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Topological phases and surface flat bands in superconductors without inversion symmetry
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We examine different topological phases in three-dimensional noncentrosymmetric superconductors with
time-reversal symmetry by using three different types of topological invariants. Due to the bulk boundary
correspondence, a nonzero value of any of these topological numbers indicates the appearance of zero-energy
Andreev surface states. We find that some of these boundary modes in nodal superconducting phases are
dispersionless, i.e., they form a topologically protected flat band. The region where the zero-energy flat band
appears in the surface Brillouin zone is determined by the projection of the nodal lines in the bulk onto the
surface. These dispersionless Andreev surface bound states have many observable consequences, in particular,
a zero-bias conductance peak in tunneling measurements. We also find that in the gapless phase there appear
Majorana surface modes at time-reversal invariant momenta which are protected by a Z2 topological invariant.
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The hallmark of topological insulators and superconductors
(SCs) is the existence of topologically protected conducting
boundary modes. The recent experimental observation of these
edge and surface states in spin-orbit induced Z2 topological
insulators in two and three dimensions,1 respectively, has
lead to a surge of interest and excitement.2 An exhaustive
classification of topologically protected boundary modes
occurring in gapped free fermion systems in terms of symmetry
and spatial dimension was given in Refs. 3–5. Interestingly,
this classification scheme, which is known as the “periodic
table” of topological insulators and SCs, predicts a three-
dimensional (3D) topological SC which satisfies time-reversal
symmetry, but breaks spin-rotation symmetry. Indeed, the B
phase of 3He is one example of this so-called “class DIII”
topological superfluid, whose different topological sectors
can be distinguished by an integer topological invariant.
Recent transverse acoustic impedance measurements in 3He-B
confirmed the existence of the predicted surface Majorana
bound state.6

However, finding an electronic analog of the superfluid B
phase of 3He remains an outstanding challenge. In this Rapid
Communication we argue that some of the 3D noncentrosym-
metric SCs might be examples of electronic topological SCs
in symmetry class DIII.7 We analyze the topological phase
diagram of these systems and demonstrate quite generally
that adjacent to fully gapped topological phases there exist
nontrivial gapless superconducting phases with topologically
protected nodal lines (rings). To characterize these gapless
lines we introduce a set of topological invariants and show
that, due to the bulk-boundary correspondence, the presence
of topologically stable nodal rings implies the appearance
of dispersionless zero-energy Andreev surface states. These
topologically protected surface flat bands manifest themselves
in scanning tunneling spectroscopy (STS) as a zero bias
conductance peak, a feature which could be used as an
experimental signature of the topological nontriviality.

In noncentrosymmetric SCs the absence of inversion in the
crystal structure generates antisymmetric spin-orbit couplings
(SOCs) and leads to a mixing of spin-singlet and spin-triplet
pairing states. These are the properties that give rise to topolog-
ically nontrivial quasiparticle band structures in these systems.

Starting with CePt3Si,8 a multitude of noncentrosymmetric
SCs has recently been discovered, including, among others,
Li2PdxPt3−xB.9

Model Hamiltonian. As a generic phenomenological
description applicable to any of the aforementioned materials
we employ a single-band model with antisymmetric
SOC and treat superconductivity at the mean-field
level. Thus, let us consider H = ∑

k �
†
kH (k)�k with

�k = (ck↑,ck↓,c
†
−k↑,c

†
−k↓)T , where c

†
σ k is the electron

creation operator with spin σ and momentum k and the
Bogoliubov-de Gennes (BdG) Hamiltonian is given by

H (k) =
(

h(k) �(k)

�†(k) −hT (−k)

)
. (1)

The normal state Hamiltonian h(k) describes noninteracting
electrons in a crystal without inversion center h(k) =
εkσ0 + γ k · σ , where εk = ε−k is the spin-independent part
of the spectrum, σ1,2,3 stand for the three Pauli matrices, and
σ0 denotes the 2 × 2 unit matrix. The second term in h(k)
represents an antisymmetric SOC with coupling constant γ k.

Due to the presence of the parity-breaking SOC γ k the
order parameter in Eq. (1) is in general an admixture of
spin-singlet ψk and spin-triplet dk pairing states �(k) =
(ψkσ0 + dk · σ )(iσ2), where ψk and dk are even and odd
functions of k, respectively. The direction of the spin-triplet
component dk is assumed to be parallel to γ k, as for this
choice the antisymmetric SOC is not destructive for triplet
pairing.10 Hence, we parametrize the d vector and the SOC
as dk = �t l k and γ k = αl k, respectively. For the spin-singlet
component we assume s-wave pairing ψk = �s and choose
the amplitudes �t,s to be real and positive.

In order to exemplify the topological properties of the BdG
Hamiltonian (1), we consider a normal-state tight-binding
band structure on the cubic lattice εk = t1(cos kx + cos ky +
cos kz) − μ, with hopping amplitude t1 and chemical potential
μ. We will set (t1,μ,α,�t ) = (4.0,4.8,1.0,1.0) henceforth.
The specific form of the SOC γ k depends on the crystal
structure,11 i.e., gγ g−1 k = γ k, where g is any symmetry
operation in the point group G of the crystal. Having in
mind Li2PdxPt3−xB, we assume for the pseudovector l k the
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following form compatible with the symmetry requirements
of the cubic point group O

l k =
⎛
⎝ sin kx

sin ky

sin kz

⎞
⎠ − g2

⎛
⎝ sin kx(cos ky + cos kz)

sin ky(cos kx + cos kz)
sin kz(cos kx + cos ky)

⎞
⎠ , (2)

with the constant g2, and where we neglect higher-order terms.
Furthermore, we also consider the point group C4v , relevant
for CePt3Si, in which case l k reads

l k = (sin ky êx − sin kx êy) (3)

+g2 sin kx sin ky sin kz(cos kx − cos ky)êz.

It is important to note that the quasiparticle band topology
of H (k), as defined by Eq. (1), is mainly determined by
the momentum dependence of l k along the Fermi-surface
sheets. Hence, the results we obtain are expected to remain
qualitatively unchanged upon inclusion of further-neighbor
hopping terms in the band structure εk.

Topological invariants. To characterize the topological
properties of H (k) we introduce three different topological
invariants. But before doing so, we observe that H (k) satisfies
both time-reversal symmetry (TRS), with T 2 = −1, and
particle-hole symmetry (PHS), with C2 = +1, which are the
defining symmetry properties of symmetry class DIII in the
terminology of Ref. 3. Combining TRS and PHS yields a third
discrete symmetry, the “chiral” symmetry S = T C, i.e., there
is a unitary matrix S which anticommutes with H (k). It is
important to note that while both TRS and PHS relate H (k) to
HT (−k), S is a symmetry which is satisfied by H (k) at any
given point k in the Brillouin zone (BZ).

As shown in Ref. 3 topological sectors in the fully gapped
phases of H (k) are distinguished by the winding number

ν =
∫

BZ

d3k

24π2
εμνρ Tr[(q−1∂μq)(q−1∂νq)(q−1∂ρq)], (4)

where the integral is over the first BZ and q(k) is the off-
diagonal block of the flat-band matrix of H (k).12

In the nodal superconducting phases the winding number
ν is no longer quantized. However, we can consider H (k)
restricted to 1D loops in reciprocal space and define a
topological number in terms of a 1D momentum space loop
integral to characterize the topology of the gapless phases. We
observe that H (k) confined to a generic momentum space
loop no longer satisfies TRS nor PHS, but it still obeys
chiral symmetry S. Hence, H (k) restricted to a loop in
the BZ belongs to symmetry class AIII3 and its topological
characteristics are described by the 1D winding number

NL = 1

2πi

∮
L

dl Tr [q−1(k)∇lq(k)], (5)

where the integral is evaluated along the loop L in the BZ.
Observe that for any closed loop L that does not intersect
with gapless regions in the BZ, NL is quantized to integer
values. If L is chosen such that it encircles a line node, then
NL determines the topological stability (i.e., the topological
charge) of the gapless line.13,14

Finally, we also consider H (k) restricted to a time-reversal
invariant (TRI) loopL, which is mapped onto itself under k →
−k. In that case we obtain a 1D Hamiltonian satisfying both

0 2
-1

0

1

2

3

1
Δs

(a)

ν = -1

0.5 1.5 2.5

ν = 0

ν = +1

g 2

2.50 0.5 1 1.5 2
-2

-1

0

1

2
(b)

Δs 

ν = 0g 2

O C4v

FIG. 1. (Color online) Phase diagram as a function of singlet
pairing amplitude �s and SOC g2 [see Eqs. (2) and (3)] for the point
group (a) O and (b) C4v . The gapped phases are characterized by the
winding number ν with ν = 0 (white), ν = ±1 (dark and light blue
hatched), ν = −5 (light brown hatched), and ν = +7 (dark brown
hatched). Gray shaded and dotted regions are nodal superconducting
phases with NC1 = ±1 (red and black dotted), NC2 = ±1 (light and
dark gray), NC3 = +1 (white dotted), and NC4 = +1 (gray).

TRS and PHS (i.e., belonging to symmetry class DIII). The
topological properties of such a 1D system are characterized
by the following Z2 invariant12

WL =
∏

K

Pf[qT (K )]/
√

det [q(K )], (6)

where K denotes the two TRI momenta on the loop L and Pf
is the Pfaffian. Note that WL is either +1 or −1 for any TRI
loop that does not cross gapless regions in the BZ.

Topological phase diagram. Numerical evaluation of the
topological numbers (4) and (5) yields the topological phase
diagram of H (k), which is shown in Fig. 1 as a function
of second-order SOC g2 and relative strength of singlet
and triplet pairing components. Fully gapped phases with
different topological properties (i.e., the phases labeled by ν =
±1,0, − 5, + 7) are separated in the phase diagram by regions
of nodal superconducting phases (gray shaded and dotted
areas). The fully gapped phases with ν = ±1 are electronic
analogs of 3He-B. The nodal superconducting phases exhibit
topologically stable nodal rings, which are centered around
high-symmetry axes of the BZ [see Figs. 2(a) and 3(a)]. In
order to determine the topological character of these nodal
lines (and hence of the corresponding gapless phases) it is
sufficient to consider the topological invariant NL only for
loopsL that run along high-symmetry axes. Thus, for the cubic
point group O we choose the loops C1 : � → M → X → �

and C2 : � → M → R → �, whereas for the tetragonal point
group C4v we consider C3 : � → Z → R → X → � and
C4 : � → Z → A → M → �. For the cubic point group we
find that whenever (NC1 ,NC2 ) = (±1,0) there are topologically
stable nodal rings centered around the (100) axis (and
symmetry-related directions). When (NC1 ,NC2 ) = (0, ± 1) the
gapless lines are oriented along the (111) axis, whereas when
(NC1 ,NC2 ) = (±1, ± 1) the rings are located around the (110)
direction. (A similar analysis also holds for the group C4v .)

Andreev surface states. A nonzero quantized value of any
of the three topological numbers (4)–(6) implies the existence
of zero-energy Andreev surface states. First of all, in fully
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FIG. 2. (Color online) Nodal rings (a) and (111) surface states
(c),(d) for the point group O with (g2,�s) = (0.3,0.5). This parameter
choice corresponds to the red dotted region in Fig. 1(a). (b) Topo-
logical invariant N(111), Eq. (7), as a function of surface momentum
k‖. Gray and dark blue indicate N(111) = ±1, while light blue is
N(111) = 0. (c) Band structure for a slab with (111) face as a function
of surface momentum k

‖
2 with k

‖
1 = 0.75π . (d) Energy dispersion of

the lowest-lying state with positive energy. The color scale is such that
black corresponds to zero energy. The states at zero energy in (c) and
(d) are localized at the surface. The flat bands in (c) and (d) are singly
degenerate (i.e., one branch per surface), whereas the linearly dispers-
ing zero mode at the center of the BZ in (d) is doubly degenerate.

gapped phases with topologically nontrivial character there
appear linearly dispersing Majorana surface modes.3,15–17 In
order to understand the appearance of zero-energy Andreev
surface states in the gapless phases, we now make use of the
topological invariant NL with a cleverly chosen loop L. Let
us consider Eq. (1) in a slab configuration with (lmn) face.

FIG. 3. (Color online) Same as Fig. 2 but for the point group
C4v , for a slab with (012) face, and with (g2,�s) = (0.0,0.5). This
parameter choice corresponds to the white dotted area in Fig. 1(b).

In this geometry the Hamiltonian H(lmn) retains translational
invariance along the two independent directions parallel to the
(lmn) surface. Hence, H(lmn)(k‖) can be viewed as a family of
1D systems parametrized by the two surface momenta k‖ =
(k‖

1,k
‖
2). Since H(lmn)(k‖) obeys chiral symmetry (but breaks in

general TRS and PHS), its topological properties are given by
the 1D winding number of class AIII

N(lmn)(k‖) = 1

2πi

∫
dk⊥ Tr[q−1(k)∂⊥q(k)], (7)

where k⊥ is the bulk momentum perpendicular to the surface,
and ∂⊥ = ∂/∂k⊥. Note that N(lmn) is the same as NL, Eq. (5),
with L chosen along k⊥, following a noncontractible cycle of
the BZ torus T 3.

Now, the key observation is that the above line integral
is closely related the loop integral NL, with L = Ci , that de-
termines the topological charge of the superconducting nodal
lines. That is, for those surface momenta k‖ for which the loop
along k⊥ in Eq. (5) passes through just one nontrivial nodal
ring, N(lmn)(k‖) is equal to the topological charge of this given
nodal ring. Hence, if we plot N(lmn)(k‖) as a function of surface
momenta [see Figs. 2(b) and 3(b)], we find that the boundaries
separating regions with different winding number are identical
to the projection of the nodal lines onto the (lmn) plane.
Furthermore, since a nonzero quantized value of N(lmn) implies
the existence of zero-energy states at the end points of the 1D
Hamiltonian H(lmn)(k‖),3,18 we find that there are zero-energy
Andreev bound states on the (lmn) surface located within
the projected nodal rings. This conclusion is corroborated by
numerical computations of the zero-energy surface states both
for the point group O and C4v (see Figs. 2 and 3). When
two nodal rings overlap in the (lmn) projection of the BZ,
then the quantized value of N(lmn) in the overlapping region
is determined by the additive contribution of the topological
charges of the two rings. In particular, one can have a situation
where the two contributions cancel, in which case there is no
zero-energy surface state within the overlapping region.

Finally, using an analogous argument as in the previous
paragraph, we can also employ the Z2 number (6) to deduce
the presence of zero energy modes at TRI momenta of the
surface BZ.12 One example of this is the Kramers pair of
surface zero modes located at the center of the surface BZ in
Fig. 2 (d) (cf. Refs. 16 and 17). Remarkably, this is a surface
Majorana mode in a gapless (nodal) superconducting phase.19

Experimental signatures. One of the most direct signatures
of the topological aspects of noncentrosymmetric SCs are
the surface Andreev bound states. These can be probed by
angle-resolved photoemission measurements, or by STS of
the surface density of states (SDOS). STS has proved to be an
effective tool to explore surface states of two-dimensional un-
conventional superconductors, see, e.g., Refs. 20–24. The bulk
density of states of 3D gapless SCs with nodal lines vanishes
linearly at zero energy. In contrast, the surface flat bands lead
to a diverging zero-energy peak in the SDOS (see Fig. 4).

The zero-bias peak in the SDOS is strongly dependent on
the surface orientation. From this dependence it is in principle
possible to (partially) map out the location of the topologically
stable nodal lines in the bulk BZ. In addition, one can take
advantage of the fact that an applied magnetic field leads to
a splitting of the zero-energy peak. Again, this splitting is
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FIG. 4. (Color online) Surface and bulk density of states for the
point group (a) O and (b) C4v . The surfaces are oriented perpendicular
to the (111) and (012) axes, respectively. The employed parameter
values are the same as in Figs. 2 and 3.

strongly dependent on the orientation of the magnetic field
axis with respect to the nodal lines. Another possibility is
to use spatially resolved STS to investigate the SDOS in the
presence of impurities on the surface. It is expected that surface
impurities will lead to strong spatial modulations of the SDOS,
which might give some information about the topological
characteristics of the nodal lines in the bulk.

Stability of surface modes. The zero-energy surface flat
bands in time-reversal symmetric noncentrosymmetric SCs
are topologically protected against the opening of a gap
and are therefore stable against weak symmetry preserving
deformations. Conversely, any perturbation that leads to a gap
opening of the surface states is expected to be accompanied by
the breaking of the symmetries of the time-reversal symmetric
SC, i.e., TRS or certain types of translational invariance. One

possible scenario, for example, is that interactions might lead
to spontaneous TRS breaking at the boundary of the SC, such
as to the coexistence of TRS breaking and TRS preserving
order parameters near the surface. This would be observable
in experiments, for instance, as a splitting of the zero-bias
conductance peak.

In conclusion, using three different topological invari-
ants, we examined the topological properties of general 3D
noncentrosymmetric superconductors with TRS. We showed
that in nodal superconducting phases there always appear
dispersionless Andreev surface bands. We established a corre-
spondence between these zero-energy surface flat bands and
the topologically protected nodal lines in the bulk, thereby
revealing the topological origin of the surface flat band. In
particular, we demonstrated that the projection of the nodal
lines on the surface coincides with the boundary of the surface
flat band. We emphasize that the presented formalism (or a gen-
eralization thereof) can be applied to any 3D unconventional
SC that preserves TRS. One particularly interesting family of
compounds is Li2PdxPt3−xB. In these SCs the substitution of
Pd by Pt seems to be related to the relative strength of singlet
and triplet pairing states.25 Hence, it might be possible to
observe in Li2PdxPt3−xB the transition between two topologi-
cally distinct quantum phases as a function of Pt concentration.
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