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Measuring the quantum dynamics of a mechanical system, when few phonons are involved, remains a challenge.
We show that a superconducting microwave resonator linearly coupled to the mechanical mode constitutes a very
powerful probe for this scope. This new coupling can be much stronger than the usual radiation pressure
interaction by adjusting a gate voltage. We focus on the detection of phonon blockade, showing that it can be
observed by measuring the statistics of the light in the cavity. The underlying reason is the formation of an
entangled state between the two resonators. Our scheme realizes a phonotonic Josephson junction, giving rise to
coherent oscillations between phonons and photons as well as a self-trapping regime for a coupling smaller than
a critical value. The transition from the self-trapping to the oscillating regime is also induced dynamically by

dissipation.
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I. INTRODUCTION

Since the early days of quantum mechanics, the crossover to
the classical world and the possibility that macroscopic objects
could exhibit quantum behavior has attracted continuous
interest. The tremendous progress in nanofabrication capa-
bilities have made these questions amenable to experimental
testing. Stimulated by the ideas of Leggett,' macroscopic
quantum effects were first explored in Josephson junctions?
and nanomagnets. In the recent past, the field of Nano Elec-
troMechanical Systems (NEMS) has received much attention
as a very promising ground for the investigation of these
questions*® and the observation of a mechanical oscillator
in its quantum ground state®’ is one of the most important
achievements reached so far.

The coupling of a quantum nanomechanical oscillator to
a qubit makes NEMS also suitable systems to explore the
physics of circuit/cavity-QED.!? Different schemes have been
proposed including coupling to Cooper-pair boxes''~'° and
phase qubits.'”!® Recently, coupling to a Cooper-pair box
has been realized experimentally.'” Among the numerous
interesting aspects of circuit-QED realized with mechanical
resonators, here we want to address the phenomenon of phonon
blockade, which was considered recently in Ref. 20, extending
to NEMS the original ideas put forward with photons in
cavity-QED systems.?! The blockade effect arises because the
coherent coupling of the harmonic (photonic/phononic) mode
with the (solid-state) atom leads to an effective nonlinearity.
For sufficiently strong coupling, the nonlinearity is such
that, upon external driving, the number of excitations of the
oscillator never exceeds one. Observation of phonon blockade
in a nanomechanical oscillator would be a clear evidence of
its quantum nature.

There is, however, an important challenge which needs to
be tackled toward the demonstration of phonon blockade: its
detection. The motion of a mechanical oscillator close to its
ground state is tiny and strong amplification of the transduced
signals must be applied. On the other hand, amplification
will inevitably add classical correlations to the signal, thus
disguising quantum correlations which are usually needed for
demonstrating phonon blockade.

In this paper, we show that these problems may be overcome
if a superconducting microwave resonator (SMR) is coupled
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linearly to the mechanical oscillator for transducing its motion
into an electric signal. SMRs have proven to be nearly ideal
quantum oscillators with easily tunable quality factors and they
can be efficiently coupled to coherent quantum circuits.?>~%6
Our analysis is amenable to experimental verification. Re-
cently, good coupling of a nanomechanical resonator and
a SMR has been demonstrated.’?”-2 Moreover, despite the
difficulties in dealing with a microwave field at the level of a
single photon, it has recently been shown that time correlation
functions for the cavity field can be measured accurately.’%!
Very recently, microwave photon blockade has been realized
and measured experimentally.*> Our detection scheme takes
fully advantage of the experimental capabilities of the SMR
to probe the quantum state of the mechanical resonator with a
linear coupling.

The hybrid phonon-photon system that we analyze in this
work goes beyond a mere detection scheme for the phonon
blockade. In the second part, we present the properties of
this phonotonic junction. For a mechanical oscillator initially
driven in an excited state, we show that two regimes exist,
depending on the ratio between the anharmonicity and the
coupling compared to a critical value. For a small coupling,
the phonons are trapped in the mechanical oscillator whereas
coherent oscillations between the phonons and the photons
appear when increasing the coupling, leading to quantum
revivals in the photon statistics. We show that this transition
can be induced by the dissipation and take place during the
temporal evolution of the system.

The paper is organized as follows. In the next section,
we define the model for the system depicted in Fig. 1 and
introduce the equations governing its dynamics in the presence
of damping. In Sec. III, we discuss how to detect phonon
blockade by means of a measurement of the photon statistics.
In Sec. IV, we present the properties of this phonotonic
junction with the transition between a self-trapping regime
and a regime with coherent oscillations. We summarize our
results in the concluding section.

II. THE MODEL

The system we have in mind is depicted in Fig. 1. Itis a
mechanical resonator coupled capacitively to an artificial atom
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FIG. 1. (Color online) (a) Scheme of the system. A mechanical
resonator is capacitively coupled to an artificial atom to induce
a nonlinearity and to a superconducting microwave resonator to
detect phonon blockade. (b) Schematics of the energy spectrum of
the system for n > g. The first excited states are the maximally
entangled Bell states |W*) and are off resonance with the states
with more than one excitation. When the system is excited at the
frequency w,; = wy £ g, phonon blockade is observed through the
photon statistics.

and a SMR. The nonlinearity, leading to phonon blockade,
is induced by coupling the oscillator to a superconducting
qubit. In the case of a Cooper-pair box, one gets the Jaynes-
Cummings model. A Cooper-pair box molecule*® may be
considered as well in order to increase the nonlinearity. In the
present work, however, we do not deal with a specific choice
of the superconducting nanocircuit; the important ingredient
is the generation of the Kerr Hamiltonian proportional to
a'ataa* where a and a' are the phonon annihilation and
creation operators, respectively, of the mechanical oscillator.
After the adiabatic elimination of the qubit, the nonlinear
mechanical resonator (NMR) is described by the following
effective Hamiltonian:

Hawr = ha)rata + hnaTaTaa. €))]

The mechanical resonator is supposed to be in the quantum
regime (the bare frequency is in the GHz range). For a strong
coupling of hundreds of MHz, the Kerr nonlinearity strength
n is of the order of MHz. The coupling between the NMR
and the SMR is obtained from circuit theory. The cavity is
modeled by an array of LC circuits.”> The Hamiltonian of
the fundamental mode of the SMR is Hsyr = hw.bib, where
w, /27 is the mode frequency and b (b') is the corresponding
photon annihilation (creation) operator.

The mechanical resonator is kept at a fixed potential V,
with respect to ground and the coupling is realized through a
localized capacitance C, = Cg + (a + a")C], resulting in two
coupling terms in the Hamiltonian: a radiation pressure term
CyVimy(a + a"b'h and a linear term C,V, Vims(a + a’)(b +
b"), coming from the electrostatic energy of the coupling
capacitor (Vi is the root mean square of the zero-point
voltage fluctuations of the SMR at the position of the coupling
capacitance). These two terms can have very different orders
of magnitude for typical values of V, and Vips.>> We focus on
the case where the gate voltage is much larger than the root
mean square of the voltage quantum fluctuations inside the
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SMR, and thus neglect radiation pressure. In the rotating wave
approximation, the coupling reads

Hiy = hg(a'b + abh), 2)

where g = C ; Vg Vims /.. For realistic parameters, the coupling
may be of the order of MHz. The mechanical resonator is
driven by a weak oscillating current, at the frequency w, /27,
in the presence of a static magnetic field perpendicular to the
plane of the circuit. This driving is modeled by the Hamiltonian

Hary = ie(a’e " 4 ae'™"), 3)

where the strength € is proportional to the current amplitude
and the magnetic field. Driving the mechanical oscillator can
in principle act as a direct driving also for the SMR through
the capacitive and inductive couplings. However, the resulting
driving is negligible. Indeed, on the one hand because the
displacement is tiny, the electromotive force induced on the
NMR changes V, by an amount that is well below Vi
and on the other hand for spatially separated resonators, the
mutual inductance is suppressed. The total Hamiltonian of the
system reads H = Hxmr + Hsmr + Hine + Harv. We choose
the working point at w, = w. = wy. The mode frequency of
the cavity can be tuned by adding a SQUID at the end of one
arm to change the boundary condition.*® In the rotating frame
of the driving, the total Hamiltonian reads

H = h(wy — wg)ata + bib) + hnaTaTaa
+ng(a' + ab') 4 he(a' + a). )

A linear coupling between driven nonlinear oscillators can also
be obtained in cavity-QED.?’

The finite lifetime of the phonons and the photons is taken
into account through the Lindblad operators L, and L. of the
resonator and the cavity, respectively’® (p is the density matrix
of the whole system)

L.p= %y,(Za,oaT —d'ap — pa'a), (52)
Lep = Ly.2bpbt — blbp — pb'b), (5b)

where the damping rates y,. = w,./ Q. are the inverse of
the phonon and photon lifetime and are defined by the quality
factors Q, .. The dynamics of the system is then governed by
the master equation

1
ap(r) = E[H,p(t)] + Lp(2), (6)

where L = L, + L. is the total Lindbladian.

In principle, some noise is introduced by the voltage source
used to keep the mechanical resonator at V,. However, follow-
ing Ref. 39, the dominant Lindblad operator corresponding to
this source of noise for the case of a Markovian environment
is found to be of the order of ng RC ;, Vims/ Vg (R is the internal
resistance of the voltage source), which is negligible due to
the very small value of gRC!. In the case of slow voltage
fluctuations, one can also neglect noise effects, as we discuss
below.

III. DETECTION OF PHONON BLOCKADE

Blockade is possible only if the nonlinearity of the energy
spectrum is larger than the state linewidth, namely, 1,8 > y;..
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FIG. 2. (Color online) Second-order correlation functions against
the quality factors. The phonotonic Josephson junction works for
quality factors down to Q,. ~ 10°, where the damping rates are
comparable to the coupling strength.

This condition imposes the quality factors to be at least
several thousands, which is within the experimental capabil-
ities. Throughout the present work, we chose the following
parameters for the numerical simulations: wy/2m = 1 GHz,
n/2m = 10MHz, g/2m = 1 MHz, Q, = 10°, and Q. = 10°.
Figure 2 shows that the results are still valid for quality factors
Q.. = 3000, when the damping becomes of the order of the
coupling. Moreover, the NMR is driven at the resonance w; =
wy — g with the amplitude € /2r = 0.1 MHz. By analyzing the
time traces of the photon and phonon populations (not shown
here), it is possible to note that the cavity closely resembles
the dynamics of the NMR, with equal steady-state phonon and
photon numbers close to 0.25. The population of the state with
two phonons or two photons is strongly suppressed, implying
both phonon and photon blockade. In the rest of the paper, we
will show by solving Eq. (6), that by means of the detection of
photon correlations, it is possible to extract unique information
on the phonon statistics.

In order to ascertain the accuracy of the proposed detection
scheme, it is not sufficient to see a correlation in the
populations. We analyze the statistics of the excitations by
means of the second-order correlation function*’

. Oioyie + oy +1)y@)
D)= 1 : 7
g (=i, OTOy(0)? @

where y = a or b. The value of gffi(f) is comprised between
0 and 2 and tends toward unity’for long time difference,
where the coherence is lost. The value at coinciding times
T = 0 reflects the statistics of the field: a value of g?(0) < 1
corresponds to antibunching, and serves as the signature of
phonon blockade.

To understand how to induce and detect phonon blockade,
we look at the energy spectrum of the undriven Hamiltonian
H in the Fock basis |n,,n.), where n, . is the phonon and
photon number, respectively. The total number of excitation
a'a + b'b being conserved, the spectrum can be decomposed
on the subspaces defined by a given number n = n, + n. of

PHYSICAL REVIEW B 84, 054503 (2011)

excitations {|k,n — k), k =0, ...,n}. For one excitation n =
1, the eigenstates are the maximally entangled Bell states
n 1
W) = —=(10,1) £ [1,0)), (®)

NG

with the energy hwoE£hg. If there is a small detuning
between the two resonators, the eigenstates are rotated by an
angle (w, — w,)/4g. For higher excitation numbers, the ladder
structure depends on the ratio n/g between the anharmonicity
and the coupling. In the limit of a strong nonlinearity n > g,
the spectrum is composed of two entangled states |0,n) +
|[1,n — 1) at wy =+ +/ng and n — 1 factorized states |2,n —
2),...,|n,0) located at iy + m(m — 1)n, see Fig. 1(b). This
nonlinear spectrum allows for excitation blockade, since the
energy of the state |W*) is not resonant with higher states. If
the system is excited at the frequency w; = wy = g, only one
excitation is created, symmetrically shared between the NMR
and the SMR. The eigenstate being the maximally entangled
Bell state |W*), the photons have the same dynamics as the
phonons and the cavity constitutes consequently a reliable
measurement device to detect the state of the resonator through
the photon statistics (see Fig. 4).

The energy spectrum can be probed with the response of
the system to the driving current when the driving frequency
is tuned, as depicted in Fig. 3. In order to excite states with
one phonon such as |1,n — 1), the driving frequency is fixed to
wy = wp % g/+/n. These values correspond to the peaks in the
excitation numbers of Fig. 3. Compared with the dependence
of the g((f}),(O) on wy (see the inset), it shows that blockade
occurs at wg — wy = £g where the second-order correlation
function is minimized. This minimum protects the blockade
phenomenon against slow fluctuations of the gate voltage V,,
or equivalently the coupling g. Indeed, if the driving is kept ata
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FIG. 3. (Color online) Spectroscopy of the energy spectrum.
Steady-state phonon number (solid line) and photon number (dashed
line) as a function of the driving frequency. The different peaks
correspond to the excitation of the states with one phonon |1,n.).
(Inset) Second-order correlation functions at coinciding times for the
phonons g (0) and for the photons g”(0). Antibunching occurs at
wy = wp = g where phonon and photon blockade take place. Photon

bunching occurs when the states with many photons are excited.
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fixed frequency w; = wy £ g and one looks at the dependence
of gffi(O) on a coupling g(¢) fluctuating around the value g,
one obtains a behavior analogous to the inset of Fig. 3, namely,
a minimum at § = g. The averaged value of the second-order
correlation function over a Gaussian distribution of coupling
strengths is not affected and both phonon and photon blockade
are thus insensitive to slow gate voltage fluctuations at first
order. For higher values of n, the photon number increases
and the second-order correlation function of the cavity g,(,z)(O)
tends to 2, indicating photon bunching.

When the anharmonicity is very large, the NMR behaves
like a two-level system and can be described by replacing the
operators a and a' by the ladder operators o_ = |0)(1| and
o+ = |1)(0], respectively. The Hamiltonian is then reduced
to an effective Jaynes-Cummings model, Hyc = hg(o_b' +
o4b). In lowest order in g/n, the asymptotic expression of the
second-order correlation functions is given by

2 2
gf)(O):(‘%) , g§,2)(0)=<%6> (1+478>. )

The comparison with the numerical results is presented in
Fig. 4, where the correlation functions are plotted as a function
of the anharmonicity for different values of the coupling. For
a sufficiently large anharmonicity, the properties of the SMR
become n-independent with a strong reduction of the phonon
correlation function g‘?(0). Photon blockade is enhanced
when the coupling increases. In the opposite limit of a small
anharmonicity, the driving generates many excitations. The
transition from photon antibunching to photon bunching is

3
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FIG. 4. (Color online) Steady-state phonon and photon numbers
(a) and second-order correlation functions (b) as a function of the
Kerr nonlinearity. The Bell state |W~) ensures a perfect match
between the phonon and photon numbers. Many excitations are
generated when the nonlinearity is comparable with the damping
rates of the resonators, where the excitations are not antibunched
anymore. The correlators are plotted for different values of the
coupling, from top to bottom, g /27 = 1, 2, 5, 20 MHz, respectively.
The correlation of the NMR is essentially coupling independent
while for large 7, the correlation of the SMR saturates to a constant
value (2¢/g)?. The corresponding solutions [Eq. (9)] in the limit
n > g are plotted in dotted lines.
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also observed when, for a fixed anharmonicity, the coupling
decreases or the driving amplitude increases. The former is due
to the degeneracy of the Bell states for small coupling g < y;..
and the latter is because of the effective level broadening due
to the driving.

IV. THE PHONOTONIC JUNCTION

For an isolated mechanical oscillator (n = g =y, = 0)
initially in its ground state |0),, the resonant driving (wy; =
w,) generates a coherent state |« = —iet), = exp[—iet(aT +
a)]|0), after a time ¢ [see Fig. 5(a)]. In the presence of
dissipation, at zero temperature, the steady state is the coherent
state | = —i2¢/y,),.>® The synthesized coherent state |a),,
with a tunable phonon number |or|?, will be used as the initial
state in the following. Once the phononic state is prepared,
the driving is turned off while the coupling to the qubit
and the SMR are switched on. The latter can be performed
by tuning the qubit frequency closer to the resonance and
putting the gate voltage V, on, respectively. The system is
then governed by a two-site Bose-Hubbard like Hamiltonian
H = hwola'a + b'b) +hnatataa +hg(a'b + ab’). This is
similar to the Bosonic Josephson junction, realized with a
cloud of cold atoms in a double well potential.* Since only
one of the two resonators is nonlinear, we are dealing with an
asymmetric junction. The symmetric case, where the photons
are also interacting, can be obtained by adding a qubit in the
SMR to generate a nonlinearity.*” To present the properties
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FIG. 5. (Color online) (a) Population distribution of the mechan-
ical oscillator after being driven to a state with ten phonons (points).
The statistics is compared to a coherent state with the same mean
value (line). (b) Average value of the imbalance z as a function of the
parameter A from the classical dynamics without dissipation, starting
from the initial state z(0) = 1. The symmetric junction corresponds
to interacting photons with a strength 7. (c) Time evolution of the
population imbalance in the self-trapping regime (/27 = 10 MHz
and g/2m = 1MHz), the oscillating regime (/2w = 1 MHz and
g/2m = 10MHz). The dynamical transition is observed with a
symmetric junction, where the photons also interact with a strength
n/27 = 10 MHz. The coupling is equal to g/27 = 10 MHz and the
quality factors are Q,.. = 10*.
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of this junction, we start with a classical description in the
absence of dissipation.

The dynamics of the phonotonic junction can be described
in terms of the imbalance z = (n, — n.)/(n, + n.) between
the phonons and the photons and the phase difference
¢ = arg(a'h) between the two resonators. In the absence
of dissipation, the total number of particles (n, + n.) is
conserved, equal to |a|*>. The classical equations of motion
for (n,), (n.), and (a'b) can be expressed in terms of z and ¢.
The system is then classically governed by the following set
of nonlinear differential equations:

2(1) =+ 1 — 22(7) sin (1), (10)

§(0) = Al +2(0)] - —— 2 cosp(@). (1)

1 —z%(7)
where the time has been rescaled to T = 2g¢. The parameter
A =n(n, +n.)/2g leads to two regimes.** For large cou-
plings, coherent oscillations take place between the phonons
and photons. When the interaction between phonons is larger
than the coupling, the oscillations are frozen and the particles
are self-trapped. The transition between these two regimes is
controlled by the critical parameter A, = 2, corresponding to
a critical coupling

ge(t) = {nin, +n) (). (12)

These two regimes are presented in Fig. 5(b). The time average
of the imbalance vanishes in the oscillating regime A < A,
and tends to unity in the self-trapping regime A > A.. The
imbalance is also presented for a symmetric junction, where the
photons are also interacting with a strength n. For a symmetric
junction, the imbalance follows the dynamics of Eq. (10) while
concerning the phase, the first term in the right-hand side of
Eq. (11) has to be replaced by 2Az(t). This gives rise to a
sharp transition at A = 1.

In the presence of dissipation, the critical coupling de-
creases with the characteristic rate y,.. If the coupling is
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initially larger than the critical coupling g.(0), the system starts
in the self-trapping regime. After a time #y ~ In[g.(0)/g1/Vr.c,
the coupling becomes larger than the critical coupling g.(#))
and coherent oscillations take place between phonons and
photons. Quantum revivals can then be seen in the cavity. This
dynamical transition induced by dissipation is sharper when
the photons are also interacting.** The transition is presented
in Fig. 5(c) for a symmetric junction.

V. CONCLUSION

In conclusion, we have shown that coupling a SMR to
a NMR is a powerful tool to detect phonon blockade and
generate entanglement between phonons and photons. The
main reason for the accurate detection when few phonons
are involved is the formation of Bell states between the two
resonators, ensuring a perfect match between the phonon
dynamics and the photon statistics. The phonotonic Josephson
junction takes advantage of the recent experimental capabil-
ities with microwave photons. The simulations, obtained in
the framework of the quantum master equations, demonstrate
that our proposal is compatible with the current experimental
capabilities. Our new detection scheme realizes a phonotonic
Josephson junction and its applications go beyond the blockade
regime. A rich physics stems from this device which can be
used for instance to observe phonon lasing through microwave
photon lasing or the dynamical Casimir effect if the gate
voltage is strongly modulated. The phonotonic Josephson
junction constitutes a building block toward the use of NEMS
as quantum buses.*’
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