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Energy spectra of quantum turbulence: Large-scale simulation and modeling
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In a 20483 simulation of quantum turbulence within the Gross-Pitaevskii equation, it is demonstrated that the
large-scale motions have a classical Kolmogorov-1941 energy spectrum E(k) ∝ k−5/3, followed by an energy
accumulation with E(k) � const at k about the reciprocal mean intervortex distance. This behavior was predicted
by the L’vov-Nazarenko-Rudenko bottleneck model of gradual eddy-wave crossover [L’vov, Nazarenko, and
Rudenko, J. Low Temp. Phys. 153, 140 (2008)], further developed in the paper.
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I. INTRODUCTION

Hydrodynamic turbulence (HT)1—loosely defined as a
random behavior of fluids—remains the most important
unsolved problem of classical physics, as was pointed out
by Richard Feynman.

Quantum turbulence (QT)—a trademark of turbulence in
superfluid 3He, 4He, and Bose-Einstein condensates of cold
atomic vapors2—has added a new twist in turbulence research,
shedding light on old problems from a new angle. QT consists
of a tangle of quantized vortex lines with a fixed core radius
a0 and a finite (quantized) velocity circulation κ = h/M ,
where M is the proper atomic mass.2 The superfluid has
zero viscosity, and in the zero-temperature limit, which is the
simplest for theoreticians and reachable for experimentalists,3

the QT’s Reynolds number Re is infinite. This brings (at least,
the zero-temperature) QT to a desired prototype for better
insight into classical HT turbulence.

The tangle of vortex lines in QT is characterized by a mean
intervortex distance �. For large-R-scale motions with R � �,

the vortex tangles are better understood as bundles of nearly
parallel vortex lines with mean curvature of about R2. For large
scales, the quantization of vortex lines can be neglected and
QT can be considered as classical, in which the energy density
in k space, E(k), is given by the celebrated Kolmogorov 1941
(K41) law:4

EK41(k) = C ε2/3k−5/3,
(1)

E(r) ≡ 〈|u(r)|2〉/2 =
∫

E(k) dk,

confirmed experimentally and numerically.1 Here, C ∼ 1,
ε is the energy flux over scales, and E(r) is the energy
density of turbulent velocity fluctuations per unit mass. Kelvin
waves (KWs) are helix-like deformations of vortex lines with
wavelength λ: a0 <λ<�. Interactions of KWs on the same
vortex line but with different k ∼ λ−1 lead to turbulent energy
transfer toward large k. This idea (Svistunov5) was devel-
oped and confirmed theoretically and numerically by Vinen
et al.,6 Kozik and Svistunov (KS),7 and L’vov and Nazarenko
(LN).8 Two versions of the KW spectrum were suggested
in Refs. 7 and 8:

EKS(k) = CKS�ε1/5κ7/5 �−8/5k−7/5, KS, (2a)

ELN(k) = CLN�ε1/3κ �−2/3�−4/3k−5/3, LN,
(2b)

� ≡ ln(�/a0).

Here, CKS � 1, CLN � 1/π (Ref. 9), and � < 1 character-
izes the ratio of � to the large-scale modulation of the vortex
lines. Parameter � � 12–15 in typical experiments in 3He
and 4He.3 The choice between Eqs. (2) is under intensive
debates,10–13 which, however, has no principle effect on issues
discussed in this paper.

The nature of the energy transfer and the energy spectrum
is under intensive debate, too. Considering the inertial (Re→
∞) energy transfer at the crossover scale k ∼ �−1, L’vov-
Nazarenko-Rudenko (LNR) pointed out14 that for k ∼ �−1

and � � 1 the KWs have much greater energy (2) than the
HT energy (1) at the same energy flux ε. As a result, LNR
predicted a bottleneck energy accumulation around k ∼ �−1.
In contrast, KS suggested15 an alternative scenario due to
possible dominance of vortex reconnections in the energy
transfer at k ∼ �−1 without any energy stagnation. In Ref. 16,
LNR predicted two thermal-equilibrium regions between the
HT (1) and KW (2) energy-flux spectra: with equipartition of
the HT energy, E(k) ∝ k2, followed by equipartition of KW
energy, E(k) � const.

Direct numerical simulations (DNS) of QT mostly use the
Gross-Pitaevskii equation (GPE),17 which in dimensionless
form is given by

2 i∂ψ/∂t + ∇2ψ = g|ψ |2ψ. (3)

The macroscopic wave function ψ(r,t) plays the role of the
complex order parameter, and g is the coupling constant. The
transformation ψ = √

ρ eiθ maps Eq. (3) to the Euler equation
for an ideal compressible fluid of density ρ and velocity u =
∇θ and an extra quantum pressure term.

The numerical study of QT by GPE Eq. (3) has been
reported in a few papers so far. Nore et al.18 solved the GPE
with resolutions up to 5123 and observed that, as the quantized
vortices became tangled, the incompressible kinetic energy
spectra seemed to obey the K41 law (1) for a short period of
time but eventually deviated from it. Kobayashi and Tsubota19

solved the GPE on a 2563 grid with an extra dissipation term at
small scales and showed the K41 law (1) more clearly. Yepez
et al.20 simulated the GPE on grids up to 57603 by using
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a unitary quantum lattice gas algorithm. They also found a
spectrum E(k) ∝ k−5/3 and interpreted it as the K41 law (1) of
HT turbulence. However, due to the choice of initial conditions,
their simulation should correspond to the pure KW region
k > �−1 [thus supporting the LN spectrum (2b) of KWs].

In the present paper, we solved the GPE on grids up to
20483 by parallelizing the simulation code on Earth Simulator
(a vector-parallel machine).21 In contrast to Ref. 20, we
focused on HT and crossover regions, k � �−1. First, we
confirmed the K41 law (1) in an HT region of about two
decades in length, which is wider than that of any previous
work. Second, the visualization of vortices clearly shows the
bundle-like structure, which has never been confirmed in GPE
simulations on smaller grids. Third, we discovered a plateau in
the crossover region, k� � 2π , further explained as the KW’s
energy equipartition in the framework of the LNR’s bottleneck
model,16 which is revised here to account for the recently
predicted8 and numerically observed20 LN spectrum (2b) of
KWs.

We consider this correspondence as a support in fa-
vor of LNR bottleneck theory, understanding, nevertheless,
that interpretation of numerical (or experimental) data with
the help of a theoretical model on the edge of its applicability
(here � ∼ 1) is often problematic, being a question of
experience, physical intuition, and taste. Currently we cannot
fully exclude the alternative KS scenario,15 even though it gives
no energy stagnation for � � 1. More theoretical studies and
numerical and laboratory experiments are required to fully
understand the vortex dynamics in the crossover region of
scales.

II. NUMERICAL PROCEDURE AND RESULTS

In DNS, we follow procedure19 but extend the maximum
computational grid size from 2563 up to 20483. The initial state
is prepared by distributing random numbers created inside a
range from −Nπα to Nπα into the phase θ (r) on selected
points M3 (M  N ) and interpolating them to make a smooth
velocity field on all grid points. Here, N is the total number of
grid points and α is a control parameter for the initial energy
input. Also, following Ref. 19, we add to the GPE an effective
artificial energy damping for small-scale motions by replacing
in the Fourier transform of the GPE i → i + 1 for kx, ky, kz >

2π/ξ , where ξ � a0 is the condensate coherence length.

GPE conserves the total number of particles and the total
energy (Hamiltonian) of the system.17 We decompose18,22 the
total energy density into the internal, Eint ≡ g(ρ − 1)2/4, the
quantum, Eqnt ≡ |∇√

ρ|2/2, and the kinetic, E ≡ ρ|u|2/2,
energy densities. The kinetic energy is decomposed into
compressible and incompressible components, both of which
are monitored. Two typical spectra of the incompressible
component are plotted in Fig. 1 with corresponding vortex
distributions. The plot illustrates a 5123 run at times 3.8 and
7.8 in the left and right panels, respectively (with the time
being normalized by 2mξ 2/h̄ and the distance by ξ ). The time
evolution of the equation is calculated by a symplectic integral
method, and a typical pseudo-spectral method is employed
for the calculation of the kinetic energy term. The method
is a standard one, which is known to guarantee sufficiently
high accuracy for hydrodynamics simulations. In Fig. 1 (left),
one finds that the major part of the energy spectrum fits
the K41 law (1), as in Ref. 19, but with a large inertial
interval.

As expected, we also observed tangled vortex bundles,
clearly demonstrated in the insets of Fig. 1, showing an x-y
two-dimensional slice of the polarization field’s color map,
which is defined by summing vortices (±1) inside plaquettes
lying within a constant radius (=32�x) from a grid point. On
the other hand, Fig. 1 is a typical example of a considerably
decayed state, in which the main features are rather small
vortex rings distributed almost equally inside the simulation
cubic region.

An important observation (Fig. 1) is a plateau-like region
for kξ � 1.5—a definite pileup over the K41 spectrum; this is
a clear manifestation of the energy stagnation.

The main numerical result of the present paper is Fig. 2.
The left panel shows an intercomparison of the incompressible
kinetic energy spectrum E(k) among 5123, 10243, and 20483

simulations. The K41 scaling (1) (shown as cyan dash-dotted
lines) is extended to the lower-k range with the grid-size
increase. This is the first clear demonstration of the classical
K41 scaling characteristic for the normal-fluid turbulence
but maintained in the large-scale range of the superfluid
turbulence. The visible extent of the K41 scaling on the 20483

grid is much larger than that in all previous simulations.
The right panel of Fig. 2 displays self-similar large

structures of tangled vortices in the fully turbulent state: the
large-scale vortex bundles in the maximum size, 20483, and

FIG. 1. (Color online) The incompressible energy spectra at time T = 3.8 (left) and T = 7.8 (right). The color insets show vorticity
two-dimensional slice maps (see text for the definition). The grid size is 5123 and � � 1.5.
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FIG. 2. (Color online) Left: Simulation results of the incompressible energy spectra E(kξ ) normalized by h̄2/(4m2ξ ). Symbols: 20483

( ), 10243 ( ), 5123 ( ). � varies from � � 1.5 (slightly depending on time) for 5123 to � � 2.2 for 20483. Dot-dashed (cyan)
line: K41 “−5/3” scaling. Right: A snapshot of vortex lines at the fully developed turbulent state of 20483 demonstrates the self-similarity of
the bundle-vortex structure (see the dotted circles representing the zoomed regions whose vortex distributions are shown subsequently), typical
for fully developed turbulence.

smaller self-similar tangled structures inside this cubic region
in the subsequent insets.

Before discussion of these results, we will revise shortly in
the next section the LNR model of the bottleneck crossover16

to account for the recently predicted LN spectrum of KWs.8

III. LNR MODEL OF THE BOTTLENECK CROSSOVER

To find theoretically E(k), we, following LNR,16 ap-
proximate the superfluid motions as a mixture of “pure”
HT and KW motions with the spectra E

HT
(k) ≡ g(k�)E(k)

and E
KW

(k) ≡ [1 − g(k�)]E(k). Here, g(k�) is the “blending”
function, which was found in Ref. 16 by calculation of energies
of correlated and uncorrelated motions produced by a system
of �-spaced wavy vortex lines:

g(x) = g0[0.32 ln(� + 7.5)x],

g0(x) =
[

1 + x2 exp(x)

4π (1 + x)

]−1

.

The total energy flux εk , also consisting of HT and KW
contributions,16 is modeled by dimensional reasoning in the
differential approximation. Hence, for k → 0 the energy flux
is purely HT and thus εk ∝ k−2

√
E

HT
dE

HT
/dk. From the other

side, for k → ∞ the energy flux is purely KW and thus
εk ∝ [E

KW
]2dE

KW
/dk. Importantly, in contrast to Ref. 16,

where the physically irrelevant KS spectrum of KWs (2a)
was used, we employ here the proper LN spectrum (2b) that
accounts for large-scale vortex-line modulations with short
KWs.8 The full equation for the total energy flux reads

−
{

1

8

√
k11g(k�)E(k) + 3

5

{�k3k∗ �2[1 − g(k�)]E(k)}2

(
CLN�κ

)3

}

× d

dk

{
E(k)

[
g(k�)

k2
+ 1 − g(k�)

k2∗

]}
= εk. (4)

Here, E
HT

(k∗)=E
KW

(k∗) ⇒ k∗� � 6.64/ ln(� + 7.5). In the
inertial range, the energy flux is constant, ε(k) = ε. More-
over, in the system of quantum filaments it is related to
the root-mean-square vorticity

√
〈|ω|2〉 � κ/�2 via 〈|ω|2〉 =

2
∫

k2E(k)dk (see Refs. 1 and 2). This allows us to find
solutions of Eq. (4) for different �, as depicted in Fig. 3
by black dashed and solid curves. (For the sake of better
comparison we replotted the simulation data, bringing them all
together to the LNR model curve with � = 2 by superposing
the K41 and plateau regions. This is achieved by fitting the
mean intervortex distance �, which is greed-size dependent:

FIG. 3. (Color online) Incompressible energy spectra plotted vs
k� and normalized by κ2/�. The simulation results (the same symbols)
and the LNR model for � = 10,30,100 [dashed (black) curves] are
brought together to the theoretical [solid (black)] curve with � = 2
by superposing the K41 (for both simulations and model) and plateau
regions (only for simulations). Dot-dashed (cyan) lines show different
scaling asymptotics.
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the computation of � is approved a posteriori only if � � a0;
in our case, � ∼ 1, � may be considered as a fitting parameter.)

Four distinct scaling regions are evident (� � 1):
(a) k�  1: E(k) and εk are dominated by the pure HT

contributions, and the K41 law (1) is revealed.
(b) k� � 1: E(k) and εk are dominated by the pure KW

contributions, and one observes the LN spectrum (2b) of KWs
with a constant energy flux.

(c) k � k∗: As explained above, for � � 1 the KW
turbulence is much less efficient in the energy transfer over
scales than its HT counterpart with the same energy, which
leads to the (HT) energy accumulation with a level E(k) ≈
E

HT
(k) � EK41(k). For k � k∗, both E(k) and εk are still

dominated by HT contributions, but the energy flux is much
smaller than the K41 estimate requires. This is like a flux-free
HT system; thus, thermodynamic equilibrium is expected with
the equipartition of energy between the degrees of freedom:
the three-dimensional energy spectrum is constant; hence, the
one-dimensional energy spectrum E

HT
(k) ∝ k2. This scaling is

observed in Fig. 3, for k � k∗. Think of a pond before a dam,
where the water velocity, being much smaller than that in the
source river, does not affect the water level, which is practically
horizontal. This interpretation of the energy bottleneck effect
as “incomplete thermalization” (of only the high-k region) was
suggested by Frisch et al.23

(d) k � k∗: Unexpectedly, we observe here almost a k-
independent one-dimensional energy spectrum, E(k)≈ const,
inherent to the thermodynamic equilibrium of KWs. In the pure
KW system, such a spectrum shows up for k � k∗. However,
in region 4, the energy of the system is already dominated
by the KW contributions, E(k) ≈ E

KW
(k), while the energy

flux is still dominated by the HT motions.16 Hence, this is
almost a flux-free system of KWs, which is indeed found in
thermodynamic equilibrium with the one-dimensional energy
equipartition, E(k)

KW= const.
As one sees from Fig. 3, with the decrease of � the pileup

becomes less pronounced. For � = 2, the equilibrium HT
region (3) almost disappeared; however, the equilibrium KW

region (4) is still well pronounced, being much less sensitive
to the value of �.

IV. DISCUSSION AND SUMMARY

A. Classical and quantum energy bottleneck effects

The bottleneck effect in classical HT is understood
traditionally24,25 as a hump on a plot of compensated energy
spectrum E(k)k5/3 in the crossover region between inertial
and viscous intervals. This is a very general phenomenon,
reported in many numerical simulations and experiments of
classical hydrodynamic turbulence. For example, Yeung and
Zhou,26 Gotoh et al.,27 Kaneda et al.,28 and Dobler et al.29

found the bottleneck effect in their numerical simulations.
Saddoughi and Veeravalli30 studied the energy spectrum of
atmospheric turbulence and reported the bottleneck effect.
Shen and Warhaft,31 Pak et al.,32 She and Jackson,33 and
other experimental groups also observed the bottleneck effect
in fluid turbulence. The bottleneck effect has been seen in
other forms of turbulence as well (see, e.g., Refs. 11–16 in
Ref. 24).

To characterize the value of this effect, one can introduce
a “bottleneck magnitude” Mbn: the hump height, normalized
by the plateau value of E(k)k5/3 in the inertial interval. For
example, in high-resolution DNS of the classical HT,24 shown
in Fig. 4 (left), its magnitude Mbn � 0.34 for 5123 DNS and
decreases with an increase in resolution: Mbn � 0.31 for 10243

and Mbn � 0.25 for 20483. Recent results25 based on the 40963

DNS confirm the statement that the bottleneck magnitude in
classical turbulence systematically decreases with increasing
DNS resolution (or, equivalently, with the Taylor-Reynolds
number Reλ growth, and Mbn → Re−0.4

λ as Reλ → ∞).
Coming to a comparison of the bottleneck effects in our

modeling and numerical simulations, we should note that
the LNR model accounts only for leading order in � =
ln(�/a0) terms.14,16 Moreover, it is based on the differential
approximation for the energy flux, which is reasonable for
vivid power-like behavior of the energy spectra, which exists

FIG. 4. (Color online) Comparison of the compensated energy spectra E(k) k5/3 (using the same color-symbol code as in previous figures)
and of the bottleneck magnitudes Mbn (dashed color arrows). Left: DNS data of classical HT24 (cf. Fig. 1 in Ref. 24): modest values of
Mbn � 1.34 decrease with the increase of the resolution. Right: Our DNS data of quantum superfluid turbulence: large values of Mbn increase
with the resolution up to Mbn � 6.26.
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only for � � 1 (Fig. 3). Therefore, one expects that the LNR
model is suitable for quantitative analysis of experiments in
3He and 4He, where � � 12–15, and can only qualitatively
describe the simulations presented here with � � 2.

Nevertheless, the simulations clearly demonstrate in Fig. 3
the plateau that immediately follows the K41 scaling (1), which
agrees with the LNR model prediction for � � 2 (Fig. 3). The
plateau broadens with the grid-size increase toward that of the
LNR model curve (with the earlier cutoff of the simulation
data being due to the artificial dissipation). The resolution of
the current simulations does not allow us to resolve the KW
scaling (2b) with constant energy flux, as was done in Ref. 20,
but the bottleneck is definitely there.

To measure bottleneck magnitudes in QT, we replotted our
data from Fig. 3, compensating E(k) by the K41 prediction,
i.e., multiplying by (k�)5/3 (see Fig. 4, right). One sees
large humps with magnitudes Mbn that increase with the
resolution, reaching Mbn � 6.26 for 20483. Recall that in
classical turbulence Mbn is much smaller (by an approximate
factor of 20) and demonstrates the opposite tendency with the
resolution.

We concluded that classical and quantum bottlenecks have
completely different natures. The small magnitude of the
bottleneck in classical turbulence is related to some nonlocality
of the energy transfer toward small scales, which is slightly
suppressed due to the fast decrease of the turbulence energy
in the dissipation range, while in QT (at zero temperature)
the essential bottleneck effect originates from the strong
suppression of the energy flux in the KW region.

Indeed, Fig. 4 (right) demonstrates the good agreement
between the QT DNS data and the LNR model prediction
(which accounts for the flux suppression mentioned above) for

� � 2, which improves by increasing the DNS resolution. The
cutoff of the spectra for large k is a consequence of limited
k space in the simulations. We predict that with the further
increase of the resolution the bottleneck magnitude can reach
Mbn � 50 at � � 2 and even much larger values for larger �.

B. Summary

In this paper, we conclude that the observed essential
bottleneck energy accumulation has a definite quantum na-
ture (quantization of circulation) and can be completely
rationalized within the LNR model of gradual eddy-wave
crossover, suggested in Ref. 16. We consider this model
as a minimal model of QT that describes homogeneous
isotropic turbulence in superfluids with energy pumped at
scales much larger than the mean intervortex distance and
reveals reasonable (and even unexpectedly good) agreement
with the simulations of the GPE discussed here. The reason
is that in the most questionable crossover region the LNR
model predicts a local thermodynamic equilibrium, where
the energy spectra are universal and insensitive to the de-
tails of microscopic mechanisms of interactions (e.g., vortex
reconnections).
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