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Field-induced superconducting phase in superconductor–normal metal
and superconductor-superconductor bilayers

X. Montiel and A. I. Buzdin*

Condensed Matter Theory Group, LOMA, UMR 5798, Université Bordeaux 1, F-33405 Talence, France
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We study the proximity effect in a superconductor (S)–normal metal (N) bilayer system under in-plane magnetic
field and demonstrate that a compensation between the Zeeman effect and the energy splitting between bonding
and antibonding levels may lead to a magnetic-field-induced superconducting phase well above the standard
paramagnetic limit. It occurs that the nonuniform Fulde-Ferrell-Larkin-Ovchinikov superconducting state also
exists in the field-induced phase. The presence of the impurity scattering shrinks the region of field-induced
superconductivity existence in S-N and S-S bilayers.
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I. INTRODUCTION

Quasi-two-dimensional superconductors have been
studied for fifty years. A strong upper critical magnetic
field (Hc2) anisotropy was observed for the first time in
intercalated layered crystals of dichalcogenides of transition
metals.1 In these compounds, Hc2 is higher for the in-plane
orientation (a-b plane) than in the perpendicular one (c
axis). Moreover, this Hc2 anisotropy was observed in
intercalated graphite superconductors [in C8K (Refs. 2
and 3), in C6Ca (Refs. 4 and 5), and in C6Yb (Ref. 5)],
in organic superconductors,6 in high superconducting
critical temperature (high Tc) cuprate superconductors,7–10

and also in superconducting-superconducting (S-S′)
YBa2Cu3O7/DyBa2Cu3O7 and superconducting-insulating
(S-I) (YBa2Cu3O7)n/(Pr Ba2Cu3O7)m artificial super-
lattices.11,12 High-Tc cuprate superconductors have a layered
crystal structure13 and a strong electron anisotropy.7,13–17

The superconducting coherence length along the c axis
ξc is smaller than the interlayer distance d. Consequently,
high-Tc cuprate superconductors can be considered as natural
superlattices. In high-Tc cuprate superconducting compounds,
superconductivity exists in CuO2 atomic planes which are
sandwiched by non-superconducting atomic planes.13,18

The Ginzburg-Landau model [in the weak-anisotropy limit
(ξc � d)]19 and the Lawrence-Doniach model [in the strong-
anisotropy limit (ξc � d)]20 give the description of the Hc2

anisotropic properties in layered superconductors near Tc. This
Hc2 anisotropy in superconducting multilayers can also be
described microscopically by the standard Bardeen-Cooper-
Schrieffer (BCS) theory and the tunneling Hamiltonian theory.
Using this method, we obtain the (Hc2,T ) phase diagram of
layered superconducting systems.

Some of high-Tc cuprate superconductors can be considered
as a stack of S-N, S-S′,21 or S-F22 weakly coupled bilayers. The
S-N, S-S′, or S-F bilayer constitutes the elemental unit cell of
the multilayer. The properties of the S-N, S-S′, or S-F bilayers
qualitatively differ from single S, N, or F layers. Consequently,
the properties of multilayers based on a single-layer elemental
unit cell may be qualitatively different from the properties of
multilayers based on a bilayer elemental unit cell. We show
in this paper that the (H,T ) phase diagram, with in-plane

magnetic field, of S-N and S-S′ bilayers may reveal a magnetic-
field-induced superconducting phase.

The case of S-F multilayers has been studied in Refs. 22–25.
In the S-S bilayer, Buzdin et al. have demonstrated26,27

the possibility to overcome the paramagnetic limit at low
temperature for a high in-plane critical magnetic field. The
field-induced superconducting phase may appear at high
magnetic field if the interlayer coupling energy t is higher
than Tc. Moreover, in this phase, the adjacent S layers have
opposite signs of the order parameter (this is the so-called
π state22). In this case, the Zeeman effect is compensated
by the bonding-antibonding degeneracy lift produced by the
hybridization between the two S layers (see Fig. 1). The Cooper
pairs in the π state are more stable at high magnetic field than
the 0 state. The 0 state occurs when the adjacent S layers
support the same signs of the order parameter. A somewhat
similar idea in the context of two-band superconductivity
was introduced by Kulic and Hofmann.28 In this paper, we
show that in a S-N bilayer at high in-plane magnetic field H

(see Fig. 2), at low temperature and strong enough coupling
t > Tc0 between the two planes, the paramagnetic limit is also
enhanced above the usual Fulde-Ferrell-Larkin-Ovchinikov
(FFLO)29,30 limit and a field-induced superconducting phase
may appear at high magnetic field. The adjacent N layer
certainly decreases the transition temperature but, on the other
hand, it could increase substantially the parallel critical field
at T = 0 K. The corresponding mechanism is qualitatively
the same as in the S-S bilayer. However, in S-S bilayer this
regime corresponds to the transition from the 0 state into the
π state, while for S-N bilayer such π phase cannot exist. We
study also the influence of the impurity scattering on the (H,T )
phase diagram of S-N and S-S bilayers.

The outline of the paper is as following. In Sec. II, we
present the model of a multilayer system and give the exact
solutions of the Eilenberger equations for S-N systems. In
Sec. III, we study the influence of the transfer integral on
the superconducting critical temperature and we present the
(H,Tc) and (H,t) phase diagrams. In Sec. IV, we investigate
the influence of impurities on the superconducting critical
temperature and (H,Tc) and (H,t) phase diagrams. In Sec. V,
we study the influence of impurities on the S-S bilayer (H,Tc)
phase diagram.
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FIG. 1. Mechanism of compensation of the Zeeman effect by the
degeneracy lifting between the bonding and antibonding states.

II. MODEL OF AN ATOMIC THICKNESS S-N BILAYER

We start with a noninteracting model (see for example
Refs. 22 and 31) of layered systems with alternating super-
conducting and normal metal layers. The electron motion
is described in the N and S layers by the spin-dependent
energy spectra ξn,σ (k) and ξs,σ (k), respectively. The param-
eters that characterize the systems are the transfer energy
between the N and S layers t and the Cooper pairing
constant λ, which is assumed to be nonzero in S layers
only. The Zeeman energy splitting, due to in-plane magnetic
field H , is written as h = μBH where μB is the Bohr
magneton.

The two mechanisms destroying superconductivity under a
magnetic field are the orbital and the paramagnetic effects.32,33

Usually it is the orbital effect that is more restrictive. However,
in systems with a large effective mass of electrons34,35 or in
low-dimensional compounds, such as quasi-one-dimensional
or layered superconductors under in-plane magnetic field,36

the orbital magnetism is weakened and it is the para-
magnetic effect that is responsible for superconductivity
destruction.

The Chandrasekhar-Clogston paramagnetic limit37,38 is
achieved when the polarization energy of the normal electron
gas, χnH

2/2, equals the superconducting condensation energy
N (0)�2

0/2, where N (0) is the density of state of the normal
electron gas, χn is its spin susceptibility, and �0 = 1.76Tc is
the zero-temperature superconducting gap. This criterion gives
the exchange field hp(T = 0) = �0/

√
2 where the supercon-

ductor should undergo a first-order transition to the normal
state. Larkin and Ovchinikov29 and Fulde and Ferrell30 (FFLO)
predicted the existence of a nonuniform superconducting state
with slightly higher critical field h3D

FFLO(T = 0) = 0.755�0 >

hp(T = 0). For quasi-2D superconductors the critical field
of the FFLO state is even higher, namely h2D

FFLO(T = 0) =
�0,39 while in quasi-one-dimensional systems there is no
paramagnetic limit at all.40 We focus on the 2D case for which
a generic temperature magnetic field phase diagram has been
established.39

We consider the case when the coupling between the layers
is realized via the transfer energy t . In the whole paper, we
assume t � EF where EF is the Fermi energy and then Cooper

FIG. 2. (Color online) A superconducting (S)–normal metal (N)
bilayer with in-plane magnetic field H.

FIG. 3. Graph of Tc/Tc0 as a function of t/Tc0 (solid line). For
t � Tc0, the critical temperature of the superconductor decreases to
zero.

pairs are localized within each plane. The layers are coupled
together by the coupling Hamiltonian

Ĥt = t
∑
j,σ,k

[ψ+
j+1,σ (k)ψj,σ (k) + ψ+

j,σ (k)ψj+1,σ (k) + H.c.],

(1)

where ψ+
j,σ (k) [resp.ψj,σ (k)] is the creation (resp. annihilation)

operator of an electron with spin σ and momentum k in the j th
layer. In this paper, we study the S-N and S-S bilayers. In the
S-N system, the superconducting layer has the index j = 0 and
the normal metal j = 1. In the S-S bilayer, the superconducting
layers are indexed j = 0 and j = 1. The Hamiltonian of the
system can be written as

Ĥ = Ĥ0 + ĤBCS + Ĥt , (2)

where H0 is the kinetic and Zeeman Hamiltonian, Ht the
tunneling Hamiltonian, and HBCS the BCS Hamiltionian. For
the j th layer, the kinetic and Zeeman parts of the Hamiltonian
are written as

Ĥ0 =
∑
σ,k

[ξj,σ (k,hj )ψ+
j,σ (k)ψj,σ (k)]. (3)

The Zeeman effect manifests itself in breaking the spin
degeneracy of the electronic energy levels according to

ξj,σ (k,hj ) = ξj (k) − σhj , (4)

where ξj (k) = k2/2m − EF ; i.e., for simplicity we choose the
same electron spectrum in both layers.

The field hj in the j th layer is assumed to be the same
in both layers (h0 = h1 = h). We suppose an s-wave singlet
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superconductivity coupling which is treated in HBCS within a
mean-field approximation41

ĤBCS =
∑
j,k

[�∗
j (q)ψ+

j,↓(k)ψ+
j,↑(−k)+�j (q)ψj,↑(k)ψj,↓(−k)]

+ 1

|λ|
∫

d2r�2
j (r), (5)

where r is the two-dimensional coordinate within each layer
and λ the electron-electron coupling constant in the S layer
only. The superconducting order parameter �j is nonzero only
in the S layers as the coupling constant is 0 in the N layer. In
order to investigate the occurrence of modulated supercon-
ducting phase (FFLO), we choose the superconducting order
parameter in the form

�(r) = �eiq·r,

where q is the FFLO modulation wave vector. Using Gorkov’s
formalism, we introduce the normal G and anomalous F̃

Green’s functions41:

Gj,l(k,k′)=−〈Tτ (ψ↑,j (k)ψ+
↑,l(k

′))〉=δ(k−k′+q)Gj,l(k),

(6)

F+
j,l(k,k′) = 〈Tτ (ψ+

↓,j (k)ψ+
↑,l(k

′))〉 = δ(k + k′)F+
j,l(k),

where the brackets mean statistical averaging over grand-
canonical distribution, Tτ is the ordering operator in the
Matsubara formalism,41 and j and l are the layer’s indexes.
From the equation of motion,41 the system of Green’s
functions equation is, in the Fourier representation in the S-N
bilayer,

⎛⎜⎜⎜⎝
iω − ξ0,↑ (k + q) −t �0 0

−t iω − ξ1,↑ (k + q) 0 0

�∗
0 0 iω + ξ0,↓ (k) t

0 0 t iω + ξ1,↓ (k)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

G0,0 (k + q)

G1,0 (k + q)

F+
0,0 (ω,k)

F+
1,0 (ω,k)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1

0

0

0

⎞⎟⎟⎟⎠ ,

where ω = (2n + 1)πT are the fermionic Matsubara frequen-
cies. In quasi-2D superconductors, the maximal modulus of the
FFLO wave vector is of the order of (ξ0)−1, ξ0 being the typical
superconducting coherence length. Since ξ0 � 1

kF
, which is

of the order of the interatomic distance, with a good ap-
proximation we can consider ξj,↑(k + q)=ξ (k)−h + vF · q,
where vF is the Fermi velocity vector in the plane. The
anomalous Green’s function in the S layer can be written as

F+
0,0 = −�∗

0A

−α0A − βt2 + t4
,

where A = [iω − ξ (k) + h − vF q][iω + ξ (k) + h], α0 =
|�0|2 − [iω − ξ (k) + h − vF q][iω + ξ (k) + h], and β =

[iω − ξ (k) + h − vF q]2 + [iω + ξ (k) + h]2. The supercon-
ducting order parameter in the 0th superconducting layer
satisfies the self-consistency equation

�∗
0 = |λ|T

∑
ω>0

∑
k

F+
0,0 = |λ|T

∑
ω

∫ +∞

−∞
F+

0,0dξ. (7)

To describe the FFLO modulated phase and the influ-
ence of the impurities it is more convenient to use the
quasi-classical Eilenberger formalism. Moreover, we include
the FFLO modulation phase and nonmagnetic impurities.
Applying Eilenberger’s method42 for a layered system43 with
Hamiltonian (2), the system of equations of Green’s functions
can be written as

⎛⎜⎜⎜⎝
ω̃ − ivF · q −i t

2 0 i t
2

−i t
2 ω̃ − ivF · q i t

2 0

0 i t
2 ω̃ − ivF · q −i t

2

i t
2 0 −i t

2 ω̃ − ivF · q

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f +
0,0

f +
1,0

f +
1,1

f +
0,1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
�∗

0 + 〈f +
0,0(ω,q)〉

φ

2τ

0

0

0

⎞⎟⎟⎟⎟⎠ , (8)

where ω̃ = ω + ih + (1/2τ ),f +
j,l(ω,q) = 1

iπ

∫ +∞
−∞ dξF+

j,l

(ω,ξ,q)dξ is the anomalous Green’s function in the
Eilenberger formalism, and τ is the electron mean-free
path time. We write vF · q = vF q cos(φ), where φ is
the polar angle (vF ,q), and 〈〉φ is the average over φ.
We assume an in-plane scattering on impurities and the
absence of spin flip during the electron-impurity interaction.
To consider the presence of impurities we substitute ω by

ω + 1/2τ and �∗
j by �∗

j + 〈f +
j,j (ω,q)〉φ/2τ ; see for example

Ref. 43.
Solving the Eilenberger equation (8) yields the Eilenberger

Green’s function for the S layer labeled j = 0:

f +
0,0 = �∗

0

2
{
1 − (1/2τ )[�1�3 + �2�3 + 2�1�2]

4�1�2�3

} {
1

ω3
+ 1

2ω1
+ 1

2ω2

}
,

(9)
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where we pose �2
1,2 = ω̃2

± + v2q2, �2
3 = ω̃2 + v2q2 with

ω̃ = ω + ih + (1/2τ ), ω̃± = ω + ih + (1/2τ ) ± it , ω3 =
ω̃ − ivF q cos(φ) with ω1,2 = ω3 ± it = ω̃± − ivF q cos(φ).
The averaged solution on the φ angle of (9) can be
written

〈f +
0,0〉φ = �∗

0

2
{
1 − (1/2τ )[�1�3+�2�3 + 2�1�2]

4�1�2�3

}
×

{
1

�3
+ 1

2�1
+ 1

2�2

}
, (10)

where 〈〉φ is the average on the φ angle. Close to the su-
perconducting critical temperature of the second-order phase
transition, the self-consistency (7) can be written33

ln
(

Tc

Tc0

)
= Re

(∑
ω>0

(〈
f̃

0,0
↓↑ (ω,q)

〉
φ

− π

ω

))
, (11)

where Tc is the critical temperature of the superconducting
layer in the S-N bilayer and Tc0 = 2γωD

π
exp(− 2π2

|λ|mkF
) is the

critical temperature of an isolated superconducting layer with
m the electron’s mass, kF the Fermi impulsion, γ = 0.577215
the Euler’s constant, and ωD the Debye frequency.

At zero temperature, close to the critical magnetic field of
the second-order phase h0, the order parameters �j are also
small and the self-consistency (7) can be written

ln

(
h

h0

)
= 2Tc

π

∫ +∞

0
Re

(〈
f̃

0,0
↓↑ (ω,q)

〉
φ

− π

ω + ih0

)
dω.

(12)

III. PROXIMITY EFFECT IN S-N BILAYER

In this section, we investigate the superconducting phase in
the S-N bilayer in the clean limit (τ → ∞). We study the super-
conducting critical temperature as a function of the interlayer
coupling. We obtain the critical magnetic field of second-order
superconducting to normal metal phase transition as a function
of the temperature and the interlayer coupling. Studies of the
influence of the impurities on the S-N bilayer and the S-S
bilayer are respectively proposed in Secs. IV and V.

A. Critical temperature

We study first the influence of the proximity effect on the
superconducting critical temperature Tc of the S layer when
no magnetic field is applied (h = q = 0) in the clean limit
(τ → ∞). Then (10) becomes

f +
0,0 = �∗(t2 + 2ω2)

2ω(t2 + ω2)
; (13)

thus the self-consistency equation can be written

ln

(
Tc

Tc0

)
= −1

4

[
2γ + 4 ln 2 + �

(
1

2
− it

2πTc

)
+�

(
1

2
+ it

2πTc

)]
,

where �(x) is the digamma function. As seen in Fig. 3,
the superconducting critical temperature decreases with the
increase of the proximity effect. At low transfer energy

t � Tc, the superconducting critical temperature varies as
Tc

Tc0
= 1 − 7

8
ζ (3)
π2 ( t

Tc0
)2. In the case of low interlayer coupling,

the superconducting critical temperature reveals a quadratic
decrease with the transfer energy. The superconducting state
is not qualitatively influenced by the normal metal layer and
can be considered as a single superconducting layer.

At strong coupling between S and N layers at t � Tc (but
in the limit t � ωD), the superconducting temperature varies
as Tc

Tc0
= πe−γ

2
Tc0
t

. The critical temperature decreases with the
tunneling transfer as more and more Cooper pairs leak into the
N layer. The superconducting properties in the N and S layers
are practically the same and the bilayer can be considered as an
equivalent single S layer with an effective coupling constant λ̃

where λ̃ < λ. In the case where t � ωD , the S-N bilayer can
be considered as a single superconducting layer S with λ̃ = |λ|

2
as predicted in Ref. 31.

B. Phase diagram of the S-N bilayer

We study the (h,T ) and (h,t) phase diagram of the
S-N bilayer in the clean case and in the presence of
nonmagnetic impurities. In a two-dimensional S monolayer,
we can define three critical magnetic fields at zero tem-
perature. h0 = �0/2 is the critical magnetic field for a
second-order phase transition. hI = �0/

√
2 is the critical

magnetic field for a first-order phase transition defined by
Clogston-Chandrasekar.37,38 hFFLO = �0 is the critical mag-
netic field in the presence of FFLO modulations. One can
see that hFFLO > hI > h0. In a clean S monolayer with an
applied in-plane magnetic field, the critical field is hFFLO

(Ref. 33).
In this case, the Eilenberger anomalous Green’s function

(9) becomes for arbitrary interlayer coupling t

f +(0,0) = �∗

2

[
1

ω + ih + i
vF · 
q
+ 1

2(ω − it + ih + i
vF · 
q)

+ 1

2(ω + it + ih + i
vF · 
q)

]
, (14)

where we note the appearance of three energy scales E3 =
h + 
vF · 
q and E1,2 = h ± t + 
vF · 
q.

1. (h,t) phase diagram at zero temperature

From (14) and the self-consistency equation (12), the
critical magnetic field hc is shown to satisfy

|hc − t +
√

|(hc − t)2 − (q vF )2||
× |hc + t +

√
|(hc + t)2 − (q vF )2||

× ∣∣hc +
√∣∣h2

c − (q vF )2
∣∣∣∣2 = h4

0, (15)

where one must find the value of q that maximizes the critical
field hc. If the field-induced phase is assumed to be uniform
in each of the planes, namely if q = 0, Eq. (15) merely
reduces to

|hc|2 |hc − t | |hc + t | = h4
0. (16)
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The number of solutions with physical meaning of Eq. (16)
differs with the value of t (see Fig. 4). We define the critical
interlayer coupling tc = √

2h0 = 1.2473Tc0 that determines
the number of physical solutions.

If t < tc, Eq. (16) has only one solution. The critical
magnetic field at zero temperature can be written hc1 =
1
2 [2t2 + 2(t4 + 4h4

0)1/2]1/2. In the limit t � Tc0, the solution

can be written hc1 = �0
2 (1 + t2

�2
0
). We note that the critical

magnetic field at T = 0 K in the S-N bilayer increases with
the interlayer coupling t .

In the case t > tc, Eq. (16) has three solutions with
physical meaning. The first solution is hc1. The second and the
third solutions are hc2 = 1

2 [2t2 + 2(t4 − 4h4
0)1/2]1/2 and hc3 =

1
2 [2t2 − 2(t4 − 4h4

0)1/2]1/2, respectively. In the limit t � Tc0,
the three solutions can be written as hc1,2 = t ± �4

0/32t3 and
hc3 = �2

0/4t . In the limit t � Tc0, Tc is of the order of T 2
c0/t

and then hc3 is of the order of Tc. Consequently, hc3 defines
the lowest critical magnetic field.

For t = tc the critical fields hc2 and hc3 coincide.
In the case of high interlayer coupling t > tc, a field-

induced superconducting phase appears at high magnetic field.
This phase exists between the two magnetic fields hc1,2 =
t ± �4

0/32t3. Thus, the new zero-temperature paramagnetic
limit hc1 = t + �(0)4/32t3 may be tuned far above the
usual one hFFLO = �0 merely by increasing the interlayer
coupling.

Thorough analysis of Eq. (15) shows that the upper
critical field is even increased by an in-plane modulation
(see Fig. 5).

The FFLO paramagnetic limit of the S-N bilayer also
depends on the interlayer coupling t as seen in Fig. 5.
The field-induced superconducting phase is observable at
T = 0 K only when hc2 and hc3 are distinguishable. In
the presence of FFLO modulation, the critical magnetic

FIG. 4. (Color online) (h/Tc0,t/Tc0) diagram for the S-N bilayer
in the clean limit (τ → ∞) at T = 0 K (solid line). The uniform
superconducting state is presented in gray. The line h = �0/2
presents the critical magnetic field for a second-order supercon-
ducting phase transition for a single superconducting layer. The
line h = �0 corresponds the FFLO paramagnetic limit for a single
superconducting layer. The line h = �0/

√
2 represents the first-order

paramagnetic limit for a single superconducting layer.

FIG. 5. (Color online) (h/Tc0,t/Tc0) diagram for the S-N bilayer
in the clean limit (τ → ∞) (solid line). The uniform superconducting
state is presented in the gray region. The nonuniform superconducting
(FFLO) phase in the S-N bilayer is presented in the dotted region.
The line h = �0/2 presents the critical magnetic field for a second
order superconducting phase transition for a single superconducting
layer. The line h = �0 represents the FFLO paramagnetic limit
for a single superconducting layer. The line h = �0/

√
2 represents

the first-order paramagnetic limit for a single superconducting
layer.

field at zero temperature hFFLO
c2 and hFFLO

c3 are separated
in the case t � 1.5Tc0. Below this value, the usual super-
conducting (h,T ) phase diagram may be strongly deformed
(see Fig. 6).

2. (h,T ) phase diagram

In this section, we study the second-order (h,T ) phase
transition diagram taking into account FFLO modulation. The
self-consistency Eq. (11) is

ln

(
Tc0

Tc

)
= 2Tc

∫ 2π

0

dφ

2π
Re

[
γ + 2 ln(2) + 1

4

×�

(
1

2
+ i(h + vF q cos(φ))

2πT

)]
+ 2Tc

∫ 2π

0

dφ

2π

× Re

[
1

8
�

(
1

2
+ i(h + t + vF q cos(φ))

πT

)
+1

8
�

(
1

2
+ i(h − t + vF q cos(φ))

πT

)]
. (17)

This analysis in the general case can be performed only
numerically on the basis of (17).

A magnetic-field-induced superconducting state appears
at high magnetic field as we can see in Fig. 7 for t =
2Tc0 and in Fig. 8 for t = 3Tc0. For h � t , the Zeeman
effect that destroys the superconductivity is compensated
by the bonding-antibonding states degeneracy created by
the proximity effect between the S and the N layers (see
Fig. 1). The lower and upper critical lines merge at field
h = t and the field-induced superconductivity is confined
to temperature lower than TM = πe−γ T 2

c0/(8t) in the limit
t � Tc0. Therefore, the superconducting field-induced phase
is confined to temperature lower than TM . These results were
obtained for relatively strong coupling. For lower coupling
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FIG. 6. (h/Tc0,Tc/Tc0) phase transition diagram calculated for
t = 1.35Tc0 with the second-order transition line (solid line) and
FFLO state to normal state transition line (dotted line). We see below
Tc � 0.2Tc0 that the transition line is deformed. The compensation
between the Zeeman effect and the bonding and antibonding states
becomes relevant at low temperature.

(t � Tc0), the usual phase transition diagram is strongly
deformed as shown in Fig. 6 and finally disappears for t

smaller enough than Tc0. From an experimental point of view,
one might choose a system with an intermediate coupling
t small enough to settle the superconducting field-induced
phase but large enough to separate reentrance and the usual
S phase.

IV. EFFECT OF THE IMPURITIES ON THE
FIELD-INDUCED SUPERCONDUCTING PHASE

In this section, we investigate phases with uniform super-
conductivity in the S layer. We study the superconducting
critical temperature as a function of the interlayer coupling.
We obtain the critical magnetic field of the second-order

FIG. 7. (h/Tc0,Tc/Tc0) phase transition diagram calculated for
t = 2Tc0 with the second-order transition line (solid line) and FFLO
state to normal state transition line (dotted line). The inset presents a
zoom of the superconducting reentrance phase around h � t � 2Tc0.

FIG. 8. (h/Tc0,Tc/Tc0) phase transition diagram calculated for
t = 3Tc0 with the second-order transition line (solid line) and FFLO
state to normal state transition line (dotted line). The inset presents a
zoom of the superconducting reentrance phase around h � t � 3Tc0.

superconducting to normal metal phase transition as a function
of the temperature and the interlayer coupling. Study of the
influence of the impurities on the S-S bilayer is proposed in
Sec. V.

A. Critical temperature

We start with the analysis of the influence of the impurities
on the superconducting critical temperature. Then Eq. (10) can
be written

f +
0,0 = �∗(t2 + 2

(
ω + 1

2τ

)2)(
2ω + 1

2τ

)
t2 + 2ω

(
ω + 1

2τ

)2 (18)

in accordance with the model developed in Ref. 31. The self-
consistency equation (11) in this case is written as

ln

(
Tc

Tc0

)
= 2πTc

∞∑
ω=0

(
t2 + 2

(
ω+ 1

2τ

2)(
2ω+ 1

2τ

)
t2 + 2ω

(
ω+ 1

2τ

)2 − 1

ω

)
.

(19)

In the case of weak proximity effect (t � Tc0), the decrease
of the critical temperature is deduced from Eq. (19) and reads

Tc − Tc0

Tc0
= �Tc

Tc0
= −1

2
(τ t)2

[(
1

2τTc0

)
π + 4�

(
1

2

)
−4�

(
1

2
+ 1

4τTc0π

)]
.

In the clean limit (Tc0 � t � 1
2τ

) the superconducting critical

temperature varies as Tc

Tc0
= 1 − ( 7

8
ζ (3)
π2 − π

192
1

τTc0
) t2

T 2
c0

, and the

impurity scattering inside the N layer decreases the proximity
effect. In the dirty regime (Tc0 � 1

2τ
� t) the superconducting

critical temperature varies as Tc

Tc0
= 1 − π

2
τ t2

Tc0
. The presence

of impurities enhanced the superconducting state and Tc
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FIG. 9. Graph of Tc/Tc0 as a function of t/Tc0. The clean case
(1/2τ = 0) is presented by the solid line. The impurities are plotted
with (1/2τ )/Tc0 = 0.01,0.05,0.097,1 in dotted, dashed, dashed-
dotted, and dashed-dotted-dotted lines, respectively. We see that the
impurities enhance the superconducting transition temperature for
weak interlayer coupling. On the other hand superconducting critical
temperature decreases quickly in the presence of impurities at strong
interlayer coupling.

decreases slower than in the clean case (see Fig. 9). In this
case, the impurities decrease the effective transfer coupling
and then the proximity effect.

However, at strong interlayer coupling t � Tc0 and 1/2τ �
Tc, the expression for the anomalous Green’s function (18)
becomes f +

0,0 = �∗ (t2+2ω2)
2ω(t2+ω2)

[1 + t2(2ω2−t2)
2ω(t2+ω2)(t2+2ω2)

( 1
2τ

)] so the critical

temperature varies as Tc

Tc0
= πe−γ

2
Tc0
t

(1 − 1
8

t

τT 2
c0

). This means

that scattering on impurities strongly decreases Tc for high
interlayer coupling as seen in Fig. 9. In the regime t �
Tc0, the mixing between the superconducting state in the S
layer and the normal state in the N layer is very strong.
The bilayer draws near the regime λ̃ −→ λ/2 where the
S-N bilayer can be considered as a single S layer with
an effective coupling constant λ̃ < λ. Note that Tc de-
pends on the impurities contrary to the Anderson theorem
prediction which is not surprising because the system is
nonuniform.

B. Effect of the impurities on the phase diagram

In this section, we study the influence of the impurities
on the (h,T ) and (h,t) phase diagram of the S-N bilayer. In
the presence of impurities, the modulated phase disappears
and hFFLO decreases to hI .44,45 When the normal phase is
overcooled the critical magnetic field decreases from hI to
h0.33 For simplicity in the whole paper, we will focus on
the second-order transition critical field of the S-N bilayer,
keeping in mind that if the transition is of the first order
the calculated field corresponds to the overcooling field and
the critical region of superconductivity phase existence may
be somewhat larger. Consequently, we study the influence
of the impurities in the homogeneous case (q = 0). In
this case, the anomalous Green’s function is the same as

FIG. 10. (Color online) (h/Tc0,t/Tc0) diagram for the S-N bilayer
in the clean case (τ → ∞) (solid line) and with (1/2τ )/Tc0 =
0.05,0.097,1 in dashed, dotted, dashed-dotted lines, respectively.

Eq. (18) with the substitution ω −→ ω + ih and can be
written as

f +
0,0 = �∗

0

[
2
(
ω + ih + 1

2τ

)2 + t2
][

2 (ω + ih) + 1
2τ

]
t2 + 2 (ω + ih)

(
ω + ih + 1

2τ

)2 .

(20)

1. (h,t) phase diagram at zero temperature

The impurities change the form of the (h,t) phase diagram
at T = 0 K as shown in Fig. 10. The (h,t) phase diagram has
been calculated numerically. The critical interlayer coupling
tc increases with the impurity diffusion potential 1/2τ . The
maximal values of hc1 and hc2 decrease with the impurity
diffusion potential contrary to hc3. The variations of hc1,
hc2, and hc3 reveal that the superconducting phase in the S
layer is enhanced by the presence of the impurities whereas
the field-induced superconducting phase is destroyed by the
impurities.

2. (h,T ) phase diagram

The (h,T ) phase diagram as been calculated numerically.
The reentrance phase is strongly influenced by the presence
of the impurities as seen in Fig. 11. The maximal critical tem-
perature under which the field-induced phase exists decreases
with the impurity scattering potential. Moreover the upper and
lower critical fields of the reentrant superconducting phase
(hc1 and hc2) become closer with the increase of impurity
diffusion potential as seen in the previous subsection. In the
case t = 2Tc0, the reentrance phase totally disappears for an
impurity diffusion potential 1/2τ above 0.097Tc0. In Fig. 11,
the usual superconducting phase is also influenced by the
presence of impurities. The critical magnetic field at zero
temperature hc3 and the critical temperature at zero magnetic
field Tc increase with the impurity diffusion potential. The
effective interlayer coupling decreases in the presence of
impurities and then the usual superconductivity in the S layer
is enhanced.
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V. EFFECT OF THE IMPURITIES ON THE S-S BILAYER

In this section, we study the S-S bilayer considering the
FFLO modulation and the impurities. As predicted in Ref. 22

for ferromagnetic superconductor multilayered systems, a π

state may appear in the S-S bilayer under magnetic field. Using
the same model as developed in Sec. II, the S-S bilayer is
described by the following equations:

⎛⎜⎜⎜⎝
ω̃ − ivF · q −i t

2 0 i t
2

−i t
2 ω̃ − ivF · q i t

2 0

0 i t
2 ω̃ − ivF · q −i t

2

i t
2 0 −i t

2 ω̃ − ivF · q

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

f +
0,0

f +
1,0

f +
1,1

f +
0,1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
�∗

0 + 〈f +
0,0(ω,q)〉

φ

2τ

0

�∗
1 + 〈f +

1,1(ω,q)〉
φ

2τ

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where �∗
1 is the superconducting gap in the S layer indexed

j = 1.
In the π phase, �∗

0 = −�∗
1, the solution of the system

(21) is

f +
0,0 = �∗

0

2
(
1 − 1

2τ

(�2 + �1)
2 �1�2

) (
1

ω1
+ 1

ω2

)
and the averaged solution on the φ angle

〈f +
0,0〉φ = (�1 + �2) �∗

0

2 �1�2
[
1 − 1

2τ
(�2 + �1)

] .
In the clean limit (τ −→ ∞), at zero temperature, the π

superconducting phase appears above the critical magnetic
field hlow = t − �2

0/8t and below hup = t + �2
0/8t in the

limit t � �0. As predicted in Ref. 21, the modulated FFLO
state appears at low temperature and maximizes the critical
magnetic field. Hence, with the FFLO state, the critical
magnetic fields are hlow,up = t ∓ �2

0/4t in the limit t �
�0. The reentrance superconducting phase is enhanced at
low temperature by FFLO modulations. The presence of

impurities in the system may destroy the FFLO state and the
reentrance phase. The FFLO transition should meet quickly
the first-order transition line. Consequently, we will study
the influence of the impurities in the homogeneous case
where q = 0.

A. (h,t) phase diagram

At T = 0 K in the π state without FFLO modulation, the
self-consistency equation (12) becomes⎡⎢⎣4

(
1

2τ

)2

+
⎛⎝2h +

√√√√∣∣∣∣∣−4t2 +
(

1

2τ

)2
∣∣∣∣∣
⎞⎠2⎤⎥⎦

×

⎡⎢⎣4

(
1

2τ

)2

+
⎛⎝2h −

√√√√∣∣∣∣∣−4t2 +
(

1

2τ

)2
∣∣∣∣∣
⎞⎠2⎤⎥⎦ = 16h2

0.

(21)

The solutions of Eq. (21) are

h
imp
up,low = 1

2

√√√√√∣∣∣∣∣−4t2 +
(

1

2τ

)2
∣∣∣∣∣ − 4

(
1

2τ

)2

± 4

√√√√−
(

1

2τ

)2
∣∣∣∣∣−4t2 +

(
1

2τ

)2
∣∣∣∣∣ + h4

0 ,

where h
imp
up,low are the critical magnetic field of the S-S bilayer

in the presence of impurities (see Fig. 12). The field-induced
superconducting state is destroyed in the presence of impurities
and cannot be observed if h

imp
low = h

upimp
up . We define a critical

impurity diffusion time τc = 1/2[2t2 − (4t4 − h4
0)1/2]1/2 be-

low which the reentrance phase totally disappears. In the case
where t = 2Tc0 and h0 = 0.882Tc0, ( 1

2τ
)c � 0.194Tc0.

The critical magnetic field in the presence of FFLO
modulation is plotted in Fig. 12 in the clean limit. The critical
magnetic field in the presence of FFLO modulations is the
upper limit of the critical magnetic field.

We can see that hFFLO
up , the upper critical field in the

presence of FFLO modulations, crosses the line h = �0

for t � 1.25Tc0. This means that the usual superconducting
phase is deformed only for t > 1.25Tc0 at T = 0 K. Then
the field-induced superconducting phase becomes observable.
The field-induced superconducting phase becomes totally
observable when hFFLO

low , the lower critical field in the presence
of FFLO modulations, crosses the line h = �0 for t � 2.1Tc0.

In the uniform case, we would have to consider the
first-order transition line. For the S-S bilayer, the first-order
transition line is between the second-order and the FFLO
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FIG. 11. (h/Tc0,Tc/Tc0)phase transition diagram for the S-N
bilayer calculated for t = 2Tc0 with the second-order transition
line in the clean case [(1/2τ )/Tc0 = 0] (solid line) and with
(1/2τ )/Tc0 = 0.01,0.05,0.097,1 in dotted, dashed, dashed-dotted,
dashed-dotted-dotted lines, respectively. The inset presents a zoom
of the superconducting reentrance phase around h � t � 2Tc0.

transition line. The reentrance phase would appear when hI
up,

the upper critical field for a first-order phase transition, is above
hI = �0/

√
2 and would be distinguishable if the lower critical

field in the case of first-order phase transition is higher than h.

B. (h,T ) phase diagram

In the π state, the Cooper pairs are formed by two electrons
in different layers. The standard superconducting state is
only due to the 0 phase and then is not influenced by the

FIG. 12. (Color online) (h/Tc0,t/Tc0) diagram for the S-S bilayer
in the clean case [(1/2τ )/Tc0 = 0] (solid line) and with (1/2τ )/Tc0 =
0.15,0.194,0.5,1 in dashed, dotted, dashed-dotted, and dashed-
dotted-dotted lines, respectively. The lines h = �0/2, h = �0/

√
2,

and h = �0 present respectively the critical magnetic field for a
second-order superconducting phase transition, the critical magnetic
field for a first-order phase transition, and the FFLO paramagnetic
limit for a single S layer. The close-dashed line is the FFLO
paramagnetic limit in the S-S bilayer in the clean limit.

FIG. 13. (h/Tc0,Tc/Tc0) phase transition diagram for the S-S
bilayer calculated for t = 2Tc0 with the second-order transition line
in the clean case [(1/2τ )/Tc0 = 0] (solid line) and with (1/2τ )/Tc0 =
0.01,0.05,0.1,0.125,0.15,0.175 in dotted, dashed, dashed-dotted,
dashed-dotted-dotted, close-dashed, close-dotted lines, respectively.
The inset presents a zoom of the superconducting reentrance phase
around h � t � 2Tc0.

impurities as predicted by the Anderson theorem. The lower
and upper critical lines merge at field h = t and temperature
TM = πe−CT 2

c0/(4t) in the limit t � Tc0. The field-induced π

superconductivity is confined to temperature lower than TM .
On the phase diagram, we see that the reentrance decreases

as the impurity self-energy is increasing (see Fig. 13). The
reentrance phase totally disappears for 1

2τ
� 0.194Tc0 in the

case where t = 2Tc0. The existence of a first-order transition
line in the field-induced phase transition could influence these
results. hI

up,low are higher (smaller) than hup,low. Consequently,
the critical impurity diffusion time τc should be higher than in
the case of a second-order transition.

VI. CONCLUSION

To conclude, the proximity effect plays a crucial role
in the S-N and S-S bilayers. The superconducting critical
temperature and the critical magnetic field at zero temperature
in the S-N and the S-S bilayers depends directly on the
interlayer coupling. We demonstrated that at low temperature,
a magnetic-field-induced superconducting phase appears at
high in-plane magnetic field in S-N bilayers. This field-induced
phase originates from the compensation of Zeeman effect
energy splitting by the energy splitting between the bonding
and antibonding state electronic levels. This reentrance phase
provides the possibility to overcome the classical paramagnetic
limit, and the results of our work give hints for engineering
layered superconducting material with very high critical fields.
Note that the case of S-N bilayers may be relevant to the layered
high-Tc superconductors. Indeed, in their crystalline structure
often the S and N layers alternate.

In S-S and S-N bilayers, the presence of impurities make the
superconducting field-induced phase more difficult to observe.
The impurities produce a broadening of the different energy
levels over an energy range 1/τ which prevents exact compen-
sation. It is possible to define a critical mean-free path time over
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which the reentrance phase cannot survive. In the S-N and S-S
bilayers, the critical mean-free path time τc only depends on the
interlayer coupling. In the S-S bilayer, in the case t � �0, then
τ−1
c � 0.25�0, above which there is no possibility to observe

the field-induced phase. From an experimental point of view,
it could be possible with molecular beam epitaxy techniques
to provide a sufficiently large mean-free path to realize the
condition of field-induced phase observation.

Although we have only treated the Zeeman effect as a
Cooper pair-breaking effect, we have to discuss the orbital
pair-breaking effect. In the case of multilayered system under
in-plane magnetic field, the condition for neglecting the
orbital effect is given by tHξ0d/�0 < �0, where ξ0 is the
in-plane coherence length and �0 = h/2e the superconducting
quantum of magnetic flux. In the case t � �0 we obtain that
H must be lower than Horb � �0/(ξ0d). At the typical values

d � 10 Å, ξ0 � 100 Å the corresponding field is extremely
large, Horb � 200 T, and not restrictive at all, as the maximal
currently attainable permanent magnetic field is 60 T. The
orbital effect becomes important in layered system in the case
t � �0 when the Pauli limit may be exceeded many times.
However, in Ref. 46 it was demonstrated that the orbital pair
breaking in layered superconductors is switched off in the
high-field regime and the superconductivity is restored. We
may expect that a similar situation would be realized in S-N
and S-S bilayers.
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