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Dynamics and morphology of dendritic flux avalanches in superconducting films
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We develop a fast numerical procedure for the analysis of nonlinear and nonlocal electrodynamics of type-II
superconducting films in transverse magnetic fields coupled with heat diffusion. Using this procedure, we explore
the stability of such films with respect to dendritic flux avalanches. The calculated flux patterns are very close to
experimental magneto-optical images of MgB2 and other superconductors, where the avalanche sizes and their
morphology change dramatically with temperature. Moreover, we find the values of a threshold magnetic field,
which agrees with both experiments and linear stability analysis. The simulations predict the temperature rise
during an avalanche, where for a short time T ≈ 1.5Tc, and a precursor stage with large thermal fluctuations.
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I. INTRODUCTION

The gradual penetration of magnetic flux in type-II su-
perconductors subjected to an increasing applied field or
electrical current can be interrupted by dramatic avalanches
in the vortex matter.1 The mechanism responsible for the
avalanches is that an initial fluctuation locally reduces the
pinning of some vortices, which start to move, thus, creating
dissipation followed by depinning of even more vortices. A
positive feedback loop is formed where a small perturbation
can escalate into a macroscopic thermomagnetic breakdown.2

In thin-film superconductors, the dynamics and morphol-
ogy of these avalanches is tantalizing, when at very high
speeds, they develop into complex dendritic structures, which
once formed, remain robust against changes in external
conditions. When repeating identical experiments, one finds
that the patterns are never the same, although qualitative
features of the morphology, such as the degree of branching
and overall size of the structure, show systematic dependences
on, e.g., temperature. Using magneto-optical imaging, flux
avalanches with these characteristics have been observed in
films of Nb,3 YBa2Cu3O7−x ,4 MgB2,5,6 Nb3Sn,7 YNi2B2C,8

and NbN.9 Investigations of onset conditions for the avalanche
activity have identified material-dependent threshold values
in temperature,5 applied magnetic field,9,10 and transport
current,11 as well as in sample size.12 Analytical modeling
of the nucleation stage has explained many of these thresholds
using linear stability analysis.12–15

Far from being understood is the development of the
instability from its nucleation stage to the fully developed
dendritic pattern. Aranson et al.14 explored the dynamics of
the flux avalanches as a numerical solution of Maxwell’s
equations with temperature-dependent critical current density.
The dynamical process was governed by the interplay between
an extremely nonlinear current-voltage relation, heat diffusion,
and the nonlocal electrodynamics characteristic for thin super-
conducting films. To treat the nonlocal electrodynamics, the
authors used periodic continuation of the sample taken as an
infinite strip. This scheme should be a good approximation
inside the sample, although not necessarily close to the edges.
In fact, in thin films, the magnetic field near the edges is
significantly enhanced16 due to the flux expulsion. Moreover,

all experiments show that the instability is always nucleated at
an edge. Therefore, a careful account of the electrodynamics
close to the edges, including the regions outside the film, is
expected to be crucially important.17

In this paper, we study the formation and characteristics
of dendritic flux avalanches using a numerical scheme that
takes into account the nonlocal electrodynamics both inside
and outside a finite-sized superconducting film. It is shown
that our simulations largely reproduce experimental results
obtained by magneto-optical imaging of dendritic avalanches
in films of MgB2 and, furthermore, gives detailed insight into
not yet observed quantities, such as local temperature rise and
electrical field.

The paper is organized as follows. Section II presents the
model and the equations describing the process. The numerical
scheme, including the implementation of boundary conditions
and thermomagnetic feedback, is described in Sec. III. The
results for the time-dependent distributions of magnetic flux
and temperature are presented and are discussed in Sec. IV,
while Sec. V gives the conclusions.

II. MODEL

Consider a rectangular superconducting film zero field
cooled below the critical temperature Tc followed by a gradual
increase in a perpendicular applied magnetic field. The film is
deposited on a substrate, which, in the process, will be regarded
as a sink for the dissipated heat. Shown in Fig. 1 is a sketch
of the overall configuration, including the relevant fields and
currents.

The macroscopic behavior of type-II superconductor films
in a transverse applied magnetic field Ha is well described
by quasistatic classical electrodynamics.17,18 Here, the sharp
depinning of vortices under flowing current is represented by
a highly nonlinear current-voltage relation,

E = ρ(J )J/d,
(1)

ρ(J ) ≡
⎧⎨
⎩

ρ0(J/Jc)n−1, J � Jc, T � Tc,

ρ0, J > Jc, T � Tc,

ρn, T > Tc.
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FIG. 1. (Color online) Schematic of the sample configuration.

Here, E is the electric field, J is the sheet current (J ≡ |J|),
Jc the critical sheet current, n is the creep exponent, ρ0 is
a resistivity constant, ρn is the normal resistivity, and T is
the temperature. It is assumed that the sample thickness d

is so small that variations in all relevant quantities across
the thickness can be ignored. For T � Tc, the temperature
dependence of the critical current and flux creep exponent12

are taken as

Jc = Jc0(1 − T/Tc) and n − 1 = n0Tc/T , (2)

where Jc0 and n0 are constants.
The distribution of temperature is described by the heat

diffusion equation,

dc Ṫ = d∇ · (κ∇T ) − h(T − T0) + J · E, (3)

where κ is the thermal conductivity of the superconductor, c

is its specific heat, T0 is the substrate temperature, taken to
be constant, and h is the coefficient of heat transfer between
the film and the substrate. The κ, c, and h are all assumed to
be proportional to T 3, whereas, the relatively weak tempera-
ture dependences of ρ0 and ρn are neglected.12,19

Following Ref. 17, we define the local magnetization g =
g(r) as

∇g × z = ∇ × (gz) = J, (4)

where r ≡ (x,y) is a two-dimensional vector in the film
plane and z is the unit vector in the perpendicular direction.
Outside the sample, there are no currents, and we set g = 0 by
definition. The Biot-Savart law can then be written as

Bz(r)

μ0
− Ha = Q̂g ≡

∫
d2r ′ Q(r − r′,z)g(r′), (5)

where the integral is calculated over the whole plane. The
kernel Q(r) should be calculated as a limit at z → 0 of the
expression

Q(r,z) = 1

4π

2z2 − r2

(z2 + r2)5/2
, r ≡ |r|. (6)

Here, regularization is needed to avoid formal divergence of
the right-hand side of Eq. (5) at z = 0, r = r′. The Fourier
transform of limz→0 Q(r,z) is equal to k/2.20 Therefore, from
the convolution theorem, it follows that the inverse operator
Q̂−1, acting on some function ϕ(r), can be expressed as

Q̂−1ϕ(r) = 2F−1{k−1F[ϕ(r)]}. (7)

Here, F[ϕ(r)] and F−1[ϕ(k)] are Fourier and inverse Fourier
transforms, respectively, and k ≡ |k|.

By inverting Eq. (5), one arrives at the equation for the time
evolution of the local magnetization,

ġ(r,t) = 2F−1
{
k−1F

[
μ−1

0 Ḃz(r,t) − Ḣa(t)
]}

. (8)

Equations (3) and (8) determine the dynamics of g(r,t),
T (r,t), etc. To solve these equations numerically, we proceed
from the continuous to a discrete formulation.

III. NUMERICAL APPROACH

To allow the use of the fast Fourier transform (FFT), we
consider a rectangular area of size 2Lx × 2Ly containing the
sample plus a substantial part of its surrounding area. A key
point is to select proper values for Lx and Ly relative to
the sample size 2a × 2b. By including too little area outside
the sample, one clips away the slowly decaying tail of the
stray fields, leading to decreased accuracy at large scales and
major deviations from the correct physical behavior.17 On the
other hand, including too much of the outside area, keeping
the same number of the grid points, tends to decrease the
accuracy at small scales, where actually, the most interesting
features of the dendritic avalanches appear. This blurring can
be compensated by using a finer spatial grid at the cost of an
increasing computation time.

A careful test of our numerical scheme was performed by
comparing the calculations with the exact solution for the Bean
critical state in an infinitely long strip.16 Already, it is found
that, with Lx/a � 1.3, the calculated results are correct within
a few percent and are essentially indistinguishable from the
exact solution in graphic comparisons.

In the FFT-based calculations, the rectangle 2Lx × 2Ly is
discretized as a Nx × Ny equidistant grid and is used as a unit
cell in an infinite superlattice. The Fourier wave vectors kx,y

are then discrete kx,y = πqx,y/Lx,y , where qx,y are integers.
The Brillouin zone is chosen as |qx,y | � Nx,y/2, which ensures
g(r,t), T (r,t), etc., to be real valued.

The calculation of the temporal evolution is based on a dis-
crete integration forward in time21 of the local magnetization

g(r,t + �t) ≈ g(r,t) + �t ġ(r,t), (9)

starting from g(r,0) = 0. Once g(r,t) is known at time t , we
proceed one time step by determining ġ(r,t). The ġ(r,t) can
be calculated from Eq. (8), provided Ḃz is known everywhere
within the unit cell. For this, we have to find self-consistent
solutions for ġ and Ḃz given the function g.

For the area inside the superconductor, the material law
Eq. (1) applies and together with the Faraday law Ḃz = −(∇ ×
E)z, it follows that

Ḃz = ∇ · (ρ∇g)/d. (10)

The gradient ∇g(r,t) is readily calculated, and since the result
allows finding J(r,t) from Eq. (4), ρ(r,t) is determined from
Eq. (1). The difficult point is that ġ depends on the distribution
of Ḃz in the whole unit cell. The task is to find the Ḃz outside
the sample, which leads to ġ = 0 outside. This cannot be
calculated directly since there is a nonlocal relation between
Ḃz and ġ. Instead, we use an iterative procedure.
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FIG. 2. (Color online) Calculated distribution of Bz at an applied
field Ha = 0.18Jc0 and substrate temperature T0 = Tc/4. The image
brightness represents the magnitude of Bz. The sample contour
appears as a bright rim of enhanced field, and the black central area
is the flux-free Meissner state region.

Let us label the iterations by a superscript (i). At the first
step i = 1, we calculate Ḃz inside the superconductor from
Eq. (10). Then, an initial guess is made for the time derivative
Ḃ(1)

z outside the sample. From Eq. (8), we now compute the time
derivative ġ(1). In general, this ġ(1) does not vanish outside the
superconductor. To correct for this, a new and improved Ḃz is
chosen as

Ḃ(i+1)
z = Ḃ(i)

z − μ0Q̂Ôġ(i) + C(i), (11)

where the projection operator Ô vanishes inside the super-
conductor and equals 1 outside of it. The constant C(i) is
determined by the flux conservation,∫

d2r
[
Ḃ(i+1)

z (r,t) − μ0Ḣa

] = 0. (12)

The procedure is stopped after s iterations, when the values
of ġ outside the superconductor become sufficiently small.
The final distribution ġ(s)(r) is taken as the true ġ(r,t) and is
substituted into Eq. (9) in order to advance in time.

A good choice for the initial state of the iteration at time t is
Ḃ(1)

z (t) = Ḃ(s)
z (t − �t), i.e., each iteration starts from the final

distributions achieved during the previous time step. Normally,
s = 5 iterations are sufficient to give good results.

IV. RESULTS AND DISCUSSION

Numerical simulations were performed for samples shaped
as a square of side 2a and with an outside area corresponding to
Lx = Ly = 1.3a. The total area is discretized on a 512 × 512
equidistant grid. Quenched disorder is included in the model
by a 10% reduction of Jc0 at randomly selected 5% of the grid
points. The simulated flux penetration process starts at zero

FIG. 3. (Color online) Map of the sheet current J corresponding
to the image in Fig. 2. The brightness represents J , where black
means J = 0.

applied field with no flux trapped in the sample, which has a
uniform temperature T0.

Calculations were performed at T0 = Tc/4 using ma-
terial parameters corresponding to a typical MgB2
film,12,19 ρn = 7 μ� cm, κ = 0.17 kW/Km × (T/Tc)3, and
c = 35 kJ/Km3 × (T/Tc)3, where ρn is the normal resistivity
at Tc = 39 K, Jc0 = 50 kA/m, ρ0 = ρn, d = 0.5 μm, a =
2.2 mm, and h = 220 kW/Km2 × (T/Tc)3. We choose n0 =
19 and limit the creep exponent to n(T ) � nmax = 59. The
field was ramped from Ha = 0 at a constant rate, Ḣa =
10−5Jc0ρn/a dμ0.

Figure 2 shows the Bz distribution at μ0Ha = 0.18μ0Jc0 =
11 mT, where three large dendritic structures have already
been formed. The numerical labels indicate the order in which
they appeared during the field ramp. The first event took
place at the threshold applied field μ0Hth = 0.145μ0Jc0 =
9.1 mT, which is in excellent agreement with measurements
on MgB2 films just below 10 K ≈ Tc/4. At lower fields, the
flux penetration was gradual and smooth, just as seen on the
left edge of the sample, where the characteristic pillow effect
for films in the critical state is very well reproduced.22

The dendritic avalanches all nucleate at the edges, and
one by one, they quickly develop into a branching structure
that extends far beyond the critical-state front and deep
into the Meissner state area. The trees are seen to have
a morphology that strongly resembles the flux structures
observed experimentally in many superconducting films.3–9

The simulations also reproduce the experimental finding that,
once a flux tree is formed, the entire dendritic structure remains
unchanged as Ha continues to increase. The Supplementary
Material23 includes a video clip of the dynamical process
and shows a striking resemblance to the magneto-optical
observations of the phenomenon.
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FIG. 4. (Color online) Color-coded overlay of two separate runs
with the same quenched disorder but with different microscopic
fluctuations. The pixels in gray scale represent overlapping results.
The parameters are the same as in the caption for Fig. 2.

Figure 3 shows the sheet current magnitude J , correspond-
ing to the flux distribution in Fig. 2. From this map, it is
clear that the dendrites completely interrupt the current flow
in the critical state and redirect it around the perimeter of
the branching structure. Earlier, this vast perturbation of the
current was demonstrated experimentally using inversion of
magneto-optical images.24 Note that the critical state region
contains dark pixels, which are the randomly distributed sites
of reduced Jc0.

To investigate reproducibility in the pattern formation,
microscopic fluctuations were introduced by randomly al-
ternating between right and left derivatives in the discrete
differentiation. Due to the nonlinear form of Eq. (1), this
procedure gives large local variations in the electrical field.
Figure 4 shows an overlay of two simulation runs with different
realizations of the microscopic fluctuations while keeping the
same quenched disorder in Jc0. The two resulting images were
colored so that adding them gives shades of gray where both
coincide in pixel values. Clearly, the two runs gave different
results as far as the dendritic pattern is concerned. Both
produced three branching structures, where two are rooted
at the same place and the third is at a different location.25

Even for those with overlap, there are parts of the structure
that differ considerably, especially in the finer branches. In
contrast, both the critical state and the Meissner state regions
are essentially identical in the two runs. Note the color at the
edge of the right-hand side near the root of the green dendrite,
which reflects that the growth of the flux structure drains the
external field near the root. Moreover, the roots of all the trees
are not far from the middle of the sides. Both features are in
full accordance with experiments.

Each dendritic avalanche is accompanied by a large local
increase in temperature. Shown in Fig. 5(a) is a plot of the
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FIG. 5. Maximum temperature in the superconductor during an
ascending field ramp at T0 = Tc/4. The panels (a)–(c) are successive
magnifications of the first avalanche event.

maximum temperature in the film during a field ramp with the
substrate kept at T0 = Tc/4. The spikes in the temperature rise
as high as 1.5Tc. The maximum temperature is found in the root
region of the avalanche. The heating above Tc is an interesting
prediction since the temperature of propagating avalanches
has not been observed experimentally. At the same time, the
result is consistent with the measured heating of uniform flux
jumps in Nb foils26 and the magnetic-field-induced damage in
a YBa2Cu3O7−x film during dendritic growth.4

The first avalanche in Fig. 5(a) appears at Hth = 0.145Jc0.
Since the chosen disorder is rather weak and the ramp rate is
high, the heat diffusion to the substrate is expectedly a more
important stabilizing factor than lateral heat diffusion, and the
theoretically predicted threshold field is12

Hth = J ′
c

π
tanh−1

(
Tch

naJc0μ0Ḣa

)
. (13)

At T = Tc/4 and with n = 59, this gives Hth = 0.15Jc0,
in excellent agreement with the present simulation. Here,
J ′

c = 0.6Jc0 is the effective critical current, which is lower
than Jc due to flux creep. At the same time, the adiabatic
threshold field15 is much smaller than Hth, which means that
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FIG. 6. (Color online) Magnetic moment in units of m0 = a3Jc0

as a function of increasing field obtained by simulations at three
different temperatures T0. Each jump in the curves represents a flux
avalanche.

the heat diffusion and heat transfer to the substrate prevent
avalanches. However, during short time intervals, cooling is
not always effective, and the temperature experiences large
fluctuations. The fluctuations are particularly large as Ha

approaches triggering of an avalanche, see Fig. 5(b). In these
intervals, both heat absorption and lateral heat diffusion play
important roles in stabilizing the superconductor. A closeup
view of the maximum temperature during the first avalanche
at T0 = Tc/4 is shown in Fig. 5(c). First, the temperature
rapidly increases and then decays much slower. The duration
of the avalanche is 0.18 μs. Since the length is 2.5 mm, the
average propagation velocity is on the order of 14 km/s.

This numerical value is reasonable compared to previous
measurements, where the flux dendrites were triggered by a
laser pulse in YBaCuO films.4 The maximum electric field in
the superconductor during the avalanche is also high, found,
from the simulations, to be approximately 5 kV/m.

The abrupt redirection of the current implies that the
magnetic moment of the sample makes a jump and becomes
smaller. Figure 6 shows the moment as a function of the
increasing applied field. Each vertical step corresponds to
a flux avalanche. The lower curve, obtained for T0 = Tc/4,
shows jumps with a typical size of 0.1m0 with a slight
dispersion, which is due to variations both in shape and in
location of the avalanches. More pronounced is the variation
in jump size with temperature. As T0 gets lower, the jump size
becomes smaller, and the events become more frequent. In the
graphs for T0/Tc = 0.20 and 0.17, the jump size reduces to
0.03m0 and 0.01m0, and jumps appear, on average, with field
intervals of �Ha/Jc0 = 0.01 and 0.002, respectively. In real
samples, a similar temperature variation in jumps in the m-H
curves was observed by magnetometry.7,26–28

It has been reported5 that the morphology of flux avalanches
is strongly temperature dependent. This is illustrated in the
bottom panel of Fig. 7, showing three magneto-optical images
of a 0.4-μm-thick MgB2 square film at T0 = 4, 6.3, and 7.9 K.
The images show a crossover from many long fingers at 4 K to
medium-sized dendrites at 6.3 K to a single highly branched
structure at 7.9 K. The simulation results shown in the top
panels reproduce this result and show exactly the same trend
as the experiments. At the lowest temperature 0.17Tc, there
are many fingerlike avalanches. At the middle temperature
0.2Tc, there are fewer avalanches, with typically three to four
branches each. At the highest temperature 0.25Tc, there is just
one big avalanche with seven main branches.

V. CONCLUSION

In conclusion, we have developed and have demonstrated
the use of a fast numerical scheme for the simulation of
nonlinear and nonlocal transverse magnetic dynamics of

FIG. 7. (Color online) Temperature variation in the morphology of flux dendrites. Top panels show simulated results for Bz, and bottom
panels show magneto-optical images of a MgB2 film.
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type-II superconducting films under realistic boundary con-
ditions. Our simulations of thermomagnetic flux avalanches
qualitatively and quantitatively reproduce numerous exper-
imentally observed features: the fast flux dynamics, the
morphology of the flux patterns, the enhanced branching
at higher temperatures, the irreproducibility of the exact
flux patterns, the preferred locations for nucleation, and the
existence of a threshold field. The scheme allows for the
determination of key characteristics of the process, such as

maximal values of the temperature and electric field as well as
typical propagation velocity.
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Olsen, T. H. Johansen, D. Shantsev, E.-M. Choi, H.-S. Lee, H. J.
Kim, and S. I. Lee, Phys. Rev. B 76, 024510 (2007).

7I. A. Rudnev, S. V. Antonenko, D. V. Shantsev, T. H. Johansen, and
A. E. Primenko, Cryogenics 43, 663 (2003).

8S. C. Wimbush, B. Holzapfel, and Ch. Jooss, J. Appl. Phys. 96,
3589 (2004).

9I. A. Rudnev, D. V. Shantsev, T. H. Johansen, and A. E. Primenko,
Appl. Phys. Lett. 87, 042502 (2005); V. V. Yurchenko, D. V.
Shantsev, T. H. Johansen, M. R. Nevala, I. J. Maasilta, K. Senapati,
and R. C. Budhani, Phys. Rev. B 76, 092504 (2007).

10F. L. Barkov, D. V. Shantsev, T. H. Johansen, P. E. Goa, W. N.
Kang, H. J. Kim, E. M. Choi, and S. I. Lee, Phys. Rev. B 67,
064513 (2003).

11A. V. Bobyl, D. V. Shantsev, T. H. Johansen, W. N. Kang, H. J.
Kim, E. M. Choi, and S.-I. Lee, Appl. Phys. Lett. 80, 4588 (2002).

12D. V. Denisov, D. V. Shantsev, Y. M. Galperin, E.-M. Choi, H.-S.
Lee, S. -I. Lee, A. V. Bobyl, P. E. Goa, A. A. F. Olsen, and T. H.
Johansen, Phys. Rev. Lett. 97, 077002 (2006).

13A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin, and T. H.
Johansen, Phys. Rev. B 70, 224502 (2004).

14I. S. Aranson, A. Gurevich, M. S. Welling, R. J. Wijngaarden, V. K.
Vlasko-Vlasov, V. M. Vinokur, and U. Welp, Phys. Rev. Lett. 94,
037002 (2005).

15D. V. Denisov, A. L. Rakhmanov, D. V. Shantsev, Y. M. Galperin,
and T. H. Johansen, Phys. Rev. B 73, 014512 (2006).

16E. H. Brandt and M. Indenbom, Phys. Rev. B 48, 12893 (1993);
E. Zeldov, J. R. Clem, M. McElfresh, and M. Darwin, ibid. 49, 9802
(1994).

17E. H. Brandt, Phys. Rev. B 52, 15442 (1995).
18E. H. Brandt, Phys. Rev. Lett. 74, 3025 (1995).
19M. Schneider, D. Lipp, A. Gladun, P. Zahn, A. Handstein, G. Fuchs,

S.-L. Drechsler, M. Richter, K.-H. Müller, and H. Rosner, Physica
C 363, 6 (2001).

20B. J. Roth, N. G. Sepulveda, and J. P. Wikswo Jr., J. Appl. Phys.
65, 361 (1989).

21The discrete time integration is explained using Euler’s method, but
the actual implementation uses the Runge-Kutta method.

22Note a slight corrugation in this smooth pattern, which originates
from the slightly nonuniform Jc0, a detail commonly seen in
magneto-optical images of real samples.

23See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.84.054537 for video clips showing the devel-
opment of Bz with time.

24F. Laviano, D. Botta, C. Ferdeghini, V. Ferrando, L. Gozzelino, and
E. Mezzetti, in Magneto-Optical Imaging, edited by T. H. Johansen
and D. V. Shantsev (Kluwer Academic, 2004) p. 237; A. A. F. Olsen,
T. H. Johansen, D. Shantsev, E.-M. Choi, H.-S. Lee, H. J. Kim, and
S.-I. Lee, Phys. Rev. B 74, 064506 (2006).

25The two roots overlap because clustering of the quenched disorder
facilitates nucleation of the thermomagnetic instability.

26R. Prozorov, D. V. Shantsev, and R. G. Mints, Phys. Rev. B 74,
220511 (2006).

27Z. W. Zhao, S. L. Li, Y. M. Ni, H. P. Yang, Z. Y. Liu, H. H. Wen,
W. N. Kang, H. J. Kim, E. M. Choi, and S. I. Lee, Phys. Rev. B 65,
064512 (2002).

28F. Colauto, E. J. Patiño, M. G. Blamire, and W. A. Ortiz, Supercond.
Sci. Technol. 21, 045018 (2008).

054537-6

http://dx.doi.org/10.1103/RevModPhys.76.471
http://dx.doi.org/10.1103/RevModPhys.76.471
http://dx.doi.org/10.1103/RevModPhys.53.551
http://dx.doi.org/10.1103/RevModPhys.53.551
http://dx.doi.org/10.1103/PhysRevB.52.75
http://dx.doi.org/10.1103/PhysRevB.52.75
http://dx.doi.org/10.1016/j.physc.2004.06.011
http://dx.doi.org/10.1103/PhysRevLett.71.2646
http://dx.doi.org/10.1103/PhysRevLett.71.2646
http://dx.doi.org/10.1209/epl/i2003-00261-y
http://dx.doi.org/10.1209/epl/i2002-00146-1
http://dx.doi.org/10.1063/1.2123395
http://dx.doi.org/10.1103/PhysRevB.76.024510
http://dx.doi.org/10.1016/S0011-2275(03)00157-7
http://dx.doi.org/10.1063/1.1778816
http://dx.doi.org/10.1063/1.1778816
http://dx.doi.org/10.1063/1.1992673
http://dx.doi.org/10.1103/PhysRevB.76.092504
http://dx.doi.org/10.1103/PhysRevB.67.064513
http://dx.doi.org/10.1103/PhysRevB.67.064513
http://dx.doi.org/10.1063/1.1485304
http://dx.doi.org/10.1103/PhysRevLett.97.077002
http://dx.doi.org/10.1103/PhysRevB.70.224502
http://dx.doi.org/10.1103/PhysRevLett.94.037002
http://dx.doi.org/10.1103/PhysRevLett.94.037002
http://dx.doi.org/10.1103/PhysRevB.73.014512
http://dx.doi.org/10.1103/PhysRevB.48.12893
http://dx.doi.org/10.1103/PhysRevB.49.9802
http://dx.doi.org/10.1103/PhysRevB.49.9802
http://dx.doi.org/10.1103/PhysRevB.52.15442
http://dx.doi.org/10.1103/PhysRevLett.74.3025
http://dx.doi.org/10.1016/S0921-4534(01)00947-9
http://dx.doi.org/10.1016/S0921-4534(01)00947-9
http://dx.doi.org/10.1063/1.342549
http://dx.doi.org/10.1063/1.342549
http://link.aps.org/supplemental/10.1103/PhysRevB.84.054537
http://link.aps.org/supplemental/10.1103/PhysRevB.84.054537
http://dx.doi.org/10.1103/PhysRevB.74.064506
http://dx.doi.org/10.1103/PhysRevB.74.220511
http://dx.doi.org/10.1103/PhysRevB.74.220511
http://dx.doi.org/10.1103/PhysRevB.65.064512
http://dx.doi.org/10.1103/PhysRevB.65.064512
http://dx.doi.org/10.1088/0953-2048/21/4/045018
http://dx.doi.org/10.1088/0953-2048/21/4/045018

