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Frequency-dependent ratchet effect in superconducting films
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The influence of an ac current of arbitrary amplitude and frequency on the mixed-state dc-voltage-ac-drive
ratchet response of a superconducting film with a dc current-tilted uniaxial cosine pinning potential at finite
temperature is theoretically investigated. The results are obtained in the single-vortex approximation, i.e., for
noninteracting vortices, within the frame of an exact solution of the appropriate Langevin equation in terms of
a matrix continued fraction. Formulas for the dc voltage ratchet response and absorbed power in ac response
are discussed as functions of ac current amplitude and frequency as well as dc current induced tilt in a wide
range of corresponding dimensionless parameters. Special attention is paid to the physical interpretation of
the obtained results in adiabatic and high-frequency ratchet responses taking into account both running and
localized states of the (ac+dc)-driven vortex motion in a washboard pinning potential. Our theoretical results are
discussed in comparison with recent experimental work on the high-frequency ratchet response in nanostructured
superconducting films [B. B. Jin et al., Phys. Rev. B 81, 174505 (2010)].

DOI: 10.1103/PhysRevB.84.054515 PACS number(s): 74.25.F−, 74.25.Wx, 74.40.De, 05.40.−a

I. INTRODUCTION

Within the last decade vortex ratchets, which exploit asym-
metric vortex dynamics, have been attracting considerable
attention.1–13 In essence, the vortex ratchet is a system where
the vortex can acquire a net motion in an asymmetric periodic
pinning potential (PPP) in the presence of deterministic or
stochastic forces with time averages of zero (for comprehen-
sive reviews, see Refs. 1–3). The asymmetry in the PPP refers
to the current direction reversal. There are essentially two
different ways to realize such a pinning potential asymmetry.
First, the spatial inversion symmetry of the PPP itself can
be broken intrinsically and involves some kind of periodic and
asymmetric pinning potential, also known as a rocking ratchet.
A second option is that an initially symmetric PPP, if externally
biased, i.e., subjected to an additive constant driving force,
results in an effective asymmetric pinning potential. This is
called a tilted-potential ratchet or a tilting ratchet. Irrespective
of the way to bring the asymmetry into a system, from a
practical viewpoint, the common feature of superconducting
ratchets is their rectifying property: The application of an ac
current to a superconductor with an asymmetric PPP landscape
can produce vortex motion whose direction is determined only
by the asymmetry of the pinning potential.

A considerable amount of theoretical work about the gen-
eral properties of different types of ratchet systems exists.1,3,4

Such ratchet systems range from the use of Josephson junctions
in superconducting quantum interference devices (SQUIDs)
and arrays5 to the use of one- or two-dimensional potential-
energy ratchets allowing one to construct fluxon pumps and
lenses6 and drive fluxons out of superconducting samples.7

Whereas the majority of ratchet proposals rely on single
particles interacting with an external potential to produce the
dc response, collective interactions between particles needed to
produce dc transport have also been considered previously.8 At
the same time in experiments, initially asymmetric PPPs have

been used rather than dc-biased ones so far. For instance, the
vortex lattice ratchet effect has been investigated in Nb films
sputtered on arrays of nanometric Ni triangles, which produce
the asymmetric PPP.9 Similar effects were also discussed
for YBCO films with antidots.10 The voltage rectification in
superconducting Al films patterned with either asymmetric or
symmetric antidots and subjected to an ac driving current,
dc-biased in the symmetric case, has been experimentally
observed in Ref. 11. Among other experimental works on the
vortex ratchet effect in nanopatterned superconductors, two
substantial recent papers12,13 should be mentioned. Perez de
Lara et al.12 have investigated ratchet effects in thin Nb films
grown on top of arrays of Ni nanotriangles subjected to an ac
current with a frequency up to 10 kHz, so that effects observed
in that work12 were adiabatic, i.e., independent of ac frequency.
Only recently, Jin et al.13 have experimentally investigated a
very important issue in the vortex ratchet study, namely the
frequency dependence of the dc voltage at large amplitudes of
the ac driving force in a frequency range between 0.5 MHz
and 2 GHz. As was pointed out in Ref. 13, ac frequencies were
always lower than 1 MHz in vortex ratchet measurements up
to that work13 (see Refs. 14–20 therein).

So far, a full temperature-dependent theoretical description
of the superconducting devices proposed in Refs. 9–13 is
not available due to the complexity of the two-dimensional
PPP used in these references. In particular, the theoretical
explanation of the experimental results of the vortex flow
along the vortex channeling directions in the above-mentioned
structures is a difficult problem. Below we propose to experi-
mentally study ratchet properties on nanostructured thin-film
superconductors14,15 with a uniaxial, i.e., washboard pinning
potential (WPP). Uniaxiality of the proposed potential does
not mean that the physics of vortex motion in a symmetric
WPP, tilted by an external dc bias, becomes one-dimensional
as the angular component of the moving force could simply
be regarded as changing the strength of the WPP. Besides the
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two limiting cases of transversal and longitudinal geometry,
when the vortices move across or along the WPP channels,
respectively, one has to consider for all intermediate angles not
only the longitudinal but also the transverse ratchet effect,4,12

where the last appears due to the guided vortex motion along
the WPP channels.

In the present work, however, we will use the transverse
geometry only to provide the reader with most intuitive
figure data and to simplify the subsequent analysis. Whereas
the model allows one to obtain exact expressions for the
magnetoresistivities at any intermediate current angles with
regard to the WPP channels, general formulas for the responses
have been provided recently.16 In that work,16 a full and exact
theoretical description of the nonlinear in current and tempera-
ture vortex dynamics in the ratchet devices has been performed
in the single-vortex approximation, i.e., for noninteracting
vortices, within the framework of the Langevin equation.
It should be noted that theoretical predictions of Ref. 16
lack experimental scrutiny so far, especially at microwave
and GHz frequencies. For this reason, throughout this paper
where applicable, we will be referring to the results of Jin
et al.13 as a most closely related experimental work to our
new tilted-ratchet results, though that work13 is dealing with a
rocking ratchet.

In more detail, the mixed-state resistive response of super-
conducting films has been theoretically investigated in Ref. 16
in the high-frequency and strong-amplitude regime of the ac
vortex transport in the presence of a dc bias, which invokes
a definite tilt of the cosine pinning potential, taking nonzero
temperature fluctuations also into account. The exact solution
of this nonlinear and time-dependent problem, obtained in
Ref. 16 in terms of a matrix continued fraction, included only
general formulas for the ac and dc magnetoresistive responses.
These will be elaborated in detail in this paper and applied to
the study of both the dc ratchet electric field response and
the absorbed ac power dependencies on the ac amplitude and
frequency at fixed temperature for arbitrary dc biases allowing
one to adjust the asymmetry of the PPP.

The aim of this paper is to physically analyze the tilted-
ratchet problem on the basis of the single-vortex model in
order to determine those “intrinsic” tilted-ratchet effects in the
vortex dynamics which arise from the tilt of initially symmetric
WPP as the only reason. In addition, this model allows one
to study theoretically the exact ratchet behavior of absorbed
power at strong ac amplitude and arbitrary frequency, i.e., the
subject that has not been studied in any previous theoretical
work known to us even for the usual vortex ac response.
As a result, two groups of new findings have been obtained.
Exact formulas for (i) the dc voltage ratchet response and (ii)
absorbed power in ac response will be discussed as functions
of ac current amplitude and frequency as well as dc current
induced tilt, in a wide range of corresponding dimensionless
parameters. Experimentally, the obtained results can be veri-
fied on superconducting films with a WPP, similar to those used
in Refs. 14,15. From the viewpoint of basic research, it will be
pointed out which new ratchet effects in the vortex dynamics
appear even within the single-vortex approximation. Besides,
a further development of the theory toward the consideration of
an asymmetric-potential ratchet will allow one to distinguish
tilted-ratchet effects from potential asymmetry-induced effects

when considering an asymmetric WPP in the presence of a dc
tilting bias.

The organization of the paper is as follows. In Sec. II we
introduce the model and summarize the expressions for dc and
ac ratchet responses, obtained in terms of a matrix continued
fraction. In Sec. III we graphically analyze these quantities
as functions of their driving parameters, namely dc bias, ac
amplitude, and frequency. In Sec. IV we discuss in detail
two limiting cases, the adiabatic and nonadiabatic regimes,
and explain peculiarities in the ratchet responses on the basis
of either the static current-voltage characteristics or solution
in terms of the Bessel functions, respectively. In Sec. V we
conclude with a general discussion of our results outlining
the difference between the intrinsic and tilted-ratchet models
elucidating their applicability and drawing parallels between
our theoretical results and a recent experiment.13

II. FORMULATION OF THE PROBLEM

Our theoretical treatment of the system, schematically
shown in Fig. 1, relies upon the Langevin equation for a vortex
moving with velocity v in a magnetic field B = nB (B ≡ |B|,
n = nz, z is the unit vector in the z direction and n = ±1)
which, neglecting the Hall effect, has the form

ηv = FL + Fp + Fth, (1)

where FL = n(�0/c)j × z is the Lorentz force (�0 is the
magnetic flux quantum, and c is the speed of light). j =
j(t) = jdc + jac cos ωt , where jdc and jac are the dc and ac
current density amplitudes and ω is the angular frequency.
Fp = −∇Up(x) is the anisotropic pinning force, and Up(x) =
(Up/2)(1 − cos kx) is the periodic washboard pinning po-
tential with k = 2π/a,17–20 where Up is its depth and a

is the period (see Fig. 2). Fth is the thermal fluctuation
force and η is the vortex viscosity. We assume that the

FIG. 1. (Color online) The system of coordinates xy with the unit
vectors x and y is associated with the WPP channels which are parallel
to the vector y. The coordinate system x ′y ′ is associated with the
direction of the transport current density vector j = jdc + jac cos ωt ,
α is the angle between j and y, and β is the angle between the average
velocity vector 〈v〉 and j. 〈Fp〉 is the average pinning force provided
by the WPP, FL is the Lorenz force for a vortex, and B is the magnetic
field vector. Inset: A schematic sample configuration in the general
case. Experimentally deducible values are the voltages Ex and Ey .
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FIG. 2. (Color online) Modification of the effective pinning po-
tential U (x) ≡ Up(x) − Fx with gradual increase of the Lorentz force
component in the x direction F , where Up(x) = (Up/2)(1 − cos kx)
is the WPP with its depth Up and period a = 2π/k. As the initial
WPP is symmetric, i.e., Up(−x) = Up(x), it can establish ratchet
properties only in the presence of an external dc bias F invoking its
tilt. Depending on the bias value, in the absence of an ac current and
assuming T = 0 K for simplicity, two qualitatively different modes
in the vortex motion appear. (i) If F < Fp , though the initial potential
well is tilted, it maintains the average vortex position; i.e., the vortex is
in the localized state. At the critical tilt value, i.e., when F = Fp , the
right-side potential barrier disappears. (ii) At last, when F > Fp , the
vortex motion direction coincides with the direction of the moving
force F ; i.e., the vortex is in the running state with an oscillating
instantaneous velocity with a frequency � ≈

√
(ξd )2 − 1 (see Sec. III

for details).

fluctuational force Fth(t) is represented by a Gaussian white
noise, whose stochastic properties are given by the relations
〈Fth,i(t)〉 = 0, 〈Fth,i(t)Fth,j (t ′)〉 = 2T ηδij δ(t − t ′), where T

is the temperature in energy units, 〈. . .〉 means the statistical
average, Fth,i(t) with i = x or i = y is the i component of
Fth(t), and δij is Kronecker’s delta.

The Langevin equation (1) with the Hall term has been
solved in Ref. 16 in terms of a matrix continued fraction.
Neglecting the Hall effect, which is usually small in con-
ventional type-II superconductors, e.g., in Nb films, below
we summarize only the final expressions needed for the
subsequent analysis in Secs. III and IV, where the main
quantities of physical interest are (i) the time-independent (but
frequency-dependent) dc electrical field response and (ii) the
stationary ac response on the frequency ω, independent of
the initial conditions. Both of these are determined by the
appropriate components of the average electric field induced
by the moving vortex system, 〈E(t)〉, whose time-independent
dc components, 〈Edc

x 〉ω0 and 〈Edc
y 〉ω0 ,16 are

{ 〈
Edc

y

〉ω
0 = nρf jc

(
jdc − 〈sin x〉ω0

) = ρf νω
0 jdc

y ,〈
Edc

x

〉ω
0 = ρf jdc

x ,
(2)

where ρf ≡ B�0/ηc2 is the flux-flow resistivity, jc ≡
cUpk/2�0, jdc

y = jd cos α, jdc
x = jd sin α, jd = |jdc|, and νω

0

is the (ω,jdc,jac,T )-dependent effective mobility of the vortex

under the influence of the dimensionless generalized moving
force jdc ≡ njdc

y /jc in the x direction, being

νω
0 ≡ 1 − 〈sin x〉ω0 /jdc. (3)

The term 〈sin x〉ω0 represents the time-independent static
average pinning force, given by Eq. (24) of Ref. 16.

The nonlinear power absorption in the ac response per
unit volume and averaged over the period of an ac cycle is
given in accordance with Eq. (85) of Ref. 16 by the following
expression:

P̄(ω) = (ρf /2)(jac)2[sin2 α + cos2 αReZ1(ω)], (4)

where

Z1(ω) = 1 − 〈sin x〉t1/jac (5)

is the nonlinear impedance with the term 〈sin x〉t1 being the
time-dependent dynamic average pinning force, determined
by Eq. (24) in Ref. 16, jac ≡ njac

y /jc, jac
y = ja cos α, jac

x =
ja sin α, and ja = |jac|.

III. MAIN RATCHET RESULTS

The main goal of this section is to present results of a
detailed theoretical study of the ratchet properties of the
(dc+ac)-driven nonlinear time- and temperature-dependent
vortex dynamics within the frames of the exact solution
of the problem, presented recently in our work.16 Here we
study two main physical quantities which can be measured
experimentally for our model, the dc electric field Ed and the
ac power absorption P̄ (in units of ρf ), as functions of their
dimensionless external driving parameters, namely dc bias
ξd = jd/jc, amplitude ξa = ja/jc, and frequency of the ac
input � = ωτ̂ with τ̂ ≡ 2η/Upk2 being the relaxation time.16

Whereas Eqs. (2)–(5) are written for any arbitrary angles α,
in order to get a more simple and clear physical interpretation
of the obtained results, below we put emphasis on the case
when α = 0◦, i.e., when both the currents flow along the WPP
channels provoking the vortex movement perpendicular to
them. As a result, below and throughout the paper we consider
only the y components for both ratchet, dc, and ac responses,
omitting the index y and 〈. . .〉 to simplify the notation.

The single-vortex approximation used in Ref. 16 supposes
the WPP period a to be large in comparison with the effective
magnetic field penetration depth λ, and the temperature low
enough to prevent smearing of singularities in the ratchet
responses. To accomplish this, until stated otherwise, all
the figure data are calculated for the dimensionless in-
verse temperature g ≡ Up/2T = 100 (Ref. 16) representing
a reasonable value, experimentally achievable, e.g., for thin
Nb films either grown on facetted sapphire substrates21 or
furnished with nanofabricated PPP landscapes,14,15 where
Up � 1000–5000 K and T ≈ 8 K. Assuming a triangular
vortex lattice matching the PPP landscape at a magnetic field
B ≈ 10 mT, the pinning structure’s period is a ≈ 400 nm.22

For a Nb film with a thickness d ≈ 60 nm, λ(0) � 100 nm
(Ref. 23) (depends on temperature and the film’s quality), so
that the condition d < λ < a can be experimentally satisfied.

Two groups of our findings commented on below refer
to the amplitude and frequency dependencies of the ratchet
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FIG. 3. (Color online) The ratchet voltage Ed versus ξa for a set of biases ξd = 0.01, 0.1, 0.3, 0.5, 0.8, 1.05, and 1.2, as indicated, in the
adiabatic (a), intermediate- (b), and high-frequency (c) regime.

responses Ed and P̄ . The dependencies are complementary to
each other allowing one to describe quantitatively Ed and P̄
in the whole (ξa,�,ξd )-space, as detailed next.

A. Electric field dc response

One of the main questions in the study of the function
Ed (ξa|ξd,�) given by Eq. (2) relies upon the determination
of the frequency and dc bias dependencies of the ac amplitude
threshold value, ξa

c (�,ξd ), which can be considered as an ac
critical current magnitude for the dc ratchet response Ed such
that Ed = 0 for ξa < ξa

c . To accomplish this, we begin the
graphical analysis with the ac amplitude dependence of the dc
ratchet response considering specific features in Ed (ξa|�,ξd )
at low (� = 0.01), intermediate (� = 1), and high (� = 3)
frequencies for similar tilts, as depicted in Fig. 3.

Consider at first the curves in Fig. 3(a) with � = 0.01
which corresponds to the adiabatic ratchet response. At large
ξa , for all the curves Ed (ξa|ξd,� 	 1) � ξd . These values
will be explained in Sec. IV in a rather simple manner as
this asymptotic behavior follows from Eq. (15) for E+(ξd +
ξa cos ωt) at ξa → ∞ with (+) denoting the even component
of E regarding the change ξa → −ξa . At small ξa values, we
observe different behavior for curves with ξd > 1 and ξd < 1,
namely for ξd = 1.05 and ξd = 1.2 the ratchet response is a
threshold-free one, whereas a threshold value ξa

c separates the
nondissipative and dissipative states at ξd < 1. The magnitude
of the threshold is a decreasing function of ξd and, in fact, is
equal to ξa

c = 1 − ξd which is evident for the adiabatic case.
The physical reason of the above difference follows from the
fact that at ξa = 0 and ξd > 1 the vortex is in the running state
with a slightly oscillating instantaneous velocity dx/dt and,
thus, nonzero electric field Ed , whereas for ξd < 1 the vortex
is localized in one of the WPP wells.

Transferring from low (� = 0.01) to intermediate (� = 1)
frequencies, several new distinctive features appear in Fig. 3(b)
in comparison with the adiabatic case. First, the threshold
values ξa

c (� = 1,ξ d ) are larger than those ensuing for � =
0.01 at similar subcritical dc tilts, i.e., ξd < 1. To illustrate
this in detail, we plot the ξa

c (�) dependence in Fig. 4 for a
set of biases. All the curves demonstrate qualitatively similar
behavior, i.e., a zero plateau at ξa < ξa

c , a linear dependence
at large ξa > ξa

c , and a nonlinear transition in between at

ξa � ξa
c . These segments correspond to the adiabatic,

intermediate-, and high-frequency modes which are roughly
separated by the straight lines � � 0.1 and � � 1, re-
spectively. It should be noted, that the curves ξa

c (�) in
Fig. 4, calculated in the present work for the dc-tilted cosine
pinning potential, are qualitatively similar to those obtained
experimentally on superconducting Pb films with a nontilted
ratchet PPP (see Ref. 13 and Fig. 5 therein). The transition
frequency from the adiabatic to nonadiabatic case has been
found at about 1 MHz for that system.13

Second, a difference in the Ed (ξa|ξd,�) behavior appears
between 0.4 � ξd

middle � 0.7, which looks like damped os-
cillating curves, and the curves at ξd � 0.4 and ξd � 0.7,
which look like curves with phase-locked regions (steps) in ξa .
Whereas at small ξd phase-locked regions ensue at Ed = 0, at
strong biases ξd � 0.7 these flat segments appear at Ed = 1. In
Sec. IV this will be discussed in detail within an approximate
Bessel-function approach, originally presented in Refs. 24,25
and used later26 for � = 1. In fact, the authors of Ref. 26

FIG. 4. (Color online) The frequency dependence of ξa
c for the

dc-tilted cosine pinning potential at different biases ξd = 0.1, 0.3, 0.5,
0.65, and 0.8, as indicated. The navy and orange dashed lines represent
rough separations between low- (� 	 1), intermediate- (� ∼ 1), and
high-frequency (� 
 1) regimes. Inset: The nonlinear transition from
the adiabatic to high-frequency regime in detail. The curves behave
qualitatively similarly to those obtained experimentally in Ref. 13 on
superconducting Pb films with a nontilted ratchet pinning potential.
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FIG. 5. (Color online) The voltage Ed versus � for a set of biases ξd = 0.01, 0.1, 0.3, 0.5, 0.8, 1.05, and 1.2, as indicated, at small (a),
intermediate (b), and strong (c) ac drives.

numerically calculated the Langevin equation in order to
obtain the so-called dynamical current-voltage characteristics
(CVCs) of the resistively shunted Josephson junction model,
which is equivalent to the model used here to analytically
derive the dc ratchet-response solution Ed (ξa|ξd,�) [notice
the curve Ed (ξa|ξd = 0.8,� = 1) in Fig. 7(a) of Ref. 26]. In
our model, the corresponding Langevin equation with noise
has been exactly solved in Ref. 16 [see Eq. (9) therein] and
will be discussed in the noiseless limit [Eq. (22) in Sec. III] to
clarify the origin of the steps in Fig. 3(b).

Lastly, consider the curves in Fig. 3(c) at � = 3. From
the above discussion it is clear that for ξd > 1, the ratchet
responses Ed are continuously oscillating curves without
thresholds. On the contrary, for ξd < 1 the responses have
thresholds whose magnitudes decrease with increasing ξd . As
in the previous case, an interesting property of the dependence
Ed (ξa|ξd,�) in Figs. 2(b) and 2(c) is the possibility for Ed to
decrease periodically (sometimes down to zero) with increase
of the driving amplitude ξa . Such a behavior of Ed is in contrast
to the behavior of the usual dc-driven CVCs, even though in
the presence of ξa , as these are always increasing functions
of ξd .

Now we turn to the analysis of the frequency dependencies
of the ratchet response Ed taken at fixed ξa and ξd , as
represented in Fig. 5 for small (ξa = 0.5), intermediate (ξa =
1), and strong (ξa = 3) ac amplitudes.

At small ac drives ξa = 0.5 [see Fig. 5(a)] the curves
vanish regardless of the frequency at small tilts ξd < 0.5.
This behavior is evident, since if both the tilt value and ac
drive amplitude are small, the vortices are localized at the
bottoms of the WPP wells which results in a nondissipative
state. With the gradual increase of the bias, for determinacy
from ξd = 0.5 to ξd = 0.8, the situation changes dramatically.
At low frequencies the voltage drop gets substantially higher,
whereas a zero-voltage tail spreads over the high-frequency
range. The former is a consequence of the running vortex state,
whereas the latter is a clear signature of the localized vortex
state. These regions are separated by a threshold frequency
�c ≡ �(ξd,ξa

c ), which is in fact already depicted in Fig. 4 and,
as evident from the latter plot, is strongly dependent on both
ξd and ξa [compare with the curves in Fig. 5(b) for ξa = 1].
The tilt ξd determines the asymmetry of the WPP and the
time needed for a vortex to get from one to the next WPP
well, whereas ξa represents the ac driving force for a vortex

which also competes with the height of the initially symmetric
WPP. This physically means that if the ac driving frequency
� is much less than the depinning frequency ωp ∼ τ̂−1, the
running state of the vortex appears and it can visit several
potential wells during the ac period. For a fixed ac amplitude
ξa and frequency �, the number of visited wells increases
strongly with the increase of the tilt, thus resulting in a shift of
the threshold frequency toward higher �. Another interesting
feature in the Ed (�) curves appears as a maximum at � � 1.
Its magnitude increases with increase of the frequency.

The behavior of Ed (�|ξd,ξa) plotted for ξa = 3 in
Fig. 5(c), as representative for strong ac drives, can be
summarized as follows. In the adiabatic limit, when � 	 1,
the function Ed (�|ξd,ξa) coincides with the tilt values ξd . At
high frequencies � > 1, the curves either attenuate rapidly for
subcritical tilts ξd < 1 or approach a constant value for ξd > 1.
In the intermediate regime, when � � 1, the curves oscillate
until the maximum is reached, followed by the subsequent
rapid decrease of the function Ed (�|ξd,ξa). Physically, this
corresponds to the pronounced reduction of the time Tω/2
with Tω being the ac period, over which the moving force on
the vortex keeps its direction. As a result, the vortex may no
longer visit several WPP wells, since the vortex displacement
during Tω is smaller than the WPP period a, even at strong ac
amplitudes ξa .

Summarizing, the calculated ratchet behavior of
Ed (ξa|ξd,�) differs substantially for a wide range of frequen-
cies �, ac amplitudes ξa , and dc biases ξd . Throughout the
frequency range this includes a cutoff filter behavior of the
function Ed (ξa|ξd,�) with decreasing ξa and increasing �.
In addition, at ξd � 0.4 and ξd � 0.7 the curves demonstrate
phase-locked peculiarities reminiscent of Shapiro steps16 as
well as a damped oscillatory behavior at 0.4 � ξd

middle � 0.7.

B. Power absorption in ac response

In this subsection we first consider the behavior of the
absorbed ac power P̄ , calculated as a function of the dimen-
sionless dc density ξd , ac density ξa , and frequency � in Sec. V
E of Ref. 16. Then we consider the graphs for Ed (ξa|ξd,�)
and ReZ1(ξa|ξd,�) in comparison with each other.

Before entering the discussion it is useful to remember16

that � = ωτ̂ , where τ̂ is the relaxation time and ωp ∼
τ̂−1 is the depinning frequency calculated in the linear ac
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FIG. 6. (Color online) ρ1 versus ξa for a set of frequencies � and biases ξd = 0.01, 0.1, 0.3, 0.5, 0.8, 1.05, and 1.2, as indicated, in the
adiabatic (a), intermediate- (b), and high-frequency (c) regime.

approximation at ξd = 0. We have to point out that the
bias dependencies for the critical frequency �c introduced
in the previous subsection and the depinning frequency ωp

are qualitatively opposite. Whereas the frequency dependence
of the first Shapiro-like anomaly in Ed (ξd ) is given by
the well-known expression � =

√
(ξd )2 − 1 (Ref. 27) for

overcritical biases, the dependence for the depinning frequency
ωp(ξd ) = ωp

√
1 − (ξd )2 has been obtained in the linear ac

approximation at ξa → 0 and for subcritical tilts at T = 0
only recently.28 Thereby, in Ref. 28 it was shown that ωp(ξd )
decreases with increasing ξd at 0 < ξd < 1. The physical
meaning of ωp(ξd ) at low temperature (g 
 1), i.e., when
the creep factor ν00 [see Eq. (107) in Ref. 16] is small, follows
from the fact that for low frequencies ω 	 ωp(ξd ) (or � 	 1)
pinning forces dominate and the vortex resistivity response ρv ,
being proportional to the absorbed power P̄ , is nondissipative
[see Eq. (2) in Ref. 16], whereas at high frequencies ω 

ωp(ξd ) (or � 
 1) frictional forces dominate and ρv is
dissipative. The power absorbed per unit volume and averaged
over the period of an ac cycle P̄(ω) was calculated in Ref. 16
[see Eq. (84) therein] and can be written as

P̄(ω) = (ρf /2)[(ξa
x )2 + (ξa

y )2ReZ1(ω)], (6)

where Z1(ξa,ξd,�,α,g) is the nonlinear frequency-dependent
and dc and ac amplitude-dependent impedance. In Ref. 16 it
was shown that Z1 plays the same role for the ac response as
νω

0 for the dc response.
Proceeding now to the analysis of the dependencies

P(ξa|ξd,�), let us recall that to accomplish this in the case
α = 0◦, it is sufficient to calculate the ac resistivity ρ1 ≡
ReZ1(ξa|ξd,�) as a function of its parameters, as presented in
Figs. 5 and 6.

As for the dependencies Ed (ξa|ξd,�) depicted in Fig. 4 and
corresponding to low, intermediate, and high frequencies, the
curves ρ1(ξa|ξd,�) are plotted at the same ξd values. Consider
at first the curves ρ1(ξa|ξd,�) in Fig. 6(a) at � = 0.01 which
correspond to the adiabatic case ω 	 ωp(ξa). Here localized
vortex states ensue at ξd < 1, and running states appear at ξd >

1. For small tilts, ξd < 1, an absorption threshold appears in
the ρ1(ξa|ξd,� = 0.01) curves at ξa = ξa

c . Here ξa
c coincides

with the critical ac magnitude for the corresponding curves
Ed (ξa|ξd < 1,� = 0.01). The physics of this threshold was

earlier discussed for � = 0.1 (see Ref. 16 and Fig. 6) and
for our adiabatic case (� = 0.01) may be connected with the
ωp(ξd ) dependence. At subcritical ac drives and overcritical
biases, e.g., at ξd = 1.05, as a consequence of the running
vortex state, ρ1 acquires large values. With the gradual increase
of ξa the curves exhibit a weak minimum and finally approach
unity.

In the case of intermediate frequency [see Fig. 6(b) for � =
1] the curves ρ1(ξa|ξd,�) start from a nonzero value regardless
the bias ξd . A different behavior at subcritical and overcritical
tilts should be noted. At overcritical biases the running state
for the vortex appears and the response is a consequence of this
motion with a slightly oscillating instantaneous velocity. On
the contrary, at subcritical tilts the vortex is in the oscillating
state and if the frequency of the external excitation exceeds the
depinning frequency ωp(ξd ), a nonzero response appears as a
result of the averaging of this oscillations. The bias dependence
at ξd < 1 in the limit of small ac drives and � 	 1 has
been discussed above. Proceeding with the analysis of the
curves shown in Fig. 6(b) it should be noted that at small
biases ξd � 0.5 the curves increase monotonically, whereas at
sufficiently large tilt values, e.g., at ξd = 0.8, 1.05, and 1.2, a
pronounced minimum appears. At overcritical biases this can
lead to a sign change in ρ1(ξa|ξd,�) in both ξa and ξd . This
evidence is represented in detail in Fig. 7 showing overcritical
tilts and weak ac drives. Figure 7 illustrates the presence of
the singular point ξd = √

1 + �2 in ρ1(ξd,ξa) at nonzero for
both the ac current amplitude and the temperature. A similar
singularity in the Josephson junction impedance problem has
been discussed previously in the limit of small ac amplitude
at zero temperature.29 Here we show that such a singularity
does not vanish at nonzero temperature in the presence of
subcritical ac amplitude ξa > 0. This evidence was left out of
the scope of that work.29 Proceeding with the description of this
anomaly it should be noted that the dependence of ρ1(ξa|ξd,�)
on ξa is less sharp than in ξd . As far as high temperatures
smear the singularity in both ξa and ξd , the minimum can
be more pronounced if considered at lower temperatures
(g > 100).

Considering ρ1(ξa|ξd,�) at high frequencies in Fig. 6(c),
it is evident that ρ1(ξa|ξd,�) approaches unity even
at small ξa which again corresponds to the case
ω � ωp(ξd ).
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FIG. 7. (Color online) The ac resistivity ρ1 versus ξa and ξd

at � = 1 demonstrating a sharp singularity in ξd . This results in
a sign change in the function ρ1(ξd,�) at overcritical tilts ξd � 1.
The position of the minimum can be quantitatively calculated as
ξd = √

1 + �2.

We go on with the analysis of the frequency dependence
of ρ1, represented in Fig. 8 for small ξa = 0.5, intermediate
ξa � 1, and strong ξa = 3 ac drives for the same set of
biases ξd .

At small ac drives [see Fig. 8(a)] the curves demonstrate
either monotonic behavior for ξd � 0.5 or pronounced non-
monotonic behavior for ξd � 0.5. The monotonic curves at
ξd = 0 agree with the results of Coffey and Clem18 who
calculated in linear approximation in ξa the temperature
dependence of the depinning frequency in a nontilted cosine
pinning potential. In contrast to this monotonic behavior,
the nonmonotonic curves (ξd � 0.5) demonstrate two char-
acteristic features: first, a pronounced power absorption in
the adiabatic regime; second, a deep minimum in the power
absorption at � � 1. The appearance of this frequency- and
temperature-dependent minimum was discussed in more detail
in Ref. 16. With the gradual increase of ξa , the value ρ1

at low frequencies remains the same, whereas the minimum
shifts toward higher frequencies [see Fig. 8(b)]. In addition, at

frequencies � � 0.5 peculiarities in the curves become more
pronounced. These can be smeared in turn when considered at
higher temperatures (g 	 100).

At strong ac drives, as represented in Fig. 8(c) for ξa = 3,
already at very low frequencies � 	 1 all the curves ρ1 acquire
large values and approach unity at high frequencies � 
 1.
Even though peculiarities in the dependence ρ1(�) seem to
be pronounced in the intermediate-frequency range, they are
sufficiently weak in comparison with those in Fig. 8(b) when
ξa = 1. A further increase of ξa leads to slightly distorted
curves throughout the frequency range.

The main results of this subsection can be summarized as
follows. The power absorption in the ac response has been
considered in terms of the ac resistivity ρ1 as a function of its
driving parameters, ξa , �, and ξd . While in the limiting cases
of small ac current in the absence of dc bias the well-known
results of Coffey and Clem follow18 and at strong dc biases a
large power absorption results, in agreement with the curves
reported previously,16 the appearance of a sign change in
ρ1(ξd,�) at a certain range of ac drives ξa at overcritical
biases ξd is predicted for the first time in the present
work.

IV. DISCUSSION

In this section, two physically different limiting cases at low
and high frequencies will be considered at zero temperature
(i.e., g → ∞) to augment the previous analysis with a more
intuitive and visual interpretation.

The first case we consider is the adiabatic regime with
� 	 1. To discuss the dc ratchet response E in this limit, we
employ static CVCs [see Eqs. (9) and (10) below] with j =
ξa cos ωt,j0 = ξd and average E+(j + j0) over the driving
period Tω = 2π/ω. In this limit (ω → 0), while ξa � 1 the
vortex may visit many potential wells of the WPP during the
time Tω/2, i.e., when the moving force on the vortex keeps its
direction.

The second case is the nonadiabatic case with � 
 1. In
this limit, the vortex displacement during the time Tω may be
smaller than the WPP period a, even at strong ac densities ξa ,
and the Langevin equation for a vortex can be solved in terms
of the Bessel functions as detailed below.

(a) (b) (c)

FIG. 8. (Color online) ρ1 versus � for a set of biases ξd = 0.01, 0.1, 0.3, 0.5, 0.8, 1.05, and 1.2, as indicated, at small (a), intermediate (b),
and strong (c) ac drives.
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FIG. 9. (Color online) The functions ν0(j ) (a) and E0(j ) (b) in the absence of a tilt in the adiabatic case at zero temperature. (c) In
the presence of a dc bias j0 = 0.8, E(j + j0) (solid) and E(−j + j0) (dashed) result in the appearance of even E+(j + j0) (dash-dotted)
and odd E−(j + j0) (dotted) components [see Eq. (12)]. The horizontal and diagonal thin dotted lines represent asymptotics E = 0.8 and
E = j , respectively. (d) E+(j + j0) (dash-dotted) is plotted together with the ratchet response Er [crosses, Eq. (19)] and the exact solution for
Ed (j,� = 0.001,j0 = 0.8,g = 1000) [solid, Eq. (2)].

1. Adiabatic case

We consider the vortex motion in a WPP, tilted by a dc bias
ξd < 1, and subjected to an ac drive with ω → 0. Our objective
is to qualitatively point out why a rectified dc voltage appears
in response to the ac input ξa . To accomplish this, we first
consider the dc CVCs for the cosine WPP [see Eqs. (2)] in the
absence of an initial tilt, viz.,

E0(j ) = jν0(j ), (7)

where −∞ < j < +∞ and

ν0(j ) =
{√

1 − 1/j 2, |j | > 1,

0, |j | < 1,
(8)

is the well-known nonlinear vortex mobility under the influ-
ence of the dimensionless generalized moving force j in the x

direction [see Eq. (52) in Ref. 16]. From Eq. (8) it follows that
ν0(j ) is an even function of j , i.e., ν0(j ) = ν0(−j ), whereas
E0(j ) is an odd function of j , i.e., E0(j ) = −E0(−j ). The
functions ν0(j ) and E0(j ) are shown in Figs. 9(a) and 9(b),
respectively.

As the cosine WPP is symmetric, i.e., Up(x) = Up(−x),
it can establish ratchet properties only when tilted; i.e., we
change j → j + j0, where j0 is the tilting dc bias. It is easy
to see that depending on the sign of j0, the tilt leads to the
shift of ν0 and E0 along the j axis by the value |j0| to the left
(for j0 > 0) or to the right (for j0 < 0). This is illustrated in
Fig. 9(c) where j0 = 0.8 for definiteness. In this case

E0(j ) → E(j + j0) = (j + j0)ν(j + j0), (9)

where

ν0(j + j0) =

⎧⎪⎨
⎪⎩

√
1 − 1/(j + j0)2, j > 1 − j0,

0, − 1−j0 <j <1−j0,√
1 − 1/(j + j0)2, j < (−1 − j0).

(10)

Whereas E0(j ) and ν0(j ) are odd and even functions of j ,
respectively (see Fig. 9), from Eqs. (9) and (10) it follows that
in the presence of a tilt E(j + j0) and ν(j + j0) are neither

even nor odd in j for j0 �= 0. In the following it is suitable to
present E(j ± j0) as

E(j ± j0) = E+(j ± j0) + E−(j ± j0), (11)

where

E±(j ± j0) = [E(j ± j0) ± E(−j ± j0)]/2 (12)

and

E±(j ± j0) = ±E±(−j ∓ j0) (13)

are the even and odd parts of E(j ± j0) with respect to change
j → −j .

On the other hand, it is clear that

E(j ± j0) = −E(j ∓ j0), (14)

because when we change the sign of the full current [i.e.,
(j ± j0) → (−j ∓ j0)], then E will be an odd function of
the full current. If we then apply the ± operation to E given
by Eq. (14) and take into account Eq. (12), we arrive at the
important conclusion that

E±(j ± j0) = ∓E±(j ∓ j0). (15)

From Eq. (15) it follows that E+(j + j0) = −E+(j − j0).
This means that E+(j + j0) changes its sign when changing
the sign of j0, whereas E−(j − j0) = E−(j + j0) does not
change its sign. From the physical viewpoint it means that
E+(j + j0), even in j and odd in j0, is responsible for the
ratchet response, whereas E−(j + j0), which is odd in j and
even in j0, describes the usual CVCs response, analogous at
j 
 1 to that at j0 = 0. Actually, if we take into account
that from Eq. (10) follows limj→∞ ν(±j + j0) = 1, then from
Eq. (13) at once it follows that

lim
j→±∞

E+(j + j0) = j0, (16)

lim
j→±∞

E−(j + j0) = j. (17)

At last, let us perform the change j → j cos ωt and
consider the function E(j cos ωt + j0), since this represents
a more close correlation with the exact results obtained by
using Eq. (2). To derive the average dc ratchet solution Er in
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response to to the input current j cos ωt + j0, one needs to
integrate the function E over the ac current period Tω,

Er ≡ 1

Tω

∫ Tω

0
dtE(j cos ωt + j0). (18)

Equation (18) can be reduced to the sum of two integrals,

Er ≡ 1

π

[ ∫ π/2

0
dϕE(j cos ϕ + j0)

+
∫ π/2

0
dϕE(−j cos ϕ + j0)

]
, (19)

with the integrals to be taken over ϕ = ωt only where
ν(j cos ωt + j0) is nonzero in accordance with Eq. (10); i.e.,

ϕ >

{ arccos
( 1−j0

j

)
, j > 1 − j0,

arccos
(−1−j0

j

)
, j < −1 − j0.

(20)

Equation (19) can be rewritten in another equivalent form,

Er ≡ 2

π

∫ π/2

0
dϕE+(j cos ϕ + j0), (21)

which represents the even component of the dc ratchet response
and will be compared next with the temperature-dependent
response Ed (ξa).

We now take a closer look at Fig. 9 considering first the
curves E(j + j0) (solid) and E(−j + j0) (dashed) in Fig. 9(c).
As follows from Eq. (16), E(j + j0) is zero at −1 − j0 <

j < 1 − j0 as far as E(−j + j0) vanishes at −1 + j0 < j <

1 + j0. A rapid increase in both the functions in j in the vicinity
to ±(1 − j0) and ±(1 + j0) should be noted. In the adiabatic
limit [see Eq. (12)], E+(j + j0) and E−(j + j0) are shown
in Fig. 9(c) by dash-dotted and dotted lines, respectively.
They inherit both the bumplike peculiarities in E(±j + j0)
at ±(1 + j0). Next we turn to Fig. 9(d) where adiabatic
[Eq. (16), dash-dotted], approximate [Eq. (19), crosses], and
exact [Eq. (2), solid] ratchet responses are shown together.
The asymptotic behavior of all the curves is in agreement with
Eq. (16). Peculiarities are highly pronounced in the adiabatic
solution (12), calculated in fact in response to the square
wave ac current. In contrast to this, the approximate ratchet
solution (19) for the cosine ac current practically coincides
with the exact solution (2) calculated in the limit of very small
frequencies ω = 0.001 and very low temperature g = 1000.

By this way, we conclude that the simple approach in terms
of the static CVCs can explain qualitatively the form of the
curves Ed (ξa) in Fig. 3(a) in the adiabatic limit. A good
quantitative agreement between the approximate and exact
solutions is revealed at very low frequencies and temperatures.

2. Nonadiabatic case

In order to explain qualitatively the results of the exact
calculations of Ed (ξa|ξd,�) at low temperatures (g = 100),
presented in Figs. 3(b) and 3(c) for intermediate and high
frequencies (� ∼ 1 and � 
 1) of the ac driving force, we use
a more simple approach which ignores the noise (g → ∞). In
this limit, the equation of motion for the dimensionless vortex
coordinate x [see Eq. (9) in Ref. 16] reduces to

dx/dt + sin x = ξd + ξa cos �t, (22)

which is analogous to the well-known equation of motion
for the phase difference in the ac-driven resistively shunted
Josephson-junction model27 at zero temperature. For high and
intermediate frequencies (� 
 1 and � ∼ 1) and for ξd >

0.5, Eq. (22) can be approximately analyzed and solved in
the spirit of the ansatz of Ref. 24. In these limiting cases we
simply assume that the velocity of the vortex is sinusoidal in
accordance with

dx/dt = 〈dx/dt〉 + ξa cos �t (23)

and determine the constant 〈dx/dt〉 by requiring that dx(t)/dt

satisfy Eq. (22). Having integrated Eq. (23) we obtain

x(t) = x0 + 〈dx/dt〉t + (ξa/�) sin �t, (24)

where x0 is a second constant to be determined. Substituting
Eq. (24) into Eq. (22) and using the expansion of sin x in a
harmonic series according to formulas originally suggested by
Shapiro et al. in Ref. 25, i.e.,

cos(x sin ϕ) =
∞∑

k=−∞
Jk(x) cos(kϕ),

sin(x sin ϕ) =
∞∑

k=−∞
Jk(x) sin(kϕ), (25)

where Jk(x) is the kth order Bessel function, we obtain

〈dx/dt〉 = ξd −
∞∑

k=−∞
Jk(ξd/�) sin[x0 + (〈dx/dt〉 + k�)t],

(26)

from which 〈dx/dt〉 can be found self-consistently. In Eq. (26)
x0 is an arbitrary coordinate. For values 〈dx/dt〉 that are not

FIG. 10. (Color online) The functions J0(ξa) and J1(ξa) (dashed)
are plotted together with straight lines ξd = 1.2 and ξd − � = ±0.2.
The phase-locked regions in Ed (ξa|� = 1,ξ d = 1.2,g = 100) (blue
line) are connected by vertical lines for clarity. The light segments
of the stripe on top of the plot indicate phase-locked regions with
ξa
i denoting the roots of Eq. (27) for n = 0 and n = 1. A better fit

of the noiseless approximate solution (23) can be achieved if the
ratchet response (2) is calculated at very low temperatures, such as
for g = 1000 (black line).
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FIG. 11. (Color online) The functions J0(ξa) and J1(ξa) (dashed)
are plotted together with straight lines ±ξd (= 0.1) and � − ξd = 0.9
to illustrate the phase-locked regions in Ed (ξa|� = 1) at ξd = 0.1.
Other details are similar to those in Fig. 10.

integral multiples of �, the term sin x does not contribute a
constant component to Eq. (22), and equating the constant
terms yields (after averaging over one period for locking into
the nth region)

ξd − n� = Jn(ξa/�)(−1)n sin x0. (27)

In order to use these results for the explanation of the
behavior of Ed (ξa|ξd,� = 1) [see Fig. 3(b)] we consider two
cases. The first case considers ξd = 1.2 for which at ξa = 0
the vortex is in the running state. From Fig. 9 we see, however,
that for ξa

1 < ξa < ξa
2 the value of Ed is locked into the phase

of the ac periodic driving at n = 1 [see Eq. (27)]. From Eq. (27)
it follows that for n = 0 at ξd = 1.2 and � = 1 this equation
has no solution at any value of x0. For n = 1 we have

J1(ξa) sin x0 = −0.2 (28)

at ξa
i values which satisfy the condition J1(ξa) = ±0.2 and

strictly correspond to the phase-locked regions for this curve
(see Fig. 10). Between these regions E has a bumplike form
with an increasing width and decreasing height with the
increase of ξa . For n = 2 Eq. (27) has no solution.

The second case deals with ξd = 0.1, for which at ξa <

ξa
c the vortex is in the locked state with n = 0. In this case

the equation J0(ξa) = ±0.1 has many solutions (see Fig. 11).
Considering n = 1 leads to the equation J1(ξa) sin x0 = ±0.9
which has no solution, however.

V. CONCLUSION

In this work we proposed an exactly solvable two-
dimensional model structure for the study of the frequency-
dependent ratchet effect in a superconducting film with a
symmetric planar pinning potential, tilted by a dc bias, also
known as a tilted ratchet. We have theoretically examined
the strongly nonlinear nonadiabatic tilted ratchet behavior
of the two-dimensional vortex system of a superconductor
as a function of the (ac+dc) transport current density j, the

frequency ω, and the temperature T . The nonlinear (in j)
resistive behavior of the anisotropic vortex ensemble is caused
by the presence of anisotropic pinning with the symmetry
of the PPP. It is physically obvious that such a pinning at
low enough temperatures leads to anisotropy of the vortex
dynamics since it is much easier for vortices to move along the
pinning channels (the guiding effect in the flux-flow regime,
which is linear in the current) than in the perpendicular
direction, where it is necessary for them to overcome the
pinning potential barriers. The latter is also a source of
nonlinearity of the dc+ac responses. If under variation of one
of the “external” driving parameters j, T , and α, the intensity
of the manifestation of the indicated nonlinearity is weakened,
this weakening will lead to an “effective isotropization” of the
vortex dynamics, i.e., to a convergence (and in the limit of
the absence of nonlinearity, to coincidence) of the directions
of the mean velocity vector of the vortices and the Lorentz
force.30

It is physically clear that current, temperature, and angle α

have qualitatively different effects on the weakening of the pin-
ning and the corresponding transition from anisotropic vortex
dynamics to isotropic. With the growth of j the Lorentz force
FL grows and the height of the potential barrier decreases,
so for j � jcr1,jcr2 these barriers essentially disappear. Here
jcr1,2 are the crossover currents for these transitions to occur
regarding the right- and left-hand PPP barriers. The quantities
jcr1,2 depend on α by virtue of the fact that the probability of
overcoming the barrier is governed not by the magnitude of
the force FL, but only by its transverse component FL cos α,
so that jcr1,2(α) = jcr1,2(0)/ cos α grows with increasing of
α. Since an increase in temperature T always increases the
probability of overcoming the pinning barrier, the transition
to isotropization of the vortex dynamics is much steeper
in T , the smaller the pinning barrier is. However, although
general formulas for the ratchet responses [see Eqs. (2)–(5)]
include both the angle and temperature dependencies, in the
present work we used α = 0◦ and g ≡ Up/2T = 100 for
simplicity.

Proceeding now to a short description of the main theoreti-
cal results, we note here that an exact analytical representation
of the nonlinear ac-driven rachet response of the investigated
system in terms of a matrix continued fraction was possible
thanks to the use of a simple but physically realistic model
of anisotropic pinning with a tilted cosine WPP. The exact
solution obtained made it possible for the first time to
consistently analyze not only the qualitatively clear vortex
dynamics of the adiabatic ratchet effect, but also the nontrivial
ratchet behavior at intermediate and high frequencies of the ac
drive. Below we turn to a short presentation of our results taken
in comparison with experimental results presented recently in
Ref. 13.

First of all, simple inspection of our exact expressions (2)
for the dc ratchet response shows that a magnetic field inversion
does not change the sign of Ed (ξd |ξa,ω), as on the right side
of Eqs. (2) the Ed

x,y components do not depend on the index
n, which determines the B inversion. On the other hand, we
should point out that for the adiabatic ratchet studied in detail in
Ref. 4 for the asymmetric PPP without dc bias, the dc response
changes its sign after B inversion [see Eq. (16) therein]. Since
a clear sign change in Vdc has been experimentally observed at
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field inversion,13 we conclude that the dc ratchet response in
that work should be described by a model with an asymmetry
of the PPP.4

Another interesting difference between the tilted ratchet
described in the present paper and the asymmetric ratchet
without a tilt4 consists in their asymptotic behavior at j →
±∞ in the adiabatic regime. In this limit, the tilted ratchet
adiabatic response is finite and equal to the tilt value, as one
can see from Eq. (16) at j0 < 1, whereas for the asymmet-
ric ratchet this response is zero because limj→±∞ ν−(j ) ∼
1/j 3 → 0.4

Comparing our frequency-dependent results with analo-
gous experimental findings presented in Ref. 13 we should
underline that in spite of the simple WPP and the single-
vortex approximation used in our theoretical model we,
however, can qualitatively explain from one and the same
point of view the main experimental results of that work. In
particular, our expressions (2) and (4) describe (i) the critical
ac current dependence in a wide frequency range covering
the transition from adiabatic to nonadiabatic, with both a
frequency-independent plateau at low frequencies, a direct
dependence at high frequencies, and a nonlinear transition
in between, (ii) the appearance of phase-locking regions in the
dependence of Vdc on Irf , (iii) a weakening of the ratchet effect
at extremely high frequencies, and (iv) the possibility of a sign
change for the absorbed power in ac response within a certain
range of the driving parameters. This is in contradistinction to
different explanations used in Ref. 13, which is a consequence
of the absence of a well-defined theoretical model due to
the complexity of the PPP employed. In particular, due to
this reason the authors13 were compelled to employ different
approaches for the explanation of their experimental results,
such as introducing sometimes the vortex mass, or appealing
to the vortex-vortex interaction, or not taking into account the

tilting parameter, or leaving uncommented the high-frequency
power absorption behavior.

It should be stressed that the single-vortex approximation
used in this work may only be valid at small magnetic fields
preferably less than the first matching field, so no collective
effects are captured in the model considered here. Whereas
vortex ratchet reversals as a function of field have been studied
by authors in a number of simulations and experimental works
and have been explained as a result of collective effects, such
as vortex-vortex interactions (see, e.g., Ref. 31 and references
therein), a remark on the extension of our theoretical study is
now to be made. As far as the model described in the present pa-
per refers to the tilted-potential ratchet, a thorough theoretical
description of the rocking-ratchet response in superconducting
films with an asymmetric WPP is currently under way and will
be reported in a forthcoming publication.32 There it will be
shown that the single-vortex approximation can also lead to
the ratchet reversals, when we consider an asymmetric WPP
in the presence of a tilting bias. Finally, we would like to
stress that our exactly solvable single-vortex model explicitly
shows that many important and interesting nonlinear ratchet
effects, which can be observed in particular at high frequencies,
follow even from such a simple model for one vortex in
periodic ratchet WPP. Although experimental verification of
the predictions of both models can be performed, for instance,
on Nb thin films with nanofabricated WPP landscapes,14,15 the
first portion of the ratchet data still remains to be seen.
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