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Importance of electronic correlations for structural and magnetic properties of the iron pnictide
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We present calculations of structural and magnetic properties of the iron-pnictide superconductor LaFeAsO
including electron-electron correlations. For this purpose we apply a fully charge self-consistent combination of
density-functional theory with the dynamical mean-field theory, allowing for the calculation of total energies. We
find that the inclusion of correlation effects gives a good agreement of the arsenic z position with experimental
data even in the paramagnetic (high-temperature) phase. Going to low temperatures, we study the formation of
the ordered moment in the striped spin-density-wave phase, yielding an ordered moment of about 0.60μB, again
in good agreement with experiments. This shows that the inclusion of correlation effects improves both structural
and magnetic properties of LaFeAsO at the same time.
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I. INTRODUCTION

Since the discovery of high-temperature superconductivity
in iron-based compounds1 a lot of research has been dedicated
to this fascinating class of materials. On the theoretical side,
calculations within density-functional theory (DFT), often
performed within the local-density approximation (LDA),
could reproduce a variety of properties, but failed in the
quantitative description of other features, such as the mass
renormalization of the predominately iron-d quasiparticles,
which could be improved by the inclusion of correlation effects
for the Fe 3d electrons.2–5 A very puzzling mystery shows up
for the compounds exhibiting long-range spin-density-wave
(SDW) magnetic ordering at low temperatures. Although the
spin-pattern and ordering vectors were well predicted by DFT,
it was soon realized that there is a big discrepancy between the
magnitude of the measured magnetic moments with theoretical
predictions of spin-polarized DFT calculations. For instance,
for LaFeAsO, early experimental data pointed to a very small
ordered moment in the range of around 0.3μB,6,7 although
recent measurements indicated a somewhat larger moment of
0.63μB in LaFeAsO.8 On the other hand, DFT calculations
using the experimental crystal structure always gives large
values between 1.7 and more than 2μB.9–14

There is also a strong connection between the value of
the ordered moment and details of the crystal structure. As
stated above, the ordered moment turns out to be too large
in DFT calculations, but in this magnetic case, structural
optimization of the z position of the arsenic ions reproduces
well the experimental position.12 On the other hand, non-
magnetic DFT calculations, which should correspond to the
paramagnetic high-temperature phase, gives a too short Fe-As
distance with drastic influence on the low-energy electronic
structure.14 Experimentally, the As z position hardly changes
across the magnetic transition,6,15 a fact that is hard to
reconcile within DFT calculations, since the optimized internal
structural parameters differ significantly between magnetic
and nonmagnetic calculations. The correct description of the

equilibrium structure is particularly important for cases where
the forces on the ions are important, e.g., phonon calculations.

There were several attempts to improve over simple DFT
calculations. Concerning the ordered moment, Yildirim et al.16

performed fixed moment DFT calculations in order to study
the stability of magnetic ordering patterns. Attempts to include
correlation effects by performing LDA + U or GGA + U

calculations were not successful. It has been shown17 that
the magnetic moment even increases with increasing U , and
even for small interaction values of U ≈ 1 eV the topology of
the Fermi surfaces is changed drastically, incompatible with
experiments. However, a reduction of the magnetic moment
could be found in LDA + U calculation using an effective
negative interaction parameter.18 Particularly promising are
approaches using many-body techniques to include electronic
correlation effects. Using a combination of DFT with the
dynamical mean-field theory (DMFT) a significant reduction
of the magnetic moment could be found for BaFe2As2,19

variational Monte Carlo gave similar results also for other
materials,20 consistent with a recent comprehensive LDA +
DMFT study for a variety of pnictide and chalcogenide
materials.21 A general argument is that quantum fluctuations
hinder a large instantaneous iron moment from ordering.19–24

Regarding the combination of structural and magnetic
properties, one proposal for a better description is to combine
in a sophisticated way magnetic and nonmagnetic DFT
calculations.25 This approach has been used to study the
electron-phonon interaction in iron-pnictide superconductors.
Improved structural optimization has been performed us-
ing a combination of DFT with Gutzwiller wave function
techniques,26 where the values of the interaction parameters
where fitted to give the correct As height above the Fe plane.

The motivation for this paper is to show that the inclusion
of correlation effects by LDA + DMFT for the description of
LaFeAsO improves substantially the agreement of both the As
z position as well as the ordered magnetic moment between
theory and experiment within one set of ab initio calculated
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interaction parameters, which are determined with the con-
strained random-phase approximation (cRPA).27,28 Previous
theoretical studies including strong electron-correlations have
been focused on the calculation of either magnetic19,21,22 or
structural properties.26

A consistent approach to total-energy calculations and
structural optimization within LDA + DMFT (the As z

position in LaFeAsO in the present work) requires self-
consistency over the charge density. LDA + DMFT is often
employed within the so-called “one-shot” scheme, where the
one-electron part of the Hamiltonian obtained from the band-
structure LDA part is not updated during subsequent DMFT
calculations. However, correlation effects will in general
induce a certain redistribution of the charge density, which in
turn leads to a different Kohn-Sham potential and one-particle
part of the Hamiltonian. The correlation-induced changes
in the charge density and one-electron potential will also
affect the electron-nuclei, Hartree, and exchange-correlation
contributions to the LDA + DMFT total energy. Moreover,
in some systems (e.g., cerium oxides29) the charge-density
self-consistency has been demonstrated to be important for
spectral properties as well.

The paper is organized as follows. In Sec. II we introduce
the full charge self-consistent LDA + DMFT method, followed
by Sec. III where we present results for the LaFeAsO system.
We draw our conclusions in Sec. IV, which is followed by
Appendix A with a more detailed discussion of the influence of
the full charge self-consistency on the single-particle spectra.

II. METHODS

For the present study, we use a further development of a
previously introduced LDA + DMFT implementation, Ref. 5,
which is based on the full potential (linearized) augmented
plane-wave method as implemented in the WIEN2K package.30

Our task of optimizing the arsenic ion position necessitates
rather accurate calculations of the total energy, which, as
explained in Sec. I, requires a LDA + DMFT scheme fully
self-consistent in the charge density. The implementation of
full charge self-consistency is currently a topic of high interest,
and several schemes have been implemented recently.29,31–33

Within the projective technique for formation of the
correlated orbitals, Ref. 5, we use the Kohn-Sham (KS) states
within a chosen energy window W to form Wannier-like
functions that are treated as correlated orbitals. In the present
work, we use an energy window from −6.8 to 2.8 eV, spanning
the range of Fe-d as well as As-p and O-p states, giving a total
number of 22 bands inside the window. On-site interactions
were then applied to the five Fe-d orbitals. The very same
projection scheme has already been used in Ref. 5. Solving the
corresponding single-site quantum impurity problem produces
the local self-energy within the correlated orbitals basis set,
which is then upfolded into the lattice self-energy �νν ′(k,iωn),
where ωn are Matsubara fermionic frequencies. The lattice
self-energy �̂(k,iωn) is generally nondiagonal in the subspace
of the KS eigenstates {ν} (ν ∈ W) leading to a nondiagonal
lattice Green’s function within W and to the corresponding
density matrix:

Nk
νν ′ =

∑
n

Gνν ′ (k,iωn)eiωn0+
(1)

being also nondiagonal. The charge-density distribution in the
real space is then calculated from the density matrix Nk

νν ′ as
follows:

ρDMFT(r) = ρow(r) +
∑
k,νν ′

〈r|�kν〉Nk
νν ′ 〈�kν ′ |r〉, (2)

where �kν are the KS eigenstates within the energy window
W , ρow(r) is the contribution from states outside W . By
substituting into Eq. (2) the expansion of the KS eigenstates
within the linear augmented plane-wave (LAPW) basis set one
derives formulas for the charge density within the muffin-tin
(MT) spheres and in the interstitial. These formulas are
generalizations of the standard LAPW expressions to the case
of a density-matrix nondiagonal in the space of KS states.
As in the standard case, the charge density within the MT
spheres is expressed through radial solutions (and their energy
derivatives) of the corresponding Schrödinger equation. In the
interstitial it is expressed through plane waves. The derivation
and relevant formulas for each case are given in Appendix B.

The LDA + DMFT total energy reads34

E = Ekin + Ec[ρDMFT] + EH [ρDMFT]

+Exc[ρDMFT] + 〈HU 〉 − EDC, (3)

where the corresponding contributions in the right-hand side
are the kinetic, crystal (electron-nuclei and nuclei-nuclei),
Hartree, exchange-correlation, Hubbard, and double-counting
correction terms, respectively. The second, third, and fourth
terms are evaluated in accordance to the standard DFT-LDA
expressions but with the updated LDA + DMFT charge density
(2). The kinetic-energy contribution reads

Ekin = Eband −
∫

drvKS(r)ρDMFT(r), (4)

where the Kohn-Sham potential vKS corresponds to the LDA +
DMFT charge density ρDMFT and the band energy contribution
Eband is

Eband = Eow
band +

∑
k

TrĤ k
KSN̂

k = Eow
band +

∑
kν

εkνN
k
νν, (5)

where Hk
KS is the one-particle (Kohn-Sham) part of the

Hamiltonian, εkν are its eigenstates with ν ∈ W , and Eow
band

is the sum over the occupied Kohn-Sham eigenstates lying
outside of the window W .

Finally, the Hubbard term 〈HU 〉 was evaluated in accor-
dance with the Migdal formula 〈HU 〉 = 1

2 Tr [�(iω)G(iω)],
where �(iω) and G(iω) are the impurity self-energy and Green
function, respectively.

For the solution of the quantum impurity problem we
apply the continuous-time quantum Monte Carlo method
in the strong-coupling formulation.35 Restricting ourselves
to density-density interactions only, as in Ref. 5, we are
able to perform calculations down to temperatures as low
as T = 77 K with reasonable numerical effort and without
further approximations. For the calculation of total energies,
high-quality numerical data are necessary. In order to get an
estimate of the statistical error on the total energy, we perform
several further iterations (order 10) after self-consistency is
reached, yielding an estimate for the standard deviation.
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Interaction parameters have been calculated previously
within cRPA,5 yielding an average Coulomb interaction of
U = 2.7 eV and Hund’s exchange of J = 0.8 eV. For details
of this calculation we refer the reader to Refs. 5, 27, and 28.

As mentioned above, a double-counting correction has
to be applied in order to subtract the contribution to the
correlation energy already included in the LDA. Several forms
have been proposed; we will apply the two most common
approximations, which are the around-mean-field (AMF) and
the full-localized-limit (FLL) forms,

�
σ,AMF
DC = U (N − n) − J (Nσ − n), (6)

�
σ,FLL
DC = U (N − 0.5) − J (Nσ − 0.5), (7)

where N is the total electronic charge of the impurity problem,
Nσ is its spin-dependent value, and n is the charge per spin
and orbital. For the corresponding double-counting energies
one can find36

EAMF
DC = 1

2
UN2 − U + 2lJ

2l + 1

1

2

∑
σ

N2
σ , (8)

EFLL
DC = 1

2
UN (N − 1) − J

2

∑
σ

Nσ (Nσ − 1), (9)

with l = 2 the orbital quantum number for 3d electrons.
Since LSDA calculations give a highly polarized state, we

perform our spin-polarized DMFT calculations starting from
nonmagnetic LDA calculations.

III. RESULTS

Let us start the discussion of our result with the determi-
nation of the As z position. We did paramagnetic LDA +
DMFT calculations at inverse temperature β = 40 eV−1,
roughly corresponding to room temperature, using the two
different types of double-counting corrections mentioned in
Sec. II. In Fig. 1 we compare the results with the structure
optimization within the LDA, calculated using the WIEN2K
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FIG. 1. (Color online) The relative total energy of LaFeAsO as a
function of the As height in the unit cell (z parameter). Solid black
line (triangles): LDA result. Red line (circles): LDA + DMFT using
FLL double counting. Blue line (diamonds): LDA + DMFT using
AMF double counting. Curves are shifted to give similar absolute
value of the total energy. Vertical dashed line marks the experimental
z position. Error bars are calculated from averaging several further
iterations at the self-consistent solution.

package. It is obvious from these curves that the inclusion
of correlation effects via the DMFT significantly improves
over the LDA results. The ion is pushed away from the
iron layers toward the experimentally realized z position.
Interestingly, the choice of the double-counting correction,
although having almost no effect on the single-particle
spectra (see below, Sec. IV), has some visible effect on
the total energy. This is most likely due to the very small
energy scales that one has to deal with in these structure
optimizations, where already tiny differences can visibly show
up. Nevertheless, using the AMF double counting, the As z

position as determined in LDA calculations (z ≈ 0.634) is
corrected to around z = 0.643, which has to be compared
with the experimental value of z = 0.651. We attribute the
larger distance of the As ion from the iron plane to the
fact that in DMFT calculations the ground state of the iron
atom is the S = 2 high spin state, having slightly larger ionic
radius then the nonmagnetic state realized in nonmagnetic
LDA calculations.

The small discrepancy that we still see between our
calculated z values and experimental data is most likely due to
the neglection of Coulomb interactions between the iron and
arsenic ions (p-d interactions). It is a very common feature
of LDA calculations that the gap between valence bands and
ligand bands is too small. Comparing calculated band structure
of LaFeAsO with PES experiments, the discrepancy is about
1 eV.37 In one-shot LDA + DMFT calculations this gap can
artificially be influenced by manually chosen double-counting
corrections, which is not the case for full self-consistent
calculations (see below, Sec. IV). The correction of this gap
would only be possible by the explicit inclusion of p-d
interactions, giving also a repulsion between iron and arsenic
ions. However, these interactions, without further approxima-
tions, go well beyond single-site DMFT calculations as used
here.

Having established the improved description of the crystal
structure, we move on to magnetic properties of LaFeAsO.
From now on, we always use the AMF double-counting
correction, meant to be more appropriate for metallic systems.
We use here again the experimental value for the As z position
in order to compare more directly to experiments. In Fig. 2 we
plot the local susceptibility as function of imaginary time for
different temperatures. Integrating over imaginary time gives
the static susceptibility, which is plotted in the lower panel of
Fig. 2 as a black line (open symbols). We see only a very weak
dependence on temperature, consistent with experiments.1,15,38

Also, the value of χ (T ) is substantially enhanced compared
to free electrons, in agreement with Ref. 22, a situation
often called “enhanced” Pauli-magnetism. Please note that
the upturn at the magnetic-phase transition in experiments
is missed here, since here we do calculations only in the
paramagnetic phase.

The instantaneous magnetic moment (equal-time corre-
lation function) is large, roughly 1.95μB. However, when
looking at the ordered moment at low temperatures, the
situation is different. To study the ordered moment at low
temperatures, we performed LDA + DMFT calculations
allowing for spin polarization at T = 116 K, which is well
below the magnetic transition temperature of TN ≈ 140 K. As
magnetic order pattern we assumed the stripe SDW pattern,
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FIG. 2. (Color online) Magnetic properties of LaFeAsO in
the paramagnetic (high-temperature) phase, calculated using AMF
double-counting corrections. Upper panel: Local spin susceptibility
for inverse temperatures (from top to bottom) β = 40, 60, 80, and
100 eV−1, corresponding to temperatures T = 290, 193, 145, and
116 K. Lower panel: Static susceptibility.

as suggested by LSDA calculations as well as experiments.
In order to keep calculations as feasible as possible, we
used ferromagnetic instead of antiferromagnetic stacking in
the c direction, but since the distance of the iron layers is
very large, this approximation is well justified. We used the
orthorhombic low-temperature unit cell as given in Ref. 6,
with ferromagnetic chains running along the short bonds
in the xy plane. Doing so, we find an ordered moment of
m = 0.58μB, significantly smaller than our LSDA value of
m = 1.74μB. The value of the magnetic ordered moment
is almost converged in temperature, since calculations for
T = 77 K give only slightly larger moments of m = 0.60μB.
In a recent comprehensive LDA + DMFT study a value of
m = 0.8μBwas reported for LaFeAsO,21 the difference in the
two results coming from the larger interaction values U = 5.0
and J = 0.7 used in Ref. 21 (an estimate on the variation of the
magnetic moment as a function of parameters has been given
in Ref. 19). For comparison, in the first LDA + DMFT study of
the ordered magnetic moment,19 done for BaFe2As2, a similar
reduction of the magnetic moment to m ≈ 0.9μB has been
found. The temporal fluctuations, which are very strong in the
LaFeAsO compound due to its quite itinerant nature, hinder
the instantaneous moments from complete ordering, leaving
only a fraction of the moment in the ordered state. Similar
arguments have been given for the reduction of the moment
in Ref. 19.

Our findings are in qualitative agreement with a recent
study on the quenching of the magnetic moment.22 However,
the former study has been done in the paramagnetic phase,
focusing on the influence of local quantum fluctuations on the
local moment. A direct comparison of the values of magnetic
moments is therefore not appropriate.
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FIG. 3. (Color online) Spin dependent local density of states in
the antiferromagnetic phase. Blue thin lines: LSDA. Red thicker lines:
LDA + DMFT using AMF double-counting correction.

The reduction of the ordered moment can also be seen in
the local density of states as shown in Fig. 3, where we plot the
momentum integrated spectral function for the Fe 3d electrons.
Real frequency data have been obtained by using the stochastic
maximum entropy method.39 In LSDA the splitting between
majority and minority spins is large, whereas we see only a
small gap in the LDA + DMFT spectra due to the smaller
moment.

IV. CONCLUSIONS

In this paper, we presented an extension of the previously
introduced LDA + DMFT approach5 based on the augmented
linearized plane-wave basis to full charge self-consistency, and
applied this approach to structural and magnetic properties of
the iron superconductor LaFeAsO. We calculated the total
energy as a function of the pnictogen height, and found that
the inclusion of correlation effects shift the minimum position
from z = 0.632 to roughly z = 0.644, a much better agreement
with the experimental value of z = 0.651. This increased
distance of the As ion from the Fe plane is due to the high
spin state of iron, which is formed due to local interactions.

Considering the magnetic properties, we calculated the
local spin susceptibility and found that it shows very weak
temperature dependence in the paramagnetic state, in accor-
dance with enhanced Pauli magnetism. In the low-T SDW
phase, we calculated the ordered moment in the stripelike
antiferromagnetic phase, and found a moment of m ≈ 0.6μB,
in much better agreement with experimental values than the
LSDA value, which can be (for the experimental crystal
structure) as high as 2μB.

In summary, the inclusion of correlation effects signifi-
cantly improve both structural and magnetic properties of
LaFeAsO within one set of parameters. This strongly points to
the importance of local quantum fluctuations and correlations
for the physics of iron-based superconductors.
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APPENDIX A: SINGLE-SHOT VERSUS FULL CHARGE
SELF-CONSISTENCY

In this appendix we show that self-consistent calculations
improve over one-shot calculations regarding the choice of the
double-counting correction. The most straightforward quantity
to look at is the impurity self-energy on the Matsubara axis,
which is not affected by any analytic continuation problem to
real frequencies. Fig. 4 shows the result for the iron dxy orbital.
It is obvious that non-self-consistent calculations give a sizable
discrepancy between FLL and AMF double counting, which is
largely canceled in self-consistent calculations. From this plot
we can also see that the FLL one-shot calculation is in better
agreement with the self-consistent calculations, whereas AMF
is far off.

Going to the real axis, we can look at the momentum
integrated spectral function, and compare it with its LDA
result, shown in Fig. 5. Again, similar as discussed above,
the agreement between different calculations is much better
in the self-consistent case (lower panel), and one-shot FLL
is again in better agreement. A striking difference between
non-self-consistent and self-consistent calculations is that
there is no spurious shift of the As and O p states due to the
approximate nature of the double-counting correction. Both
calculations show the features largely related to As and O at
basically the same energy as in the LDA calculation. As a
result, it is not easily possible in self-consistent calculations
to use a manually adjusted double-counting correction for
increasing or decreasing the p-d gap.
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FIG. 5. (Color online) Comparison of the k-summed spectral
function for different LDA + DMFT calculations. Black solid lines:
LDA result. Green dot-dashed: LDA + DMFT, FLL. Red dashed:
LDA + DMFT, AMF. Upper panel: non-self-consistent. Lower panel:
self-consistent calculations.

APPENDIX B: LDA + DMFT CHARGE DENSITY WITHIN
THE (L)APW BASIS SET

1. Charge density within MT spheres

In the LAPW framework the basis functions within
an MT sphere α are the radial solutions u

α,σ
l of the

Schrödinger equation labeled by the orbital quantum num-
ber l and spin σ and evaluated at a certain lineariza-
tion energy Eα

l1 and their corresponding energy deriva-
tives u̇

α,σ
l evaluated at the same energy. Additional ra-

dial solutions can be introduced to account for semicore
states; they are evaluated at a corresponding energy Eα

l2
of the semicore band. The angular and spin dependence
for the solutions within the MT spheres is given by
corresponding spherical harmonics Y l

m(r̂) and spinors χσ .
The functions u

α,σ
l (Eα

l1)Y l
mχσ , u̇

α,σ
l (Eα

1lY
l
mχσ for valence

and u
α,σ
l (Eα

2l)Y
l
mχσ for semicore states will contribute to a

given eigenvector �kν with the corresponding coefficients
A

ν,α
lm (k,σ ),Bν,α

lm (k,σ ) and C
ν,α
lm (k,σ ), respectively, as defined

in Ref. 5.
Let us designate the set of these basis func-

tions {uα,σ
l (Eα

1l)Y
l
mχσ ,u̇

α,σ
l (Eα

1l)Y
l
mχσ ,u

α,σ
l (Eα

2l)Y
l
mχσ } for a

given MT sphere α and quantum numbers l, m, σ

as x
α,σ
l Y l

mχσ and the set of corresponding coefficients
{Aν,α

lm (k,σ ),Bν,α
lm (k,σ ),Cν,α

lm (k,σ )} with which they con-
tribute to a given eigenvector �kν as S

ν,α
lm (k,σ ). Hence

within a given MT sphere the KS eigenvector �σ
kν(r)

is expanded as
∑

lmi S
ν,α
lmi (k,σ )xα,σ

li (r)Y l
m(r̂)χσ , where i

runs over all radial functions {x} and corresponding
coefficients {S}.

Using those designations, the charge-density contribution
from the states within the energy window W [the second term
in right-hand side of Eq. (2)] can be rewritten for a given MT
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sphere α and for a given spin as

ρW
σα(r) =

∑
k

∑
ll′

∑
ij

xασ
li (r)xασ

l′j (r)

×
∑
mm′

Y l
m(r̂)

(
Y l′

m′(r̂)
)∗

×
∑

νν ′∈W
S

ν,α
lmi (k,σ )

(
S

ν ′,α
l′m′j (k,σ )

)∗
Nk

νν ′ . (B1)

To represent the angular dependence of the charge density
it is expanded, within a given MT sphere, in real spherical
harmonics YRl

m (r̂),

ρW
σα(r) =

∑
lm

ρlm
σα(r)YRl

m (r̂). (B2)

For ρlm
σα(r) = ∫

dr̂ρW
σα(r)YRl

m (r̂) one obtains from
Eq. (B1)

ρl1m1
σα (r) =

∑
k

∑
ll′

∑
ij

xασ
li (r)xασ

l′j (r)
∑
mm′

Cl′m′
lml1m1

×
∑

νν ′∈W
S

ν,α
lmi (k,σ )

(
S

ν ′,α
l′m′j (k,σ )

)∗
Nk

νν ′ , (B3)

where Cl′m′
lml1m1

= ∫
d�Y l

m(�)[Y l′
m′(�)]∗YRl1

m1
(�) are the corre-

sponding Gaunt coefficients.

2. Charge density in the interstitial region

In the interstitial region the LAPW basis functions
are plane waves 1√

V
ei(k+G)r, where G is the reciprocal-

lattice vector and V is the unit-cell volume, contribut-
ing to a given KS eigenvector |�σ

kν〉 with the cor-
responding coefficients aν

G(k,σ ). Substituting this into

Eq. (2) one obtains the contribution of the states within
the energy window W to the charge density in the
interstitial:

ρW
I (r) = 1

V

∑
k

∑
νν ′∈W

[ ∑
G

aν
G(k,σ )eikGr

×
∑
G′

(
aν ′

G′(k,σ )
)∗

e−ikG′ r
]
Nk

νν ′

= 1

V

∑
k

∑
νν ′∈W

[ ∑
G

aν
G(k,σ )eiGr

×
∑
G′

(
aν ′

G′(k,σ )
)∗

e−iG′r
]
Nk

νν ′ , (B4)

where kG = k + G.
In the actual computation of Eq. (B4) one may trans-

form the interstitial wave function
∑

G aν
G(k,σ )eiGr to a

auxiliary mesh in the real space via the fast Fourier
transform:

bν
R(k,σ ) =

∑
G

aν
G(k,σ )eiGR, (B5)

therefore getting rid of the double sum over G and G′ in
Eq. (B4). The charge density on the axillary mesh then
reads

ρI (R) = 1

V

∑
k

∑
νν ′∈W

bν
R(k,σ )

[
bν ′

R (k,σ )
]∗

Nk
νν ′ , (B6)

which is then again transformed back to the reciprocal space
via inverse fast Fourier transform:

ρI (G) =
∑
R

ρI
Re−iGR. (B7)
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