Phys. Rev. B 77, 134109 (2008).
17A. B. Belonoshko, N. V. Skorodumova, A. Rosengren, and

B. Johansson, Phys. Rev. B 73, 012201 (2006).

18W. Smith, dLPOLY 3, release 3.06 (2006).
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