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Magnetization splitting in Landau and diamond-domain structures: Dependence on exchange
interaction, anisotropy, and size
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The distributions of magnetization orientation for both Landau and diamond-domain structures in nanorect-
angles have been investigated by micromagnetic simulation. Both symmetric and asymmetric magnetization
splitting are found in the diamond-domain structure, as well as only symmetric magnetization splitting in the
Landau structure. The magnetization splitting can take place around both the easy axis and the hard one. These
indicate that the magnetization splitting is a general behavior in both Landau and diamond-domain structures. In
the Landau structure, the splitting angle increases with the exchange coefficient but decreases slightly with the
anisotropy constant, suggesting that the exchange interaction mainly contributes to the magnetization splitting in
Landau structure. However in the diamond structure, the splitting angle increases with the anisotropy constant
but decreases with the exchange coefficient, indicating that the magnetization splitting in the diamond structure
mainly results from magnetic anisotropy. For both Landau and diamond-domain structures, the magnetization
splitting depends strongly on the size. In the case of the easy axis along the length direction, the magnetization
splitting angle around the easy axis is enhanced with the length of the easy axis, while that around the hard axis
increases with the length of the hard axis. These results can extend the understanding of the basic features of the
magnetic domain microstructures.
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I. INTRODUCTION

Magnetic nanostructures are actively studied, not only for
their high-sensitivity function1 or excitations of magnetic
moments for practical application,2,3 but also as good candi-
dates in research on some fundamental and interesting aspects
of magnetism in physics.4–8 Their domain structures and
magnetic properties are strongly related with a few intrinsic
parameters, such as magnetization, exchange coefficient, and
the anisotropy constant.9 Moreover, the size,10–13 the aspect
ratio,14,15 and the thickness5,7,12,15 of the magnetic nanostruc-
ture have a dramatic impact on the magnetic properties,16–19

especially when the size is comparable to the exchange length.9

The framework of micromagnetic simulation can describe
the magnetization configuration and dynamics in a scale
between several tens of nanometers and a few microns.4,5,20

Basically, there are two ways to view micromagnetic cal-
culations. One is based on the integration of the equation,
which is the motion of the magnetic moments described by
the Landau-Lifshitz-Gilbert (LLG) equation. The other is to
minimize the total magnetic energy. The former prefers the
time-dependent evolution of magnetization,21 while the latter
is in a perspective of energy. In order to reduce the exchange en-
ergy, a uniform magnetization is ideal, but the demagnetization
energy would like magnetization parallel to the surface or poles
counterbalanced at the interface. Meanwhile, the magnetic
moment favors low anisotropy energy if its magnetization is
along the easy direction. Without the external magnetic field,
the magnetization will relax to an equilibrium state, which is
the competition among these three energy items and reach a
local minimum energy. No matter what the spatial dimension
differences12–15,22 or roughness variety,4,23,24 from a viewpoint
of minimum energy, they all act on the local and nonlocal
magnetic energy items.9

In thin soft elements, the Landau state and the diamond
state are well known as typical magnetic flux-closure patterns
and prominent candidates of magnetic ground state.4,5,15 The
magnetization orientation splitting has been observed in the
flux-closure domain in Ref. 4, which means the majority of
the magnetizaton orientation in the splitting domain is slightly
away from the axis within the plane of the rectangle, and its
roughness dependence has been explained successfully by mi-
cromagnetic simulation. The magnetization splitting is a basic
and important feature of the magnetic domain microstructures.
However up to now, the magnetization splitting was only
reported in the Landau structure, and it is symmetric.4 It is
interesting to check this behavior also in the diamond-domain
structure. More important, the origin of the magnetization
splitting is still unclear. It is needed to study the dependence of
the magnetization splitting on some intrinsic parameters such
as exchange interaction, magnetic anisotropy, and size.

In this work, we investigate the distributions of magne-
tization orientation for both Landau and diamond-domain
structures in nanorectangles by micromagnetic simulation.
Besides symmetric magnetization splitting in the Landau do-
main structure, both symmetric and asymmetric magnetization
splitting are found in the diamond structure. The magnetization
splitting can take place around both the easy axis and the hard
one. These indicate that the magnetization splitting is a general
behavior in both Landau and diamond-domain structures.
From the dependence of the splitting angle on the exchange
coefficient and the anisotropy constant, it suggests that the
exchange interaction mainly contributes to the magnetization
splitting in the Landau structure, while that in the diamond
structure is dominated by magnetic anisotropy. For both the
Landau and diamond-domain structures, the magnetization
splitting depends strongly on the size. In the case of the easy
axis along the length direction, the magnetization splitting
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angle around the easy axis is enhanced with the length of the
easy axis, while that around the hard axis increases with the
length of the hard axis.

The paper is organized as follows. Section II describes
the micromagnetic simulation model and method. Section III
shows the magnetic anisotropy dependence of the magnetiza-
tion distribution and splitting in Laudau and diamond-domain
structures. Their dependence on the exchange interaction and
size is discussed in Secs. IV and V, respectively.

II. SIMULATION METHOD

We made a systematic investigation on the magnetization
orientation splitting in both Landau and diamond-domain
structures in nanorectangles by micromagnetic simulation with
the Object Oriented Micromagnetic Framework (OOMMF),
based on a model of Standard Problem 1.25 The dependence
of magnetization splitting on the exchange coefficient and
anisotropy constant was studied. The principle of minimum
energy and the symmetry of magnetic microstructure23,26

were employed to explain the different dependence and
distribution features. The simulated rectangle size is 1000 ×
500 × 20 nm3 in Secs. III and IV, while in Sec. V, the
lateral size is varied to show the dimension dependence.
In every rectangle, the cell size is no larger than 5 ×
5 × 5 nm3, and the cell number is no less than 80 000 cells,
which could meet the requirement of both simulations and
the following statistic. In our simulation, no external magnetic
field was applied. The total energy E includes the exchange
energy Eex, anisotropy energy EA, and demagnetizing energy
ED, where

Eex =
∫

(V )
A[(∇mx)2 + (∇my)2 + (∇mz)2]dV, (1)

EA =
∫

(V )
K

(
α2

1α
2
2 + α2

1α
2
3 + α2

2α
2
3

)
dV, (2)

ED = −μ0

2

∫
(V )

M • HddV. (3)

In the simulation, the minimization of total energy is
performed by using the conjugate gradient method with no
preconditioning,27,28 by locating the local minimum in the
energy surface. The parameters of permalloy are used here
as reference. The saturation magnetization MS is 8.6 × 105

A/m, the exchange coefficient A between cells varies from
9 × 10−12 J/m to 2.3 × 10−11 J/m, and the anisotropy
constant K is between −900 J/m3 and 900 J/m3, respectively.
Different magnetization configurations are chosen as the initial
state without considering the thermal activation. Then, it
converges in a minimum energy state confined by the local
energy barrier.15 For an initial magnetization state described in
Fig. 1(a), it relaxes into the Landau state as shown in Fig. 1(c);
while a diamond state will form in the case of an initial state
in Fig. 1(b), as shown in Fig. 1(d). The up direction of the
short axis (Y) of the rectangle is defined as 0◦ direction. The
positive anisotropy constant K means the magnetizaton prefers
90◦ or 270◦, i.e., the long axis (X). Either the diamond structure
or the Landau structure is converged to, although the total
energy of each differs for different A and K. The dependence
of the total energy on A and K is shown in Figs. 1(e) and 1(f),

FIG. 1. (Color online) (a) and (b) Two initial magnetization
states for relaxing into the Landau domain structure (c) and
diamond-domain structure (d), respectively. Blue and red represent
two opposite magnetization orientations, and the arrows show the
directions of magnetization. (e) Dependence of total energy on the
anisotropy constant K. (f) Dependence of total energy on the exchange
coefficient A.

respectively. It is found that mostly the lower total energy
prefers the diamond structure as K changes. This is similar to
the results in the literature.13 However, the lower energy favors
the Landau structure as A larger than 1.5 × 10−11 J/m.

III. MAGNETIC ANISOTROPY DEPENDENCE

Figure 2(a) shows a typical distribution curve of magneti-
zation orientation as a function of the magnetization angle θ

in the Landau domain structure. The proportion density ϕ(θ )
describes the relative frequency for a given θ . The proportion
of the magnetization within a particular range of angle is
given by the integral of proportion density ϕ(θ ) over this
range. The area under distribution curve from 0◦ to 360◦
equals 100%. The ϕ(θ ) is calculated as the count in a step
of 1.2◦ over the product of total cell amount and the step.
The distribution curve of magnetization orientation shows a
minimal period of 180◦, corresponding to the centrosymmetry
in the Landau domain structure. Four main peaks P1, P2, P3,
and P4 correspond to four different magnetization orientations
in domain C, B, A, and D, respectively, in Fig. 1(c). P2 (P4)
splits into two symmetric peaks P2L and P2R (P4L and P4R)
with a valley V2 (V4), which corresponds to the magnetization
orientations in domain B (D) aligning around the long edges.4

V23 is the valley between P2 and P3, which is located in
the 90◦ domain wall between domain A and B. Hereafter,
we name all the peaks and valleys in this way. Figure 2(b)
shows the distribution curves of P1 for K = −900, 0 and
900 J/m3, in the case of A = 1.3 × 10−11 J/m, and those of P2

are shown in Fig. 2(c). The splitting angle �θ between P2L and
P2R defined by the half depth of the valley is about 9.2◦ [see
Fig. 2(c)]. The ϕ of P1 decreases as K increases, while those
of P2L, P2R, and V2 increase with K, as shown in Fig. 2(d).
It indicates that there is a net increment of magnetization
in domain B but a decrement of that in domain C. More
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FIG. 2. (Color online) For the Landau structure: (a) the dis-
tribution curve of magnetization orientation as a function of the
magnetization angle θ . (b) The distribution curves of P1 for K =
−900, 0 and 900 J/m3, as A = 1.3 × 10−11 J/m. (c) The distribution
curves of P2 for K = −900, 0 and 900 J/m3, as A = 1.3 × 10−11 J/m.
(d) Dependence of the proportion densities ϕ on K for P1, P2, and V2.
(e) Dependence of the splitting angle �θ on K for P2.

magnetization aligns close to the easy axis for benefiting a
low total energy when the anisotropy constant K is larger. It
can be seen from Fig. 2(e) that the splitting angle �θ of P2

decreases slightly as K increases, indicating that the anisotropy
has weak influence on the splitting angle in the Landau
structure.4

For the diamond-domain structure, a typical distribution
curve of magnetization orientation is shown in Fig. 3(a) as a
function of the magnetization angle θ . The distribution curve
exhibits four main peaks P1, P2, P3, and P4 in a period of
360◦, which shows mirror symmetry with the short axis in
the diamond structure [see Fig. 1(d)]. It is interesting that
the magnetization splitting can be found in P1, P2, and P4.
As shown in Fig. 3(b), P1 splits into two symmetric peaks
P1L and P1R, corresponding to the magnetization orientation
in domains E and H in Fig. 1(d). However, P2, whose
magnetization around the 90◦ axis, splits into two asymmetric
peaks P2L and P2R, as shown in Fig. 3(c). This asymmetry of

FIG. 3. (Color online) For the diamond structure: (a) the dis-
tribution curve of magnetization orientation as a function of the
magnetization angle θ . (b) The distribution curves of P1 for K =
−900, 0 and 900 J/m3, as A = 1.3 × 10−11 J/m. (c) The distribution
curves of P2 for K = −900, 0 and 900 J/m3, as A = 1.3 × 10−11 J/m.
(d) Dependence of the proportion densities ϕ on K for peaks and
valleys. (e) Dependence of �θ on K for P1 and P2.

the splitting could be induced by the different magnetization
characters in neighbors of domains G (J).

It can be seen from Fig. 3(d) that ϕ of P1L (P1R), V1, and
P3 decreases as the anisotropy constant K increases. However,
ϕ of P2L, P2R, and V2 increases with K. This is due to the
conservation of the total magnetization in the domain, i.e.,
wherever the magnetization of P1 and P3 gain, there must be
partly a loss in that of P2 and P4. More magnetization favors
aligning around the long axis as K increases. The splitting
angle �θ of P1 varies a little bit with K, as shown in Fig. 3(e),
while that of P2 increases with K.

IV. EXCHANGE INTERACTION DEPENDENCE

The dependence of magnetization distribution on exchange
coefficient A for the Landau structure is shown in Fig. 4,
as K = 500 J/m3. The low proportion density ϕ in V12 for
the small A [see Fig. 4(b)] means that a sharp domain wall
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FIG. 4. (Color online) For the Landau structure, the distribution
curves of P1 (a), V12 (b), and P2 (c) for A = 9 × 10−12, 15 × 10−12,
and 23 × 10−12 J/m, as K = 500 J/m3. (d) Dependence of the
proportion densities ϕ on A for P1, P2, and V2. (e) Dependence of
�θ on A for P2.

with small net magnetization is formed between domain B
and C, because the small A allows the large angle between
neighbor magnetizations for forming the 90◦ domain wall.
This is consistent with the variation of P1 and P2 shown in
Figs. 4(a) and 4(c), respectively. The ϕ of P1, P2L (P2R), and
V2 all increase with the decrease of A as shown in Fig. 4(d).
It can be seen from Fig. 4(e) that the splitting angle �θ of
P2 increases from 7.9◦ to 11.0◦ with A from 9 × 10−12 J/m
to 2.3 × 10−11 J/m, indicating much more influence than
the anisotropy constant. It suggests the exchange interaction
mainly contributes to the magnetization splitting in the Landau
structure.

For the diamond structure, the magnetization distribution
curves of P1, P2, and P3 for the various exchange coefficients
A are plotted in Figs. 5(a)–5(c). The ϕ of P1, P2, and P3

decreases with increasing A, as shown in Fig. 5(d). As the
exchange coefficient increases, sharp direction changes of
the neighboring magnetic moment are not allowed in the 90◦
domain wall region. This consumes the domains at both sides
of the domain wall and reduces the net magnetization in the

FIG. 5. (Color online) For the diamond structure, the distribution
curves of P1 (a), P2 (b), and P3 (c) for A = 9 × 10−12, 17 × 10−12, and
23 × 10−12 J/m, as K = 500 J/m3. (d) Dependence of the proportion
densities ϕ on A for peaks and valleys. (e) Dependence of �θ on A
for P1 and P2.

domains. It can be seen from Fig. 5(e), �θ for both P1 and P2

decrease with increasing A. This may be due to the change of
volume charges created by the two vortices in the middle4 and
the decrease of the net magnetization in every domain as A
increases. Due to the fact that the splitting angle �θ decreases
with increasing the exchange coefficient but increases with
the anisotropy constant, we suggest that the magnetization
splitting in the diamond structure mainly results from magnetic
anisotropy.

V. SIZE DEPENDENCE

Next, we show the magnetization splitting in both the
Landau and diamond-domain structures with various lateral
sizes. Both the length X and the width Y were varied in the
rectangles with 20-nm thickness, as A = 1.3 × 10−11 J/m and
K = 500 J/m3.

Figures 6(a)–6(d) show the magnetization distribution in
the Landau structure in the rectangles with X from 500 nm
to 1500 nm and Y = 500 nm. The magnetization distribution
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FIG. 6. (Color online) For the Landau structure, the distribution curves of P1 (a) and P2 (b) for various X, as Y = 500 nm. The units in the
legends are nanometers. (c) Dependence of the proportion density ϕ on X for peaks and valleys. (d) Dependence of �θ on X for P1 and P2. The
distribution curves of P1 (e) and P2 (f) for various Y, as X = 1000 nm. (g) Dependence of ϕ on Y for peaks and valleys. (h) Dependence of �θ

on Y for P1 and P2 (A = 1.3 × 10−11 J/m and K = 500 J/m3).

curve of the peak P1 around the hard axis (0◦) splits into two
symmetric peaks P1L and P1R with a valley V1 for X = 500
and 550 nm, as shown in Fig. 6(a), but no splitting for X = 700

and 900 nm. However, the distribution curves around the easy
axis (90◦), shown in Fig. 6(b), exhibit splitting for 500 nm
� X � 1500 nm. The proportion densities ϕ of peaks and

FIG. 7. (Color online) For the diamond structure, the distribution curves of P1 (a), P2 (b), and P3 (c) for various X, as Y = 500 nm. The
units in the legends are nanometers. (d) Dependence of the proportion density ϕ on X for peaks and valleys. (e) Dependence of �θ on X for P1

and P2. The distribution curves of P1 (f), P2 (g), and P3 (h) for various Y, as X = 1000 nm. (i) Dependence of ϕ on Y for peaks and valleys.
(j) Dependence of �θ on Y for P1 and P2 (A = 1.3 × 10−11 J/m and K = 500 J/m3).
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valleys are plotted as a function of X in Fig. 6(c). For Y =
500 nm, with X increasing, the ϕ of P1 (P1L and P1R as X �
600 nm) increases and then decreases, while that of V1 (X �
600 nm) increases. However, the trend of P2 (around the easy
axis) is opposite to that of P1 (around the hard axis). With the
increase of X, the ϕ of P2 decreases and then increases, while
that of V2 decreases. Figure 6(d) shows the magnetization
splitting angles �θ for P1 and P2 as a function of X. With
X increasing, �θ for P1 (around the hard axis) decreases and
becomes zero as X � 700 nm. Nevertheless, �θ for P2 (around
the easy axis) increases with X.

Figures 6(e) and 6(f) show the corresponding dependence
on Y in the range of 300 to 1000 nm as X = 1000 nm. As
shown in Fig. 6(e), the distribution curves of P1 around the
hard axis does not split for Y = 600 and 700 nm but split
into two symmetric peaks for Y = 900 and 1000 nm. The
magnetization splitting for P2 around the easy axis can be
seen in Fig. 6(f) for various Y. The ϕ of peaks and valleys
are plotted as a function of Y in Fig. 6(g). For X = 1000 nm,
with increasing Y, the ϕ of P1 (P1L and P1R as Y � 800 nm)
increases and then decreases, however, that of P2 decreases and
then increases. The ϕ of V1 (Y � 800 nm) decreases with Y
increasing, while that of V2 increases, which is opposite to the
dependence on X. Figure 6(h) shows that �θ for P1 becomes
nonzero as Y � 800 nm and increases with Y, however, �θ for
P2 decreases with the increase of Y.

It suggests that for the Landau structure, in the case of
the easy axis along the length direction, a large X could
inhibit the splitting in P1 around the hard axis but promotes
that in P2 around the easy axis. In contrast, a large Y could
promote the splitting in P1 but weaken that in P2. The critical
X of splitting around the hard axis is about 700 nm as Y =
500 nm, and the critical Y of splitting is about 700 nm as
X = 1000 nm. It is noticed that the magnetization splitting
around the hard axis takes place as the aspect ratio X/Y is less
than 1.4.

For the diamond-domain structure, the proportion density
ϕ and splitting angle �θ dependence on X and Y are shown
in Fig. 7. Figures 7(a)–7(e) describe the rectangles with X
between 700 to 1500 nm and Y = 500 nm. See Figs. 7(a)–7(c),
as X increases, a splitting to nonsplitting transition happens
to P1 (around the hard axis); for P2 (around the easy axis),
while X decreases, P2L and P2R inherit their own asymmetry,
collapse, and transfer to an asymmetry nonsplitting peak; P3

always increases with X. The ϕ dependence on X is shown in
Fig. 7(d). With X increasing from 700 to 1500 nm, P1, V1, and
P3 (around the hard axis) increase, but P2 and V2 (around the
easy axis) decrease. Furthermore, V1 vanishes, as X is more
than 1300 nm, which means no splitting there; V2 disappears
as X is smaller than 900 nm, meaning without splitting. The
splitting to nonsplitting transition can also be confirmed by
Fig. 7(e), where the �θ becomes zero for the corresponding
X. It also shows clearly that the �θ of P1 decreases with
increasing X, and P2 increases with X.

Figures 7(f)–7(j) display the corresponding splitting depen-
dence on Y in the range of 300 to 800 nm as X = 1000 nm. It is
obvious that in Figs. 7(f) and 7(g), the splitting to nonsplitting
transition still exists but with an opposite trend to that in
Figs. 7(a) and 7(b). Figure 7(h) displays distribution curves
of P3 for Y = 400, 600, 700, and 800 nm. As shown in

Fig. 7(i), with the increase of Y, P1, V1, and P3 (around the
hard axis) mainly decrease, but P2 and V2 (around the easy
axis) increases. Moreover, V1 disappears as Y is less than
400 nm, corresponding to a symmetry nonsplitting peak there;
V2 disappears when Y is more than 600 nm, which means
splitting vanishes and an asymmetrical nonsplitting peak is
formed. Figure 7(j) confirms those splitting to nonsplitting
transitions with inflection points at Y = 350 and 700 nm with
a zero splitting angle. The �θ of P1 increases with Y, but that
of P2 decreases. It is noted that the Y dependence on �θ of
P1 and P2 shows the opposite behavior to the X dependence. It
is noticed that the magnetization splitting around the hard
axis takes place as the aspect ratio X/Y is less than 2.8,
while that around the easy axis takes place as X/Y is more
than 1.5.

It suggests that in the diamond structure, as the easy axis
along the length direction, a large X could inhibit the splitting
in P1 (around the hard axis) but promotes that in P2 (around the
easy axis). In contrast, a large Y could promote the splitting in
P1 but weaken that in P2. These behaviors are similar to those
in the Landau structure.

VI. CONCLUSIONS

In summary, we have investigated the distributions of mag-
netization orientation for both Landau and diamond-domain
structures in nanorectangles by micromagnetic simulation.
Both symmetric and asymmetric magnetization splitting are
found in the diamond-domain structure, as well as only
symmetric magnetization splitting in the Landau structure.
The magnetization splitting can take place around both
the easy axis and the hard one. These indicate that the
magnetization splitting is a general behavior in both Landau
and diamond-domain structures. In the Landau structure, the
splitting angle �θ increases with the exchange coefficient
A but decreases slightly with the anisotropy constant K,
suggesting that the exchange interaction mainly contributes to
the magnetization splitting in the Landau structure. However
in the diamond structure, the splitting angle �θ increases
with the anisotropy constant K but decreases with the
exchange coefficient A, indicating that the magnetization
splitting in the diamond structure mainly results from magnetic
anisotropy. For both Landau and diamond-domain structures,
the magnetization splitting depends strongly on the size.
In the case of the easy axis along the length direction,
the magnetization splitting angle �θ around the easy axis
is enhanced with the length of the easy axis, while that
around the hard axis increases with the length of the hard
axis.

Our results can extend the understanding of the basic
features of the magnetic domain microstructures and provide
possible explanations to the origin of magnetization splitting.
We expect the magnetization splitting in the diamond-domain
structure could be observed in a future experiment.
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