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Thermodynamic properties of the kagome lattice in herbertsmithite
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Strongly correlated Fermi systems are among the most intriguing and fundamental systems in physics, whose
realization in some compounds is still to be discovered. We show that ZnCu3(OH)6Cl2 can be viewed as a
strongly correlated Fermi system whose low-temperature thermodynamics in magnetic fields is defined by a
Fermi quantum spin liquid. Our calculations of its thermodynamic properties are in good agreement with recent
experimental facts and allow us to reveal their scaling behavior which strongly resembles that observed in
heavy-fermion metals and two-dimensional 3He.
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An explanation of the rich behavior of strongly correlated
Fermi systems still continues to be among the main problems
in condensed-matter physics. One of the most interesting and
puzzling issues in the research of strongly correlated Fermi
systems is the non-Fermi-liquid (NFL) behavior detected in
their thermodynamic properties. Under the application of
magnetic field B, the system can be driven to a Landau Fermi-
liquid behavior (LFL). Such a behavior was observed in quite
different objects such as heavy-fermion (HF) metals1,2 and
two-dimensional (2D) 3He.2–4 Recently the herbertsmithite
ZnCu3(OH)6Cl2 has been exposed as a S = 1/2 kagome
antiferromagnet5 and experimental investigations have re-
vealed its unusual behavior6–9 (see Ref. 10 for a recent
review). High-quality single crystals of ZnCu3(OH)6Cl2 were
synthesized and characterized,9 the bulk properties of which
are consistent with previously published powder results.6–9

Observations have found no evidence of long-range magnetic
order or spin freezing down to a temperature of 50 mK.6–11 The
specific heat C, arising from the Cu spin system, at T < 1 K
appears to be governed by a power law with an exponent which
is less than or equal to 1. At the lowest explored temperature,
namely, over the temperature range 106 < T < 400 mK, C

follows a linear law temperature dependence C ∝ T , and for
temperatures of a few kelvin and higher, C(T ) ∝ T 3, and is
dominated by the lattice contribution.6–8 At low temperatures
T � 1, the strong magnetic field dependence of the specific
heat C suggests that C is predominately magnetic in origin.6–8

It is believed that the S = 1/2 model on the kagome lattice
can be viewed as a gapless spin liquid,6–15 while recent
accurate calculations point to a fully gapped spin liquid
(see Ref. 16 and references therein). Thus, it is of crucial
importance to test what kind of quantum spin liquid is formed
in the herbertsmithite and determines its low-temperature
thermodynamic properties. The magnetic susceptibility χ (T )
of ZnCu3(OH)6Cl2 shown in Fig. 1 displays an unusual
behavior.8 At B � 3 T, χ (T ) has a maximum χmax(T ) at
some temperature Tmax(B). The maximum χmax(T ) decreases
as magnetic field B grows, while Tmax(B) shifts to higher T ,
reaching 15 K at B = 14 T. At B � 1 T, as seen from Fig. 1,
χ (T ) ∝ T −α with α = 2/3. The calculated exponent2,17 is in
good agreement with the experimental value α = 2/3 � 0.66.8

The observed behavior of χ strongly resembles that in HF

metals and is associated with their proximity to a quantum
critical point (QCP).2,17,18 As a result, we safely assume
that a deconfined Fermi quantum spin liquid with essentially
gapless excitations formed by neutral fermions is realized
in ZnCu3(OH)6Cl2 and located very near the QCP.6 Thus,
ZnCu3(OH)6Cl2 turns out to be located at its QCP without
tuning this substance to the QCP using a control parameter
such as magnetic field, pressure, or chemical composition. This
observation is in sharp contrast to the common practice applied
to tune HF metals to their QCPs. A simple kagome lattice may
have a dispersionless topologically protected branch of the
spectrum with zero excitation energy that is a flat band.19,20

In that case a fermion condensation quantum phase transition2

(FCQPT) can be considered as the QCP of the ZnCu3(OH)6Cl2
quantum spin liquid.

In this Rapid Communication we uncover the Fermi
quantum spin liquid phase and its QCP in the herbertsmithite
ZnCu3(OH)6Cl2 and explain its low-temperature thermody-
namics in magnetic fields. We calculate the susceptibility
χ , magnetization M , and specific heat C as functions of
temperature T versus magnetic field B. Our calculations are
in good agreement with the experimental facts and allow us
to reveal their scaling behavior, which strongly resembles that
observed in HF metals and 2D 3He.

To study the low-temperature thermodynamic and scaling
behavior, we use the model of homogeneous heavy-fermion
liquid.2 This model permits to avoid complications associated
with the crystalline anisotropy of solids. We propose that the
quantum spin liquid is composed of fermions. These fermions
with zero charge and spin σ = 1/2 occupy the corresponding
Fermi sphere with the Fermi momentum pF . The ground-state
energy E(n) is given by the Landau functional depending on
the quasiparticle distribution function nσ (p), where p is the
momentum. Near the FCQPT point, the effective mass M∗ is
governed by the Landau equation2,21
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FIG. 1. (Color online) T dependence of the magnetic suscepti-
bility χ at different magnetic fields for ZnCu3(OH)6Cl2 (Ref. 8).
The illustrative values of χmax and Tmax at B = 7 T are also shown.
Our calculations made at B = 0 are depicted by the solid curve
representing χ (T ) ∝ T −α with α = 2/3.

Here we have rewritten the quasiparticle distribution func-
tion as nσ (p,T ,B) ≡ nσ (p,T = 0,B = 0) + δnσ (p,T ,B). The
Landau amplitude F is completely defined by the fact that
the system has to be at the QCP of the FCQPT.2,17,22 The sole
role of the Landau amplitude is to bring the system to the
FCQPT point, where the Fermi surface alters its topology
so that the effective mass acquires temperature and field
dependence.2,17,18 At this point, the term 1/M∗ vanishes
and Eq. (1) becomes homogeneous. It can then be solved
analytically.2,17 At B = 0, the effective mass strongly depends
on T demonstrating the NFL behavior2,17

M∗(T ) � aT T −2/3. (2)

At finite T , the application of magnetic field B drives the
system to the LFL region with

M∗(B) � aBB−2/3. (3)

At finite B and T near the FCQPT, the solutions of Eq. (1)
M∗(B,T ) can be well approximated by a simple universal
interpolating function. The interpolation occurs between the
LFL [M∗(T ) ∝ const] and NFL [M∗(T ) ∝ T −2/3] regions.2,17

It is convenient to introduce the normalized effective mass M∗
N

and the normalized temperature TN dividing the effective mass
M∗ by its maximal values M∗

M and temperature T by Tmax at
which the maximum occurs. Equation (1) allows us to calculate
the thermodynamic properties for the normalized susceptibil-
ity χN = χ/χmax = M∗

N . Since C/T ∝ M∗, the normalized
(C/T )N = χN = M∗

N . We note that our calculations of M∗
N

based on Eq. (1) do not contain any free fitting parameters.
The normalized effective mass M∗

N = M∗/M∗
M as a function

of the normalized temperature y = TN = T/Tmax is given by
the interpolating function2,17

M∗
N (y) ≈ c0

1 + c1y
2

1 + c2y8/3
. (4)

Here c0 = (1 + c2)/(1 + c1), where c1 and c2 are fitting pa-
rameters, approximating the Landau amplitude. The magnetic
field B enters Eq. (1) only in the combination μBB/kBT ,
making kBTmax � μBB, where kB is the Boltzmann constant
and μb is the Bohr magneton.2,17 Thus, in the presence of
magnetic fields the variable y becomes

y = T/Tmax � kBT /μBB. (5)

The variables T and B enter Eq. (5) symmetrically; therefore
Eq. (4) is valid for y = μBB/kBT . In what follows we use
Eq. (4) to clarify our calculations based on Eq. (1). It follows di-
rectly from Eqs. (3)–(5) that χ (kBT /μBB)T 2/3 ∝ y2/3M∗

N (y).
Since the magnetization M(B,T ) = ∫

χ (B,T )dB, we obtain
that M(B,T )T −1/3 depends on the only variable y. These
observations confirm the scaling behavior of both χT 0.66 and
MT −0.34, experimentally established in Ref. 8.

We are now in a position to construct the schematic phase
diagram of ZnCu3(OH)6Cl2. The phase diagram is reported
in Fig. 2. At T = 0 and B = 0 the system is located at the
QCP of the FCQPT without tuning. Both magnetic field B and
temperature T play the role of control parameters, shifting
the system from its QCP and driving it from the NFL to
LFL regions, as shown by the vertical and horizontal arrows.
At fixed temperatures the increase of B drives the system
along the horizontal arrow from the NFL region to the LFL
one. On the contrary, at fixed magnetic field and increasing
temperatures the system transits along the vertical arrow from
the LFL region to NFL one. The inset to Fig. 2 demonstrates the
behavior of normalized effective mass M∗

N versus normalized
temperature TN following from Eq. (4). It is seen that the
temperature region TN ∼ 1 represents a transition region
between the LFL behavior with an almost constant effective
mass and the NFL behavior, having T −2/3 dependence. It
is seen from Eqs. (4) and (5) and Fig. 2 that the width of
the transition region Tw ∝ T ∝ B. The experimental data on
measurements of χN ,8 (C/T )N = M∗

N ,23 and our calculations

FIG. 2. (Color online) Phase diagram of ZnCu3(OH)6Cl2. The
vertical and horizontal arrows show LFL-NFL and NFL-LFL
transitions at fixed B and T , respectively. The inset shows a plot of the
normalized effective mass vs the normalized temperature. The tran-
sition region, where M∗

N reaches its maximum at TN = T/Tmax = 1,
is shown by the arrows and the hatched area in both the main panel
and in the inset.
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FIG. 3. (Color online) Normalized susceptibility χN =χ/χmax =
M∗

N vs normalized temperature TN . χN is extracted from the
measurements of the magnetic susceptibility χ in magnetic fields
(Ref. 8) B shown in Fig. 1. Normalized specific heat (C/T )N = M∗

N

is extracted from the measurements of C/T on YbRh2Si2 in magnetic
fields (Ref. 23) B. The corresponding fields B are listed in the
legends. Our calculations made at field B completely polarizing the
quasiparticle band are depicted by the solid curve tracing the scaling
behavior of M∗

N .

of M∗
N at fixed magnetic field B that completely polarizes the

quasiparticle band are shown respectively by the geometrical
figures and solid curve in Fig. 3. It is clearly seen that the data
collected on both ZnCu3(OH)6Cl2 and YbRh2Si2 collapse into
the same curve, obeying the scaling behavior. Consistent with
the phase diagram displayed in Fig. 2, at growing temperatures
(y � 1) the LFL behavior first converts into the transition one

FIG. 4. (Color online) Normalized magnetization MN (y) col-
lected on measurements of ZnCu3(OH)6Cl2 (Ref. 8) and YbRh2Si2

(Ref. 24) at different temperatures shown in the corresponding
legends. Shown by the arrow a kink is seen at y � 1. The normalized
entropy SN (y) is extracted from measurements on 2D 3He (Ref. 3) at
different densities x shown in the legend. The solid curve represents
our calculations of the normalized magnetization.

(a) (b)

FIG. 5. (Color online) (A) The temperatures Tmax(B) at which
the maxima of χ (see Fig. 1) are located. The solid line represents
the function Tmax ∝ aB, and a is a parameter [see Eq. (5)]. (B) The
maxima χmax of χ (T ) vs magnetic field B (see Fig. 1). The solid
curve is approximated by χmax(B) = dB−2/3 [see Eq. (3)], and d is a
parameter.

and then disrupts into the NFL behavior. This demonstrates
that the spin liquid of ZnCu3(OH)6Cl2 is close to the QCP
and behaves as the HF liquid of YbRh2Si2. It is seen that
the low-temperature ends (TN � 0.5) of the curves do not
merge and their values decrease as B grows, representing
the full spin polarization of the HF band at the highest
reached magnetic fields.22 Indeed, at low TN , χN at B = 14 T
is close to (C/T )N at B = 18 T, while our calculations
shown by the solid curve are close to both functions. Both
the normalized magnetization MN (y) = M(B/Bk)/M(Bk),
extracted from measurements of the magnetization M(B),8

depicted by the geometrical figures, and calculated MN (y)
shown by the solid line, are reported in Fig. 4. Here, Tk is
the temperature at which the magnetization demonstrates the
kink, while the system enters the transition region2 shown in

FIG. 6. (Color online) The specific heat C(B,T ) vs magnetic field
B measured on ZnCu3(OH)6Cl2 at two different temperatures (Ref. 6)
T listed in the legends is shown by the triangles and squares. Our
calculations are depicted by the solid curves, tracing the LFL behavior
of C(B,T ) = a1B

−2/3T [see Eq. (3)], with a1 being a parameter.
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Fig. 2. The normalized entropy SN (y) = S(T/Tinf)/S(Tinf) is
obtained from measurements of the entropy S on 2D 3He.3

Here Tinf is the temperature at which the system enters the
transition region and S possesses its inflection point, clearly
seen in the data (see the supporting online material for Ref. 3,
Fig. S8, A). It is seen from Eq. (4) and from the inset to Fig. 2
that at y < 1, SN = MN ∝ y, and at y > 1, SN = MN ∝ y1/3.
This behavior produces the kink and makes the scaled data
merge into a single curve in terms of the variable y. Our
calculations are in good agreement with the measurements.
In Fig. 5(a), the solid squares denote temperatures Tmax(B) at
which the maxima of χ (T ) occur versus magnetic field B. In
Fig. 5(b), the corresponding values of the maxima χmax(B)
are shown by the solid diamonds versus B. It is seen that the
agreement between the theory and experiment is good in the
entire magnetic field domain. Our calculations of the specific
heat C(B,T ) are shown in Fig. 6. For T of a few kelvin and
higher, the lattice contribution to the specific heat is the most
significant contribution. However, this contribution diminishes
at low temperatures, and at T � 1 K, C is predominately
formed by the spin liquid.6,7 It is seen from Fig. 6 that in
the LFL region at kBT � μBB, C(B,T ) ∝ M∗T ∝ B−2/3T ,

and field B completely defines the M∗(B) behavior given
by Eq. (3). Clearly, our calculations are in good agreement
with the measurements when the system demonstrates LFL
behavior. Indeed, at T = 1 K the system exhibits LFL behavior
at B � 2 T, while at T = 0.5 K the LFL behavior is observed
even at lower values of B, namely, B � 1 T.

In summary, we have shown that the kagome lattice of
ZnCu3(OH)6Cl2 can be viewed as a strongly correlated Fermi
system whose thermodynamic is defined by the quantum
spin liquid located at the FCQPT. Our calculations of the
thermodynamic properties are in good agreement with the
experimental facts, and their scaling behavior coincides
with that observed in HF metals and 2D 3He. We have
also demonstrated that ZnCu3(OH)6Cl2 exhibits the LFL,
NFL, and the transition behavior as do HF metals and
2D 3He.
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