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Magnetic and superconducting instabilities in a hybrid model of itinerant/localized electrons
for iron pnictides
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We study a unified mechanism for spin-density-wave (SDW) and superconductivity in a minimal model in
which itinerant electrons and local moments coexist as previously proposed for the iron pnictides [Kou, Li,
Weng, EPL 88, 17010 (2009)]. The phase diagram obtained at the mean-field level is in qualitative agreement
with the experiment, which shows how the magnetic and superconducting (SC) instabilities are driven by
the critical coupling between the itinerant/localized electrons. The spin and charge response functions at the
random-phase-approximation level further characterize the dynamical evolution of the system. In particular,
the dynamic spin susceptibility displays a Goldstone mode in the SDW phase, which evolves into a gapped
resonance-like mode in the SC phase. The latter persists all the way into the normal state above Tc where a strong
scattering between the itinerant electrons and local moments is restored, as an essential feature of the model.
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I. INTRODUCTION

High-temperature superconductivity found1,2 in the iron
pnictides has attracted an intensive attention in recent years.3

The superconducting (SC) pairing of the electrons in these
materials is less likely to be mediated by phonons, as suggested
by the local-density-approximation (LDA) calculations4 as
well as a variety of experiments.3 The proximity of the SC
state to the spin-density-wave (SDW) phase5 in the phase
diagram implies that the interplay between the magnetism and
superconductivity might play an important role in understand-
ing the pairing mechanism and other physical properties of
the iron-based superconductors. Combined with the high SC
transition temperature, one finds an intriguing resemblance
between this family of materials and the cuprates in which
superconductivity is generally believed to be of electronic
origin.

Nevertheless, the electrons in the iron pnictides are
more itinerant than those in the cuprates, especially in
the magnetic phase, where the electrons in the latter are
localized due to a Mott transition to form local moments,
which become antiferromagnetically (AF) ordered at low
temperature. By contrast, in the former, many different
experiments have clearly demonstrated the itinerancy of the
electrons in the SDW phase, including the multiple Fermi
pockets as revealed by the angle-resolved photoemission spec-
troscopy (ARPES) measurements,6–10 which are consistent
with the LDA calculations,11–15 the quantum-oscillation,16 the
transport1,2,17 as well as the optical measurement.18 Based on
these experiments, one may reasonably view the magnetic
order in this system as an SDW order formed by the itinerant
electrons via Fermi-surface nesting.13,15,19 From this point
of view, it is natural to conjecture that the SC pairing
is mediated by the collective magnetic fluctuations of the
itinerant electrons. A lot of theoretical efforts have been done
along this line, including the weak-coupling random-phase ap-
proximation (RPA) theory,11,12,20,21 the fluctuation-exchange
approximation (FLEX),22,23 renormalization group (RG),24

functional renormalization group (FRG),25–27 and strong-

coupling variational Monte-Carlo (VMC)28 approaches. The
sign change in the gap function between the electron and
hole pockets is predicted11,12,25 as due to such unconventional
magnetic origin of superconductivity.

However, the magnetism in the iron pnictides has been also
looked upon from the strong-coupling side, where the electrons
are localized via a multiband Mott transition forming local
moments.29–33 Indeed, the magnetic-ordering phase observed
in experiment can be also described by utilizing a Heisenberg-
type J1-J2 model.34,35 A study of the SC state based on a doped
Mott insulator described by the t-J1-J2 model also yields36 a
consistent pairing symmetry as compared to the experiment.
This point of view is further supported by the first-principles
LDA calculations, which generally show the tendency for a
large magnetic moment formation at low doping.37–41 A strong
experimental support for the local moment picture comes from
the observation of a linear temperature-dependent magnetic
susceptibility in a broad temperature regime above the Néel
temperature.42–44 A recent neutron-scattering measurement45

in FeTe0.35Se0.65 further observed a substantial magnetic
moment persisting up to 300 K above Tc in the SC regime.

To reconcile the two aspects of the itinerant and localized
electrons exhibited in the iron-based superconductors, a
minimal model was proposed in Ref. 46, in which the itinerant
electrons and the local moments are conjectured to coexist,
based on the multiband nature of the system. Here, the two
separated degrees of freedom may be attributed47 to different
3d orbitals of the iron atoms, with the local moments formed
via an orbital-selective Mott transition.48 Recent dynamic
mean-field theory (DMFT) calculations49–51 lend numerical
support for the possible orbital-selective Mott transition in
the iron-based superconductors. Similar local-itinerant hybrid
models incorporating the detailed orbital characters52,53 have
been used to account for the magnetic excitations observed in
the iron pnictides.

The most essential feature in the model of coexis-
tent itinerant/localized electrons lies in the momentum
match between the two degrees of freedom.46 Namely, the
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characteristic wave vector of the magnetic correlation of the
local moments, Qs = (π,0) or (0,π ), is commensurate with
the typical momentum transfer between the hole and electron
pockets of the itinerant electrons. Consequently, the scattering
between the two degrees of freedom, which are coupled by the
Hund’s rule interaction, can get much enhanced in the normal
state, rendering the system intrinsically unstable toward either
the magnetic or SC ordering at low temperatures. At low
doping, the magnetically ordered state can be obtained46

as composed of an SDW order of the itinerant electrons
simultaneously locking with the collinear magnetic order of
the local moments at the same wave vector Qs . Here, the
nesting effect in the itinerant degrees of freedom alone or
a pure J1-J2 superexchange interaction in the local moment
part can be much weaker themselves in driving the magnetic
transition. For example, a perfect nesting of the Fermi surfaces
can be easily removed by adjusting the chemical potential46

or by introducing a more realistic band structure.52 The
pure collinear AF ordering for the local moments can be
also switched off by setting46 J1 = 0 and (or) making the
subsystem in the disordered regime. But the hybrid system
can nevertheless experience an SDW phase transition due to
the magnetic instability driven by the above-mentioned critical
coupling between the two subsystems. The residual scattering
between the itinerant and localized electrons will become
much reduced in the SDW state, which exhibits46,52 a series of
magnetic and charge properties qualitatively consistent with
the iron-based superconductors at low doping.

However, the SDW instability studied in Ref. 46 is only
one of the possible infrared fixed points of this minimal model
at low doping. In this paper, we shall show that another
instability in which the itinerant electrons become Cooper
paired can happen at higher doping to compete with the SDW
state. By opening up SC gaps at the Fermi surfaces of the
hole and electron pockets, the system can also be stabilized
in reducing the residual scattering between the itinerant and
localized electrons. We obtain a global phase diagram for the
SDW and SC states at the mean-field level on equal footing,
which is in qualitative consistency with the experimental ones
for the iron-based superconductors. We further go beyond
the mean-field approximation to study the spin dynamics at
the RPA level. In the SDW state, the magnetic excitation is
predicted to split into two branches, composed of a low-lying
Goldstone mode and a gapped high-energy mode dominantly
contributed by the local moments. The latter generally gets
severely broadened due to the strong scattering between the
itinerant electrons and local moments. In the SC state, such
a Goldstone mode is then replaced by a low-lying gapped
resonance-like mode, which can persist all the way to the
high-temperature normal state, consistent with the neutron-
scattering observations.57 The band renormalization as well as
the charge scattering in the transport channel are also studied
within the same framework. The results in this model study
will illustrate a phenomenology consistent with the iron-based
superconductors in which neither the Fermi-surface nesting
for the itinerant electrons nor the superexchange interaction
for the local moments play the direct role alone. Rather these
effects get strongly enhanced via the Hund’s rule coupling
between the two subsystems with the momentum match. The

latter effect makes the system generically unstable against the
SDW/SC orderings at different doping and therefore provides
a unified mechanism to understand both orders appearing in
the iron pnictides.

The remaining part of the paper is organized as follows.
In Sec. II, we introduce the basic model, which includes
a two-pocket description of the itinerant electrons and a
nonlinear σ -model description of the local moments, which
are coupled together by the Hund’s rule coupling. In Sec. III,
we present a mean-field calculation, which gives rise to a
global phase diagram with both the SDW and SC orders
identified at different dopings. Section IV is on the dynamic
fluctuation beyond the mean-field approximation, including
the RPA calculations of the dynamic spin susceptibility, the
uniform magnetic susceptibility in different phases, and the
band renormalization effect. Finally, the conclusions and
discussion are presented in Sec. V.

II. MODEL DESCRIPTION

Our starting point is an itinerant-electron and local-moment
hybrid model, previously proposed46 to describe the iron-based
superconductors. We shall explore the emergent magnetism
and superconductivity in this highly simplified model, which
is to be specified below.

A. Model action

The effective action includes an itinerant-electron sector Sit,
a local-moment sector Sloc, and a Hund’s rule coupling term
SH as follows

Seff = Sit + Sloc + SH. (1)

1. Itinerant electron

We consider a simple two-pocket model for the itinerant
electrons, whose action reads

Sit =
∑

k

c
†
k(−iω + ξk)ck, (2)

where k = (iω,k) is the (fermionic) momentum-frequency
vector and c† = (c†�↑,c

†
�↓,c

†
M↑,c

†
M↓) contains the creation op-

erators of the itinerant electron for both spins (↑ and ↓) and in
the hole and electron pockets denoted by � and M, respectively
(see below). The momentum-frequency summation stands for∑

k = β−1 ∑
iω

∑
k, where β−1 = kBT , and this convention

will be adopted throughout this work.
Matrix ξk is a 4 × 4 and determines the band dispersion. It

may be written as

ξk = −μρ0 − εkρ3, (3)

where ρi ≡ σi ⊗ σ0 is the 4 × 4 matrix defined by the
Kronecker product of the Pauli matrices σi (where σ0 is
the identity 2 × 2 matrix), μ is the chemical potential, and
εk = k2/(2m) − ε0 models a parabolic band dispersion with
the effective mass m and the energy shift ε0.

According to ARPES,6–9 magneto-oscillation experi-
ments,16 and LDA calculations,11–15 both Fermi pockets are
small (with kF ∼ π/10) and shallow (EF ∼ 0.1 eV). So by
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FIG. 1. (Color online) (a) The Fermi surface consists of a small
hole pocket around the � point and a small electron pocket around
M . Both pockets locate around the origin in the SDW Brillouin zone.
(b) Band structure. The nesting vector Qs = (π,0) connects the two
bands.

setting the parameters at m = 0.1 eV−1 and ε0 = 0.1 eV, we
can produce a reasonable band structure as shown in Fig. 1.

There are several aspects that we wish to comment on
this simple two-pocket model. Firstly, at μ = 0, the hole
and the electron Fermi pockets perfectly match under a
momentum translation Qs = (π,0). In real materials, the
nesting is not perfect even in the undoped case,6–9,11–15 which
may represented by a small but finite |μ| here. Secondly, the
detailed orbital characters are neglected with the pockets taken
to be rotationally symmetric. Such a simple model can not
account for some anisotropic phenomenon such as the nodal
SDW gap as discussed in Ref. 54. Thirdly, for simplicity
in the present two-pocket band structure, we focus on the
electron pocket around (π,0) point and the hole pocket around
(0,0), which are connected by Qs = (π,0), because in the
SDW phase only one of the electron pockets, together with
the � pocket, will mainly contribute to the SDW ordering.
For the sake of simplicity, the same simplified model is used
in studying the SC phase, where, in general, both electron
pockets should participate in pairing, which would enhance
superconductivity but should not qualitatively change the main
results obtained in this work.

2. Local moment

For local moments, we simply consider an AF superex-
change coupling J2 bridged by the As ions between the
diagonal Fe sites. Although in general, the nearest-neighboring
coupling J1 may be present as well, which helps to lock the
spins into the collinear AF order, however, by coupling to the
hole and electron pockets, it is found that the itinerant electrons
may play the same role as J1 to drive the system to a collinear
AF order. In this sense, the bare J1 term is not very essential.

The local moments at the Fe sites may be divided into two
sets of sublattices, each is described by an AF Heisenberg
model. The effective Hamiltonian may be written as

Hloc = J2

∑
X=A,B

∑
〈r r ′〉∈X

Mr · Mr ′ , (4)

where X = A,B labels the sites on different sublattices as
shown in Fig. 2, and 〈r r ′〉 denotes the nearest-neighboring
sites in the same sublattice (or equivalently the next-nearest-
neighboring sites in the original lattice).

The local moment Mr will intrinsically fluctuate around the
characteristic momentum Qs = (π,0) or (0,π ). So we may

A B A B A

B A B A B

A B A B A

B A B A B

A B A B A

FIG. 2. Each circle in the figure represents a Fe atom. The Fe
lattice is divided in to A and B sublattices. In each set of the lattice,
the local moments interact by the nearest AF coupling (next nearest
in the original lattice).

take Mr = Mnre
i Qs ·r with nr a unit three-component real

vector field such that nr fluctuates smoothly in the space, which
will be convenient for further field theoretical treatments.

The low-energy AF fluctuation of the local moment in each
sublattice may be described by a nonlinear σ model. The
corresponding action reads Sloc = ∑

X=A,B SX, with

SX = 1

4g

∑
q

nX,−q(ν2 + c2q2 + η2)nX,q − η2

4g
, (5)

where q = (iν,q) denotes the (bosonic) momentum-frequency
vector and nX,q = ∫ β

0 dτ
∑

r∈X ei(q·r−ντ )nr (τ ) is Fourier trans-
formed from the field nr in the X sublattice. Entity η2 is the
Lagrangian multiplier that enforces the unit condition n2

r = 1.
According to the above definition, a long-wavelength limit at
q → 0 actually corresponds to the real momentum → Qs .

The coupling constant g and spin-wave velocity c are
related to the Heisenberg J2-model by g = 8J2 and c =
4J2M (with the Fe-Fe distance taken as the unit).46 From
the neutron-scattering experiments,34 the typical spin-wave
velocity is around 0.3 eV, so that we set c = 0.3 eV, which
in turn determines J2 = 0.093 eV and g = 0.75 eV, assuming
the magnetic moment M = 0.8 per Fe atom.

By introducing a parallel field n = (nA + nB)/2 and an
antiparallel field ñ = (nA − nB)/2, the action can be further
written as

Sloc = 1

2g

∑
q

n−q(ν2 + c2q2 + η2)nq

+ 1

2g

∑
q

ñ−q(ν2 + c2q2 + η2)ñq − η2

2g
. (6)

3. Coupling term

The itinerant electron spin Sr = Sc
†
rσcr at site r can be

coupled to the local moment Mr at the same site by a Hund’s
rule interaction

Hcp = −JH

∑
r

Mr · Sr , (7)
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where JH denotes the strength of the effective Hund’s rule
coupling. Fourier transformation to the momentum-frequency
space yields the following action

Scp = −J0

∑
k,q

nq · c
†
k+qsck, (8)

where J0 ≡ 2JH MS, M is the magnitude of the local moment
and S = 1/2 for the itinerant electron. In Eq. (8), s ≡ (s1,s2,s3)
with each si (i = 1,2,3) as a 4 × 4 matrix defined by si ≡
σ1 ⊗ σi .

The itinerant electrons will couple to the parallel field n,
which mainly causes the scattering between the � pocket and
the M pocket at (π,0), and to the antiparallel field ñ, which
mainly causes the scattering between the � and (0,π ) pockets.

B. Mass-gap equation

To simplify the calculation, we replace the Lagrangian
multiplier η2 by its saddle point value. Evaluating the saddle
point equation δSloc/δ(η2) = 0 at the one-loop level yields

− 1

2g

(
1 − n2

0

) + 3
∑

q

1

ν2
n + c2q2 + η2

= 0, (9)

where n0 ≡ 〈nq=0〉 denotes the mean-field value of the local
moment.

Carrying out the momentum and frequency summations, η

can be solved from the above equation as follows

η = η0 + 2

β
ln

1

2
(1 +

√
1 + 4e−βη0 ), (10)

where η0 is the solution of η at zero temperature, which reads

η0 = 2πc2

3gc

1 − γ 2

2γ
, (11)

where γ = (gc/g)(1 − n2
0). The parameter gc = 2πc/(3�) is

introduced to replace the momentum cutoff �, which is needed
to control the convergence of the momentum summation.

The physical meaning of η is the mass gap of the bare
spin-wave excitation in the local-moment sector. If g > gc,
the mass gap will remain finite at zero temperature, indicating
a disordered state with only short-range magnetic ordering for
the pure local-moment degrees of freedom. We shall see that
due to the strong coupling between the itinerant electrons and
local moments, a true SDW order can be still induced, even if
the bare local moments are in a disordered regime and do not
order at T = 0 by themselves.

C. Propagators

The itinerant electron single-particle propagator is denoted
by G(k) ≡ −〈ckc

†
k〉, and represented by the arrowed line

in the Feynman diagram. Matrix G(k) is 4 × 4 since c
†
k has 4

components (2 pockets × 2 spins). The propagator for the local
moment is denoted by D(q) ≡ −〈n−qnq〉, and represented by
the dashed line in the Feynman diagram. Matrix D(q) is
3 × 3 because nq has 3 components.

The double lines in the Feynman diagram represent the
dressed propagators, while the single lines, such as and

, denote the bare propagators G0 and D0, respectively.

The latter can be read out directly from the actions Sit and Sloc

as

G0(k) = (iω − ξk)−1 = (iω + μ)ρ0 − εkρ3

(iω + μ)2 − ε2
k

(12)

and

D0,ii ′ (q) = −gδii ′

ν2 + c2q2 + η2
. (13)

III. MEAN-FIELD PHASE DIAGRAM

In the effective action Eq. (1), even though the two
subsystems, i.e., the local moments and itinerant electrons,
may not be in a magnetic or SC ground state separately,
the whole system coupled together will experience intrinsic
magnetic and SC instabilities, which are studied on equal
footing below at the mean-field level.

A. SDW phase

The SDW mean-field equation can be deduced from the
following Dyson equation for the self-consistent Hartree
approximation

= + , (14)

or

G(k) = G0(k) + G0(k)�dG(k), (15)

where the Hartree self-energy is given by

�d = J 2
0 D0,ii ′ (q = 0)si

∑
k′

Tr[G(k′)si ′]. (16)

On the other hand, the Hartree energy is related to the
local-moment mean field by

�d = −J0n0i si , (17)

where n0i is the ith component of 〈nq=0〉. This can be seen
by separating out the q = 0 term −J0

∑
k n0 · c

†
ksck from the

summation in the coupling term in Eq. (8). This term indicates
that the local-moment mean field n0 affects the itinerant
electron Hamiltonian by adding the self-energy −J0n0 · s,
which should just be identified as the Hartree energy. The
consistency between Eqs. (16) and (17) leads to the SDW
mean-field equation. To show this, we first take Eq. (17) and
evaluate the propagator from Eq. (15):

G(k) = (iω + μ)ρ0 − εkρ3 − J0n0i si

(iω + μ)2 − ε2
k − J 2

0 n2
0

. (18)

Substituting into Eq. (16) yields

�d = 4gJ 3
0 n0i si

η2

∑
k

1

(iω + μ)2 − ε2
k − J 2

0 n2
0

. (19)

After Matsubara frequency summation, we have

�d = −4gJ 3
0 n0i si

η2

∑
k

sinh βEk

2Ek(cosh βμ + cosh βEk)
, (20)
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where E2
k = ε2

k + J 2
0 n2

0. Comparing with Eq. (17), we arrive
at the SDW mean-field equation,

4gJ 2
0

η2

∑
k

sinh βEk

2Ek(cosh βμ + cosh βEk)
= 1, (21)

from which the SDW order parameter n0 can be determined
for the given chemical potential and temperature.

B. SC phase

To deal with the SC order, we introduce the abnormal propa-
gator for the itinerant electrons: F (k) ≡ −〈ckc−k〉, represented
by a line with two arrows heading in opposite directions .

The SC mean-field equations are equivalent to the following
Dyson equations of self-consistent Fock approximation,55

= + ,

= .
(22)

The above diagrams correspond to

G(k) = G0(k) − G0(k)�p(k)F (−k),
(23)−F (k) = G0(k)�p(k)G(−k),

where the pairing energy is

�p(k) = −J 2
0

∑
k′

D0,ii ′ (k − k′)siF (k′)
(−s

ᵀ
i ′
)
. (24)

Mediated by the local-moment fluctuation, the effective
interaction between the itinerant electrons is described by the
following action:

Sint =
∑
k,k′,p

c
†
k+pc

†
−k�(k − k′)c−k′ck′+p, (25)

where the vertex function reads

�(q) = − = J 2
0

2
D0,ii ′ (q)si ⊗ si ′ . (26)

The eigenvalue of the kernel function �(k − k′) stands for the
effective pairing energy of the Cooper pair, whose form factor
is given by the corresponding eigenvector. The most negative
eigenvalue (hence the strongest pairing attraction) is found
in the spin-singlet intra-pocket pairing channel with s±-wave
symmetry. In fact, simply by diagonalizing the matrix si ⊗ si ,
it is easy to show that the greatest eigenvalues belong to the
spin-singlet parings with opposite sign between the electron
and the hole pocket. Among the spin-singlet pairing channels,
the interpocket pairing would lead to the pocket singlet, which
requires the gap function to be of p-wave symmetry and is not
able to fully gap the Fermi surface, and thus the intrapocket
s±-wave pairing remains most favorable.

By introducing a 4 × 4 matrix d† ≡ σ3 ⊗ (iσ2), the s±-
wave paring operator can be simply denoted as

c
†
kd

†c†−k = (
c
†
k�↑c

†
−k�↓ − c

†
k�↓c

†
−k�↑

)
− (

c
†
kM↑c

†
−kM↓ − c

†
kM↓c

†
−kM↑

)
. (27)

Therefore, one may assume the pairing energy to take the same
form

�p(k) = �(k)d, (28)

with symmetric gap function �(k), i.e., �(−k) = �(k).
Although the other pairing modes may also appear in �p,
they are all omitted to simplify the derivation. In general, an
s++-wave pairing can be also induced from s±-wave pairing
if the two Fermi pockets are no longer symmetric in size (i.e.,
with a finite chemical potential μ in our model). However,
according to our calculation, the s±-wave will be the dominant
component persisting up to larger μ.

Then from Eq. (23), one can find the solution of G(k) and
F (k),

G(k) = Z(k)ρ0 − E(k)ρ3

Z(k)2 − E(k)2
, (29)

where

Z(k) = (iω − μ)2 − ε2
k − �(k)2

(iω − μ)2 − ε2
k

(iω − μ) + 2μ,

(30)

E(k) = (iω − μ)2 − ε2
k − �(k)2

(iω − μ)2 − ε2
k

εk,

and

F (k) = f (k)�(k)d, (31)

where

f (k) = 1

2

∑
ς=±1

1

(iω)2 − (εk + ςμ)2 − �(k)2
. (32)

Here, we have projected out the components other than s±-
wave in the solution of F (k) as noted above. Substituting the
above solutions into Eq. (24) yields

�p(k) = 3J 2
0

∑
k′

D0,11(k − k′)f (k′)�(k′)d. (33)

Comparing with Eq. (28), we arrive at the SC mean-field
equation

�(k) = 3J 2
0

∑
k′

D0,11(k − k′)f (k′)�(k′). (34)

This equation can be solved by a numerical approach.
To proceed with analytic analysis, we omit the k depen-

dence of �(k) and replace it by a constant �. We also
approximate D0(k − k′) by its average value 〈D0〉 at zero
frequency around the Fermi surface,

〈D0〉 = −g

〈
1

c2(k − k′)2 + η2

〉
k,k′∈FS

= − g

η2
eff

. (35)

One finds η2
eff = η(η2 + 4c2k2

F )1/2 with k2
F = 2mε0. Then the

SC mean-field equation becomes

1 = −3gJ 2
0

η2
eff

∑
k

f (k), (36)

which, after the Matsubara frequency summation, yields

1 = 3gJ 2
0

2η2
eff

∑
ς=±1

∑
k

1

2Eς,k
tanh

βEς,k

2
, (37)

where E2
ς,k = (εk + ςμ)2 + �2, which determines the SC

gap �.
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FIG. 3. (Color online) The phase diagram calculated according
to the mean-field equations. The solid lines denote the second-order
phase transition boundaries and the dashed lines denote the first-order
phase transition boundaries. The red point is a critical point. The
SDW and SC phase boundaries are calculated independently, and
the overlap region does not necessarily imply the coexistence of two
orders.

C. Phase diagram

By solving self-consistently the two mean-field equations,
Eqs. (21) and (37), the phase diagram of the SDW and
SC phases can be determined as shown in Fig. 3. In the
following, we specify the choice of the parameters in the
model.

It is noted that there are three particular points in the phase
diagram that can be calculated analytically based on the mean-
field equations. They are the SDW critical temperature T 0

SDW at
μ = 0, the SC critical temperature T 0

c at μ = 0 (if not consider
SDW), and the chemical potential μSDW1 at which the SDW
order disappears at zero temperature. The formulas read

T 0
SDW = 1.13T0e

−1/(N0
F VSDW), (38)

T 0
c = 1.13T0e

−1/(N0
F VSC), (39)

and

μSDW1 = T0e
−1/(N0

F VSDW), (40)

where N0
F = m/(2π ) is the density of states at the Fermi

energy μ = 0, T0 ≡ ε0(�2/(2mε0) − 1)1/2, VSDW = 4gJ 2
0 /η2,

and VSC = 3gJ 2
0 /η2

eff. To be overall comparable to the exper-
iments, we take T 0

SDW � 150 K and T 0
c � 40 K and, making

use of Eqs. (38) and (39) to fix the model parameters,
gc = 0.53 eV and J0 = 0.39 eV. Consequently, with all the
basic parameters in our model given, the phase diagram is
determined numerically as a function of the chemical potential
in Fig. 3.

Figure 3 shows a critical point at the SDW phase boundary,
located at μ∗ = 0.014 eV and T ∗ = 76 K, where the second-
order phase-transition boundary splits into two first-order
phase-transition boundary lines. Hence, at T = 0, there exist
two critical chemical potentials for the SDW transition:
μSDW1 = 0.011 eV and μSDW2 = 0.022 eV, respectively, as
shown in Fig. 4. A similar first-order transition phenomenon
has been also reported56 in another theoretical approach based
on a pure itinerant model.

Figure 3 shows that the SC critical temperature is not
sensitive to the chemical potential, in contrast to the SDW
state, because the pairing mechanism of the present model is

0 5 10 15 20 25 30
0.00
0.02
0.04
0.06
0.08
0.10

μ meV

n 0

μSDW1μSDW2

T 40K

FIG. 4. The SDW order as a function of chemical potential at
T = 40 K, showing the hysteresis loop of the first ordered transition
with two distinct transition chemical potentials.

not sensitive to the Fermi-surface nesting condition. On the
other hand, the s±-wave superconductivity does require finite
Fermi-surface densities of states in both hole and electron
pockets to support the intrapocket pairing. That explains why
Tc eventually vanishes at μ = 0.1 eV when the Fermi level
touches one of the band bottoms of the hole/electron pockets.
It is noted that beyond μ = 0.1 eV, superconductivity of other
types of pairing symmetry is still possible in the present model,
which will involve the intra-electron or hole-pocket pairing
and require some incommensurate AF fluctuations of the local
moment away from Qs .

Therefore, the high-temperature normal state can be re-
garded as an unstable fixed-point state in the present model
in which the itinerant electrons scatter strongly with the
local moments due to the momentum match at Qs and the
model defines the relevant degrees of freedom that render
the system flow into either an SDW or SC ordered phase,
depending on doping, as the temperature lowers. The mean-
field Eqs. (21) and (37) describe, respectively, how the
SDW and SC orders emerge from such a normal state, with
the phase diagram in qualitative agreement with the iron
superconductors.3

Finally, we point out that although Fig. 3 suggests that the
SDW and SC phases may coexist at low doping, in mapping out
the phase diagram in the figure, only the maximal temperature
of TSDW and Tc are shown at a given μ with the assumption
that the other order in the mean-field equations vanishes. In
other words, in order to determine the coexistent SC state
inside the SDW regime, one needs to further incorporate the
detailed competition of the two orders into the self-consistent
mean-field equations, which can be straightforwardly done by
generalizing the above formulation. But this is not considered
here not only for the sake of simplicity, but also because we
wish to emphasize that the mutual interplay between the SDW
and SC orders is not essential in driving their own formations
in our model.

IV. DYNAMIC FLUCTUATIONS

The interaction between the itinerant and localized elec-
trons has played a crucial role in resulting in the SDW and
SC states, as described by the global diagram in Fig. 3. In the
following, we further investigate the evolution of dynamic
fluctuations beyond the mean-field approximation in these
phases.

054527-6



MAGNETIC AND SUPERCONDUCTING INSTABILITIES IN . . . PHYSICAL REVIEW B 84, 054527 (2011)

A. Dynamic spin susceptibility

To study the low-energy spin dynamics around the SDW
wave vector Qs , we first consider the RPA correction to the
propagator D(q) of the local moment by the Dyson equation

= + , (41)

or

D(q) = D0(q) + D0(q)�(q)D(q), (42)

which is solved formally as

D(q) = D0(q)

1 − D0(q)�(q)
, (43)

where the RPA bubble � is given by

Πii (q) = − = J2
0

k

Tr [siG(k)si G(k + q)] . (44)

Here, as the propagator of the itinerant electron, the particular
form of G(k) depends on the mean-field states; in the normal
state, it takes the form of Eq. (12) and in the SDW state, it is
given by Eq. (18). While in the SC state, the contribution from
the abnormal propagator should be included as well

Πii (q) = − −

=J2
0

k

Tr [siG(k)si G(k + q)]

+J2
0

k

Tr siF (k)(−si )F †(k + q) ,

(45)

where Eqs. (29) and (31) are used.
By noting that −J−2

0 �(q) represents the spin susceptibility
of the itinerant electrons at the mean-field level, one can
similarly write down the spin susceptibility of the itinerant
electrons at the RPA level, and finally obtain the following
total spin susceptibility

χ (q) = −D0(q) + J−2
0 �(q)

1 − D0(q)�(q)
. (46)

The inelastic neutron-scattering spectroscopy (INS) can
measure the dynamic spin susceptibility as the imaginary part
of χ (q), −Imχ (ν + i0+,q), obtained after the Wick rotation
iν → ν + i0+, which is presented in Fig. 5 in different phases
(see the figure caption for the details).

In the normal state, as Fig. 5(a) shows, the spectrum of
the local-moment fluctuation becomes very fuzzy when it
immerses into the continuum of the itinerant electrons as
indicated by the dome-shaped shadow area around q � 0.2.
For comparison, the bare dispersion of the local-moment spin
wave is marked out by the dashed curve (which is gapped
as in a disordered regime of the nonlinear σ model as noted
before). The smearing of the spectrum is clearly the result of
the strong scattering between the itinerant and local moment
in the region around Qs . At q � 0, a hot spot at the frequency
slightly below 2μ can be seen in Fig. 5(a). This is because the
creation of a spin flip at q = 0 involves a pair of electron and
hole excitations at the � and M pockets, respectively, which
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FIG. 5. (Color online) The calculated spectral function of dy-
namic spin susceptibility. Darker shade indicates higher intensity:
(a) in the normal phase (μ = 0.03 eV and T = 50 K), (b) in the SC
phase (μ = 0.03 eV and T = 30 K), and (c) and (d) are both in the
SDW phase (μ = 0.00 eV and T = 80 K) snowing the spectrum of
transverse and longitudinal fluctuations, respectively. The red dashed
curve marks out the bare spin-wave dispersion.

costs at least energy 2μ to go across the Fermi surface, and
on the other hand, the gap of the local-moment fluctuation is
higher than this energy such that the scattering diminishes. As
a matter of fact, such a resonance-like mode becomes even
sharper in the SC phase [see Fig. 5(b)] simply due to the
further reduction of the scattering with the opening of the SC
gap. It may account for the resonance mode found in the INS
experiment,57 which indeed persists all the way to the normal
state.

In the SDW state at low doping, inside the SDW gap of the
itinerant electrons, the fuzzy continuum is replaced by some
emergent collective modes. The transverse spin fluctuations
(in the directions perpendicular to the ordering direction)
become the gapless Goldstone modes [see Fig. 5(c)], which
is consistent with the previous RPA calculation using a more
complicated five-band model for the itinerant electrons.52 On
the other hand, the longitudinal fluctuation (along the ordering
direction) remains gapped as shown in Fig. 5(d).

The existence of the Goldstone mode can be proven
rigorously at the RPA level. Since the RPA bubble in the SDW
phase has a rather simple expression at zero frequency and
momentum,

�ii ′(0) = −4J 2
0

∑
k

(
δii ′ − J 2

0 n0in0i ′

E2
k

)

× sinh βEk

2Ek(cosh βμ + cosh βEk)
. (47)

Let us suppose that the SDW ordering is along the third
direction in the spin space, i.e., n0,1 = n0,2 = 0 and n0,3 �= 0.
Then �11(0) = �22(0) � �33(0) < 0, and by comparing with
Eq. (20) and referring to Eq. (13), it is recognized that

�d = gJ0n0i si

η2
�11(0) = −J0n0i siD0,11(0)�11(0). (48)
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FIG. 6. (Color online) (a) The uniform susceptibility vs tempera-
ture at μ = 0. The dashed lines indicate the contributions from either
the local moment (blue) or the itinerant electron (red). The solid line
is the total uniform susceptibility. (b) The total uniform susceptibility
curves at various chemical potentials μ, all show a rapid drop in the
ordered phase at low temperature.

As the self-energy �d is determined self-consistently from the
SDW mean-field equation �d = −J0n0i si , at the mean-field
saddle point, we have D0,11(0)�11(0) = 1, which leads to
a pole of D11 at q = 0 according to D = (1 − D0�)−1D0,
proving the existence of a zero-energy collective mode, i.e.,
the Goldstone mode. The same argument applies for the D22

component as well. Also taken into account the fact that
D12 = 0, it can be concluded that there are two Goldstone
modes, both are in the transverse directions. As for the D33

component, since �33 � �11 such that D0,33(0)�33(0) � 1
[note that D0(0) is negative], no pole can appear at q = 0 in
general, meaning that the longitudinal mode is still gapped.

B. Uniform susceptibility

The total uniform susceptibility χ = χloc + χit at μ = 0 is
presented in Fig. 6(a) in which the contributions from both the
local moment and the itinerant electron degrees of freedom,
i.e., χloc and χit, respectively, are also given. In Fig. 6(b),
the uniform susceptibility is shown at different μ’s where the
low-temperature phases are either SDW or SC.

To probe the uniform susceptibility for the local moment,
we add a Zeeman term −M

∑
i h ni to the local-moment

Hamiltonian, where h is the uniform magnetic field. Then the
local-moment action is modified from Eq. (6) by the replace-
ment ν → ν + imh with m = 0,±1 denoting the quantum
numbers of the three spin-wave modes. By integrating out
the local-moment degrees of freedom (i.e., nq and ñq fields),
the free energy for the local moment reads

Floc = 1

2g
(η2 − h2)n2

0

+
∑

m=0,±1

∑
q

ln[(ν + imh)2 + c2q2 + η2]. (49)

Then the uniform susceptibility can be obtained from the
second-order derivative χloc = −∂2Floc/∂h2 taken in the
h → 0 limit,

χloc = n2
0

g
+ 4

∑
q

−ν2 + c2q2 + η2

(ν2 + c2q2 + η2)2
. (50)

Carrying out the frequency and momentum summation, we get

χloc = n2
0

g
+ 1

πβc2
Y

(
βη

2

)
, (51)

where the function Y (x) = x coth x − ln(2 sinh x).

In the high-temperature limit, according to Eq. (10), the
spin-wave mass gap η increases linearly with temperature as
η = 2kBT , then the function Y tends to a finite limit Y (1) =
0.458, resulting in a linear-T behavior

χloc = 0.458
kBT

πc2
, (52)

which will dominate the total uniform susceptibility at high
temperature, consistent with the experiments.42,43

On the other hand, the itinerant electron uniform suscepti-
bility can be evaluated from

χit = −S2
∑

k

Tr [τiG(k)τi ′G(k)] , (53)

where S = 1/2 for the itinerant electrons and the matrix
τi = σ0 ⊗ σi represents the spin operator. The particular form
of the propagator G(k) will depend on the order in the
itinerant electron state. In general, the frequency summation
involved can be complicated. However, to the leading order of
approximation, we have

χit = −1

2

∑
k

[n′
F (E+

k ) + n′
F (E−

k )] + O
(
n2

0,�
2), (54)

where n′
F is the first-order derivative of the Fermi distribution

function and E±
k provides the band structure. For normal state,

E±
k = ±εk − μ, for SDW state, E±

k = ±(ε2
k + J 2

0 n2
0)1/2 − μ,

and for SC state, E±
k = [(±εk − μ)2 + �2]1/2. The remaining

terms are of the second-order of the order parameters. Since the
function n′

F (E±
k ) peaks at E±

k = 0, so if the itinerant electron
band is gapped from the Fermi surface, the contribution to the
uniform susceptibility will decrease rapidly, which accounts
for the quick drop of the total uniform susceptibility in the
ordered phase in Fig. 6(b).

C. The renormalization of the itinerant electron band

Now we consider the self-energy correction due to the
scattering of the itinerant electrons with local moments, which
is given by

Σe(k) = − = J2
0

k

Dii (k − k)siG(k )si . (55)

Here, the local-moment propagator D is taken from Eq. (43)
as the RPA-corrected one, while the bare single-particle
propagator G is given by Eq. (12) in the normal state and
Eq. (18) in the SDW state. The renormalized single-particle
propagator obtained from Dyson’s equation

G̃(k) = [G(k)−1 − �e(k)]−1 (56)

determines the spectral function after a Wick rotation to the
real-frequency domain by

Ã(ω,k) = −2ImG̃(ω + i0+,k). (57)

The result for the hole pocket around the � point is shown in
Fig. 7. The pocket is slightly more shallow in both the normal
and SDW phases, compared to the bare dispersion as indicated
by the red dashed curve.

This band renormalization effect can be understood by
looking at the frequency dependence of the momentum-
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FIG. 7. (Color online) The calculated itinerant electron spectrum
for the � pocket in (a) the normal phase (μ = 0.03 eV and T = 70 K)
and (b) the SDW phase (μ = 0.00 eV and T = 70 K). Darker shade
indicates higher intensity. The red dashed curve marks out the bare
dispersion of itinerant electron.

accumulated self-energy �e(ω) = ∑
k �e(ω,k), as shown in

Fig. 8. The negative imaginary part typically has a valley shape
due to the reduced scattering rate within the local-moment gap
±η. It can be well approximated by −2Im�e(ω + i0+) ∝ ω2

for small frequency ω. According to the Kramers-Kronig
relation, the real part of the self-energy should follow Re�e ∝
−ω, meaning that the self-energy correction reduces the
electron energy above the Fermi level and increases it below
the Fermi level, thus always squeezing the electron pockets.
This partly accounts for the reduced pocket depth generally
observed in ARPES experiments6–9 compared to the LDA
calculations.11–15

V. CONCLUSIONS

In this paper, we have presented a systematic study of
the itinerant-electron and local-moment hybrid model46,52

for the iron-based superconductors. The microscopic origin
of both the itinerant electron and local-moment degrees of
freedom are all from the 3d orbitals of the iron atoms.
As a renormalization flow at low energy, part of the 3d

electrons is conjectured to form local moments through an
orbital-selective Mott transition. Here, as a simplification,
a two-pocket band structure is adopted for the itinerant
electrons without considering their Coulomb interaction. A
robust short-ranged AF fluctuation around the momentum Qs

is incorporated for the local-moment part via a nonlinear σ

description tuned in a disordered regime, which can persist up
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ω eV
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e eV
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FIG. 8. (Color online) The momentum-accumulated self-energy
�e(ω) in (a) the normal phase (μ = 0.03 eV and T = 70 K) and (b)
the SDW phase (μ = 0.00 eV and T = 70 K ). The red solid curve
represents the real part Re(�e), while the blue dashed curve represents
the negative imaginary part −2Im(�e).

to high temperature in the normal state. Thus, in this minimal
model, an SDW/AF instability in either subsystem is not
intrinsically present when they are decoupled. A Hund’s rule
ferromagnetic interaction then couples these two subsystems
together.

What we have established in this work is that such a simple
model is generically infrared unstable against either magnetic
or SC ordering at low doping, thanks to the “resonant”
scattering of the itinerant electrons between the hole-electron
pockets by the local AF fluctuations of the local moments
around Qs . In other words, the itinerant electrons form an
SDW/SC order by a strong coupling to a background AF
fluctuations of the preformed local moments with a momentum
match. The phase diagram in Fig. 3 is qualitatively in
agreement with the experimental ones in which the Cooper
pairing is not glued by the Fermi-surface-nesting-driven
collective fluctuations of the itinerant electrons, which would
otherwise result in a much weaker pairing strength in a much
narrower doping regime close to the SDW phase than what
has been shown in Fig. 3. The effective glue provided by
the magnetic fluctuations of the local moment automatically
favors the s±-wave paring symmetry here. The presence
of the local moments further explains the high-temperature
linear-T dependence of the uniform magnetic susceptibility
(Fig. 6) in the normal state. In particular, the strong scattering
between the itinerant and localized electrons is represented
by the dynamic spin susceptibility shown in Fig. 5, which
illustrates how the Goldstone mode in the SDW state becomes
a resonant-like mode in the SC state as well as its evolution in
the normal state. The strong signature of the itinerant/localized
electron coexistent picture seen in Fig. 5, including both low-
and high-energy parts, can serve as a very useful qualitative
prediction for the neutron-scattering measurement even if the
comparison may not yet be quantitative due to the highly
simplified nature of the model.

Therefore, the minimal model studied in this paper may be
generally used to describe the low-energy physics in a multi-
band electron system in which the electrons in some more lo-
calized orbitals may first form short-ranged (fluctuating) SDW
order at a higher characteristic temperature (called the hidden
local SDW order in Ref. 33). Then at lower temperatures, the
electrons in more itinerant orbitals can be naturally driven into
a true SDW order or SC state via the Hund’s coupling to such a
preformed local SDW background. In contrast to the scenario58

that an electron may carry both a coherent itinerant and an
incoherent local-moment signatures, in analog to a single-band
case at an intermediate coupling, the multiband case provides
us with an alternative but simpler possibility, i.e., via the
orbital-selective Mott transition, itinerant and localized elec-
trons may be explicitly separated as independent degrees of
freedom.
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