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Magnetic anisotropy of mesoscale-twinned Ni-Mn-Ga thin films
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The ferromagnetic resonance data obtained for the twinned orthorhombic martensitic phase of Ni-Mn-Ga film
epitaxially grown on MgO(100) substrate are presented. The reported data prove that the mesoscale twinning
reduces the value of in-plane magnetic anisotropy field of the Ni-Mn-Ga film by an order of magnitude. The
reduced magnetic anisotropy field corresponds to the tetragonal symmetry, while the unit cells of the film
are orthorhombic. The experimentally observed change of the in-plane magnetic anisotropy is explained in the
framework of the magnetoelastic model of martensite, and the second-order and fourth-order magnetic anisotropy
constants are evaluated. The perpendicular magnetic anisotropy constant proved to be negative and small in the
absolute value. Therefore the estimated value of the magnetic domain wall width is comparable with the widths
of mesoscale twins observed in the investigated film. This confirms an idea that the magnetic vectors of twin
components are strongly coupled by the exchange interaction.
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I. INTRODUCTION

The Ni-Mn-Ga ferromagnetic shape memory alloys
(FSMAs) are widely studied now (see e.g. overviews of
Refs. 1–3 and references therein). The most attractive physical
property of these alloys is a large (∼10%) magnetic-field-
induced strain (MFIS).1,2,4,5 The MFIS is caused by a rear-
rangement of the twin structure of the Ni-Mn-Ga single crystal
under the magnetic field. This rearrangement, in its turn, is
driven by the rotation of the magnetic moments of atoms. The
twin boundary movement process starts when the magnetic
field value4,5 and rotation angle6 reach certain threshold values.

Until recently, a strong magnetocrystalline anisotropy was
considered as a feature inalienable from the FSMAs exhibit-
ing MFIS.4,5 However, the stronger the magnetocrystalline
anisotropy of the specimen, the higher the threshold magnetic
field that is needed to rotate the magnetic moments noticeably
and to initiate the movements of twin interfaces. Generally, a
reduction of the threshold magnetic field value is a challenging
scientific problem. Possible solutions of this problem have
been proposed.7,8 Among them, a reduction of the effective
magnetic anisotropy due to the micro- and mesoscale twinning
of the crystal was considered.8

Whereas a simple theoretical model describing the influ-
ence of twinning on the magnetic anisotropy of FSMA was
proposed some time ago,9 a direct experimental observation
of the related physical effect has been realized recently.10 It
was shown that the detwinning of twinned Ni-Mn-Ga crystal
results in the noticeable change of magnetization curves.10

These curves indicate immediately that the detwinning reduces
the magnetic susceptibility of the crystal. It may be concluded,
therefore, that the disappearance of twins reinforces the
effective magnetic anisotropy.

The magnetic anisotropy of Ni-Mn-Ga films was studied
in Refs. 11–13 using the ferromagnetic resonance (FMR)
technique. Commonly, the magnetic anisotropy energy density
(MAED) of the films is smaller than the MAED of the
bulk single crystals.11,12 As so, we undertook a special study

aimed at the direct experimental observation and theoretical
interpretation of the influence of mesoscale twinning on the
magnetic anisotropy of the representative Ni-Mn-Ga thin film.

In Sec. II, we report the FMR data obtained for the twinned
Ni-Mn-Ga film exhibiting the orthorhombic martensitic struc-
ture. The reported data prove that the mesoscale twinning
reduces the value of in-plane magnetic anisotropy field by an
order of magnitude. The reduced in-value magnetic anisotropy
field corresponds to the tetragonal symmetry, implying that the
fourfold symmetry axis is aligned along the film normal, while
the unit cells of the film are orthorhombic.

Section III is devoted to the theoretical analysis of the
experimental data. In this section, the experimentally observed
change of the in-plane magnetic anisotropy is explained and the
second-order and fourth-order magnetic anisotropy constants
are evaluated.

In Sec. IV, we argue that the magnetic moments of twin
components are strongly coupled by the spin-exchange interac-
tion, and therefore, the twin structure may be considered as an
ensemble of coupled magnetic moments, which oscillate in the
effective magnetic field. The effective field is a superposition
of the external field and the average anisotropy field, which is
inherent to the twin structure as a whole.

II. EXPERIMENTAL RESULTS

The 0.5-μm-thick film of Ni52.3Mn26.8Ga20.9 (at.%) epitax-
ially grown on heated MgO(001) substrate at 2.6 × 10−2 mbar
pressure and 150 W power has been fabricated by magnetron
sputtering. The FMR data were collected using the ELEXYS
E500 Bruker EPR spectrometer (X-band, ω/2π = 9.46 GHz)
operating in the temperature range 100–450 K and equipped
with an automatic goniometer. The value of the g factor derived
from paramagnetic resonance measurements in austenitic state
(above 420 K) proved to be close to 2.01. Composition
of the film was determined with an accuracy better than
0.5 at.% by energy-dispersive x-ray spectroscopy (EDX),
using a scanning electron microscope (SEM) Jeol JSM-6400.
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FIG. 1. Experimental angular dependence of the in-plane reso-
nance field (open circles) in comparison with theoretical dependen-
cies that were computed for the Set I (dots) and Set II (solid line) of
physical values. The dashed line is computed for the Set I with the
lattice parameter b adopted from the Set II. The line corresponding
to the Set III is not shown because it is practically confluent with the
solid line.

An SEM was also used for the microstructure observations
in the secondary electron mode. The structural state of the
film and its temperature variation was controlled by x-ray
diffraction (Philips X’Pert PRO), using CuKα radiation. The
cubic-to-orthorhombic martensitic transformation (MT) was
observed at about 420 K.

The experimental angular dependence of the in-plane
resonance field Hr (ϕ) at 290 K is shown by the open circles in
Fig. 1. Zero angle (ϕ = 0) corresponds to the [100] direction of
the MgO substrate. The experimental angular dependence of
the resonance field (open circles in Fig. 1) exhibits the fourfold
symmetry in the film plane. The minima of the resonance field
correspond to the magnetization easy directions, ϕ = π/4 +
πn/2, n = 0, 1, 2, . . . The out-of-plane angular dependence
Hr (θ ) (not shown in Fig. 1) is symmetrical with respect to
the film normal, indicating its coincidence with the fourfold
symmetry axis.

To follow the temperature evolution of magnetic param-
eters, the magnetic field was oriented normally to the film
plane, and a temperature dependence of the resonance field
value was measured (see Fig. 2). Due to the presence of
the uniaxial magnetocrystalline anisotropy and magnetostatic
field, the resonance values of the out-of-plane magnetic field
substantially exceed the values obtained for the in-plane field
orientation [see Sec. III, Eqs. (16) and (17)]. It is important
that the resonance field monotonously decreases with the
temperature increasing. Such a behavior is essentially different
from the one which was observed previously in the tetragonal
martensitic phase of Ni-Mn-Ga films with c < a, where the
effective magnetization was decreasing during cooling as a
result of the increasing of the out-of-plane anisotropy.13,14 This
behavior suggests that the perpendicular anisotropy constant
in the investigated film is either small or negative, in agreement
with the FMR and data from a superconducting quantum
interference device (SQUID) that confirm a formation of
in-plane anisotropy and negative value of the perpendicular
anisotropy constant.

FIG. 2. Experimental temperature dependence of the resonance
field value. Magnetic field vector was applied normally to the film
plane.

Above 370 K, the resonance field rapidly drops, manifesting
an approach to Curie point. It correlates with the magnetization
data. However, even in the paramagnetic state, there is a
difference in the resonance field values observed in the in-plane
and perpendicular-to-the-plane configurations. This difference
is usually described in terms of g-factor anisotropy, which
is present at both sides of the martensitic transformation
temperature (∼420 K).

In the martensitic state, the film has a regular twin
microstructure (Fig. 3), while the x-ray analysis shows a
formation of orthorhombic crystal structure with the longest,
a, and shortest, c, axes lying in the film plane, while b
is perpendicular to the film plane. The x-ray, SEM, and
FMR data give rise to the schematic in Fig. 4, where the
crossing-twin-boundary structure (see e.g. Refs. 15 and 16)
of twinned film, its magnetic domain structure, and twin-
boundary orientations towards substrate are modeled. The
inclinations of twin boundaries (45o) towards substrate and
magnetic domain pattern are equivalent for both the rear and
the front part of the drawing.

The SEM image shows the formation of fine twin structure
with the characteristic twin width of about several tens of
nanometers (Fig. 3). Similar twinning morphology has been
observed in Refs. 17–20. For the twin structure shown in Figs. 3
and 4, two resonance peaks would be expected. The in-plane

FIG. 3. Secondary electron image of the film surface revealing
fine twinning in the orthorhombic martensite and its orientation with
regard to a substrate. The twinning period is indicated.
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b axis

a, c axesa, c axes

FIG. 4. The reconstructed from the x-ray diffraction data and
SEM image (Fig. 3) schematic of the two-variant twin structure of Ni-
Mn-Ga film, which consists of in-plane ac twin variants representing
also 90◦ magnetic domains with the in-plane magnetization vectors
aligned along easy c axis (arrows). The rear part of the drawing
represents a set of variants, oriented at 90◦ from the front set with the
same magnetic moments pattern as indicated in the front part. The
direction of magnetization of the twins in the rear part of the drawing
is similar to the front part. The a and c axes are parallel to the
〈110〉MgO directions.

angular dependencies of the corresponding resonance fields
would be periodic with the period of 180o and would be shifted
at 90o with respect to each other. Instead, only one resonance
peak was observed in our experiments, and its in-plane angular
dependence clearly shows the 90o periodicity. The apparent
contradiction between the FMR and structural data can be
resolved taking into account the exchange coupling of the
magnetic moments of the twin components (see below).

It is worth noting that the FMR signal obtained at tempera-
tures below 340 K is typical for the systems with gradually
varying magnetic parameters. This variation results in the
dispersion of the resonance field values. The dispersion can be
characterized by the parameter �Hp (see Fig. 5). The variation
of the experimental values of �Hp with the temperature is
shown in Fig. 6. The �Hp(T) curve may be conventionally
divided into two parts. Below 340 K, the resonance field
dispersion decreases almost linearly with the temperature

FIG. 5. Ferromagnetic resonance signal obtained at 320 K.
Magnetic field is perpendicular to the film plane. The two-side arrow
shows the average value of the resonance field dispersion.

FIG. 6. Temperature dependence of a dispersion of the perpen-
dicular resonance field.

increase. Above 340 K, a rapid drop of the �Hp value is
observed.

III. EVALUATION OF MAED OF TWINNED
Ni-Mn-Ga FILM

A. Formalism

The experimental FMR data obtained in the in-plane
magnetic field show that the resonance conditions are pre-
scribed by the MAED that is a periodic function of the angle
between [100] crystallographic direction and magnetic field.
The period of variation of the resonance field value is equal
to 90o. This periodicity is inherent to the periodic martensitic
structure presented in Fig. 4, while the MAED of single-variant
martensitic state must be periodic with the period of 180o. It
suggests an idea that the resonance frequency/field values are
prescribed by the average MAED of the martensitic structure
formed by the alternating domains/variants of orthorhombic
crystal lattice. In this case, the resonance oscillations of atomic
spins are spatially uniform, and the spin exchange energy
is constant. Thus, the angular dependence of the resonance
field values can be described using the magnetoelastic model
proposed in Ref. 9.

Let the coordinate system be related to 〈100〉 crystallo-
graphic directions. The martensitic structure presented in Fig. 4
consists of the crystallographic domains (martensite variants)
with a‖x, b‖z and c‖x, b‖z. Pairs of these variants form the
twinned fragments of the film as it is evident in Fig. 3. The
average MAED of the ac twin structure formed by the c and a
variants is

F̄A(α) = αF
(c)
A + (1 − α)F (a)

A , (1)

where α is a volume fraction Vc/(Va + Vc) of the c component
in the twin structure, and F

(c)
A and F

(a)
A are the MAEDs

of the twin components. The expressions for these MAEDs
can be expanded in series with respect to the components
of the magnetic vector. According to the first-principle
computations21 and magnetoelastic model,9 the coefficients at
the second-order terms of MAEDs of the twin components
are proportional to the spontaneous deformation of the
cubic lattice during the MT. The cubic-orthorhombic MT is

054450-3



V. A. CHERNENKO et al. PHYSICAL REVIEW B 84, 054450 (2011)

characterized by the diagonal strain tensor components that
are expressed as

ε(a)
xx = (a − a0)/a0, ε(a)

yy = (c − a0)/a0, ε(a)
zz = (b − a0)/a0

(2)

for the a component and

ε(c)
xx = (c − a0)/a0, ε(c)

yy = (c − a0)/a0, ε(c)
zz = (b − a0)/a0

(3)

for the c component of the twin. (Here, a0 is the value of lattice
parameter in the cubic phase).

The second-order terms of MAEDs of the twin components
are related to the MT strains as

F
(a,c)
A2 = −δM2

{√
3u

(a,c)
2

[(
m(a,c)

x

)2 − (
m(a,c)

y

)2]

+u
(a,c)
3

[
2
(
m(a,c)

z

)2 − (
m(a,c)

y

)2 − (
m(a,c)

x

)2]}
, (4)

where δ is a dimensionless magnetoelastic constant,
m(a,c) = M(a,c)/M is a unit magnetic vector of the a- or c-twin
component, M(a,c) is a magnetization vector of corresponding
twin component, M = |M(a,c)| (Ref. 9). The values u

(a,c)
2 and

u
(a,c)
3 are the linear combinations of MT strains expressed as

u
(a,c)
2 =

√
3
(
ε(a,b)
xx − ε(a,b)

yy

)
, u

a,c)
3

(5)

= 2ε(a,c)
zz − ε(a,c)

yy − ε(a,c)
xx .

The maximum possible effect of a fine twinning on the
magnetic anisotropy of the ferromagnetic single crystal can
be derived under the assumption that the magnetic vectors of
the neighboring twin components are strongly coupled by the
spin exchange interaction. In this case, the twin structure is
characterized by the single magnetic vector m = M/M,22 and
the equilibrium direction of this vector is prescribed by the
average MAED of the twinned orthorhombic lattice.8,9 As far
as the MAED of ferromagnetic martensite depends linearly
on the strain tensor components, an averaging of MAEDs is
equivalent to the averaging of MT strains. The average MT
strains are characterized by the strain tensor components

ε̄
(ac)
ii = αε

(c)
ii + (1 − α)ε(a)

ii . (6)

A substitution of the MT strains expressed by the Eqs. (2)
and (3) into the Eqs. (4)–(6) yields the simple formula

F̄A2(α) = K⊥m2
z + (1 − 2α)K‖

(
m2

x − m2
y

)
, (7)

where

K‖ = −3δM2(a − c)/a0,
(8)

K⊥ = −3δM2(2b − a − c)/a0

are the second-order magnetic anisotropy constants that are
inherent to the single-variant martensitic state.

The fourth-order terms of MAEDs of the twin components
are expressed as

F
(a)
A4 = − 1

2

(
Kam

4
x + Kcm

4
y + Kbm

4
z

)
,

(9)
F

(c)
A4 = − 1

2

(
Kcm

4
x + Kam

4
y + Kbm

4
z

)
,

where Ka , Kb, and Kc are the fourth-order anisotropy
constants. According to the Eq. (1), the fourth-order terms
in the expression for the average MAED have the form

F̄A4(α) = − 1
2

[
Kca(α)m4

x + Kca(1 − α)m4
y + Kbm

4
z

]
, (10)

where

Kca(α) = αKc + (1 − α)Ka,
(11)

Kca(1 − α) = (1 − α)Kc + αKa.

Let the external magnetic field be applied along the i-axis.
The magnetic energy density is

F̄ (α) = F̄A2(α) + F̄A4(α) + 2πM2m2
z − miHiM. (12)

The sum of the first and second terms on the right side of
Eq. (12) is the average MAED expressed by Eq. (1); the third
and fourth terms are the magnetostatic and Zeeman energy
densities, respectively. If the external magnetic field is equal
to zero, the energy difference between the states with m‖x and
m‖y is equal to

F̄m‖x(α) − F̄m‖y(α) = 1
2 (1 − 2α)(4K‖ + Kc − Ka). (13)

For the Ni-Mn-Ga martensites, the inequalities 4K‖ >

|Kc − Ka | > 0 hold,8 and therefore, the easy magnetization
direction (that is to say, the equilibrium direction of the
magnetic vector) is parallel to the y axis if α < 1/2 and to the x
axis if α > 1/2. In the case of α = 1/2, the energy difference,
Eq. (13), is equal to zero, and the equilibrium directions of the
magnetic vector in the film plane correspond to the minimums
of the fourth-order terms in the MAED.

Usually the dynamics of the unit magnetic vector are
described by the equation

dm
dt

= γ (m × H̄(eff)), (14)

where H̄(eff) = −M−1(∂F̄ /∂m)is the average value of the
effective magnetic field acting on the magnetic vector. When a
magnetic field is applied in the film plane, the energy, Eq. (14),
corresponds to the resonance field values, which satisfy the
equation

ω2

γ 2
= (

H̄ eff
0x

)2 + (
H̄ eff

0y

)2 − H̄ eff
0x

(
H̄ eff

z + H̄ eff
1y

)

× cos ϕ − H̄ eff
0y

(
H̄ eff

z + H̄ eff
1x

)
sin ϕ

+ H̄ eff
z

(
H̄ eff

1x sin2 ϕ + H̄ eff
1y cos2 ϕ

)
, (15)

where

H̄ eff
0x = Hx + 2M−1[(2α − 1)K‖ + Kca(α) cos2 ϕ] cos ϕ,

H̄ eff
0y = Hy + 2M−1[(1 − 2α)K‖ + Kca(1 − α) sin2 ϕ] sin ϕ,

H̄ eff
1x = 2M−1[(2α − 1)K‖ + 3Kca(α) cos2 ϕ],

H̄ eff
1y = 2M−1[(1 − 2α)K‖ + 3Kca(1 − α) sin2 ϕ],

H̄ eff
z = −2K⊥M−1 − 4πM

are the average values of the effective magnetic field compo-
nents, and ϕ is the angle between the unit magnetic vector and
the [100] direction.
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Now, let the magnetic field be applied normally to the film
plane. For the theoretical interpretation of the experimental re-
sults, we will consider the most instructive cases α = 0 (single
variant martensitic state) and α = 1/2 (the twinned martensite
with the equal volume fractions of twin components). Taking
into account the condition m2

x + m2
y + m2

z = 1, one can obtain
the expression

F̄ (α) = [K2(α) + 2πM2] m2
z − 1

2K4(α)m4
z − mzHzM, (16)

where for α = 0, 1/2,

K2(0) = K⊥ + K‖ + Kc,

K4(0) = Kb + Kc,

K2(1/2) = K⊥ + (Ka + Kc)/2,

K4 (1/2) = Kb + (Ka + Kc)/2.

The resonance value of transversal magnetic field satisfies
the equation

H⊥
r (α) = ω

γ
+ 4πM + 2K2(α)

M
− 2K4(α)

M
, (17)

which shows that the twinning reduces the resonance field
value and the reduction is equal to

H⊥
r (0) − H⊥

r (1/2) = 2K‖
M

. (18)

Eqs. (15), (17), and (18) enable a straightforward interpre-
tation of the experimental results and a consistent evaluation
of the second-order and fourth-order MAED constants of the
film involved in Eqs. (7) and (9).

B. Computations

The resonance values of in-plane magnetic fields depend on
the angle between the magnetic field and the [100] direction,
in accordance with Eq. (15). If the field value satisfies the
inequality HM > Ka + Kc, the field direction will be close
to the direction of the magnetic vector, and therefore, the
approximate values Hx ≈ H cosϕ and Hy ≈ H sinϕ can
be substituted into Eq. (15). The last equation includes both
second-order and fourth-order magnetic anisotropy constants.
The second-order magnetic anisotropy constants, Eq. (8), are
proportional to the magnetoelastic constant δ, the square of the
magnetization value, and the linear combinations of the lattice
parameters.

A computation of the periodic angular dependence of
the in-plane resonance field H

‖
r (ϕ) can be carried out using

the value of α = 1/2, the well-established value of the
dimensionless magnetoelastic constant δ = −23 (Refs. 6
and 7), and the experimental values of the lattice parameters.
The magnetic anisotropy constants can be evaluated using the
following fitting procedure:

(i) At the first step, the magnetization value must be
adjusted to obtain the correct average value of the H

‖
r (ϕ)

function (the adjusted value proves to be independent on the
values of the fourth-order anisotropy constants).

(ii) At the second step, the fourth-order anisotropy constant
2Kca(1/2) = Kc + Ka , which controls the amplitude of H

‖
r (ϕ)

function, should be adjusted to fit the plot of this function to

TABLE I. The physical values obtained by fitting procedure using
the angular dependence of the in-plane resonance field and three sets
of lattice parameters. See text for details.

Set I Set II Set III

a, nm 0.612 0.612 0.619
b, nm 0.578 0.582 0.580
c, nm 0.554 0.554 0.553
M, emu/cm3 590 495 610
Ka + Kc (erg/cm3) −6 × 105 −5 × 105 −6.5 × 105

Kb (erg/cm3) 8 × 105 4 × 105 9 × 105

K‖ (erg/cm3) 2.41 × 106 1.68 × 106 2.92 × 106

K⊥ (erg/cm3) −4.16 × 105 −5.81 × 104 −5.31 × 105

(Ka + Kc)/M (kOe) −1.02 −1.01 −1.07
2K‖/M (kOe) 8.17 6.81 9.58
2K⊥/M (kOe) −1.41 −0.235 −1.74
Hr

⊥(1/2) (kOe) 8.74 8.68 8.69
Hr

⊥(0) (kOe) 16.9 15.5 18.3

the experimental values of the resonance field (the amplitude
proves to be independent on the Kb value).

(iii) Finally, the proper value of the Kb constant must be
adjusted to fit the theoretical value of the transversal resonance
field H⊥

r to the experimental one.
We performed such a fitting procedure for three somewhat

different sets of the lattice parameters to illustrate its high
sensitivity to the variation of physical properties. During
the procedure performance, the theoretical values of the
resonance field were adjusted to the experimental ones at room
temperature using g = 2.01.

The experimental values of lattice parameters reported in
Ref. 23 and the adjusted values of the magnetization and
anisotropy constants are presented in the Table I as the Set I of
physical values. Corresponding to these values, the function
H

‖
r (ϕ) is presented in Fig. 1 by the doted line.
Then the value b = 0.578 nm, reported in Ref. 23, was

tentatively replaced by the value b = 0.582 nm, as determined
in the present work, whereas the other values in the Set I were
kept unchanged. The dashed line in Fig. 1 shows that this
replacement resulted in the noticeable disagreement between
the computed and experimental values of the resonance field.
The divergence of the doted and dashed lines illustrates a high
sensitivity of the calculated values to the small variation of the
physical properties, particularly to the lattice parameters. Thus,
the fitting procedure was performed for the Set II of physical
parameters, and the appropriate values of the anisotropy
constants were determined (see Table I). The function H

‖
r (ϕ),

corresponding to these values, is presented in Fig. 1 by the
solid line.

Finally, the fitting procedure was performed for the experi-
mental values of the lattice parameters reported in Ref. 24.
These values and the appropriate anisotropy constants are
presented in Table I as the Set III. The corresponding function
H

‖
r (ϕ) is not presented in Fig. 1 because its plot almost

coincides with the plot shown by the solid line.
For all sets of lattice parameters, the following conclusions

can be derived:
(a) the in-plane anisotropy constant K‖ is positive, while

the transversal anisotropy constant is negative;
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FIG. 7. The in-plane resonance field values computed for the
complete (solid line) and partial (dashed and dash-doted lines)
compensation of the orthorhombic in-plane anisotropy of the film.

(b) the inequality K‖ 
 |K⊥| holds;
(c) the sum of the fourth-order anisotropy constants Kc +

Ka is negative, while Kb value is positive;
(d) the absolute value of the fourth-order anisotropy field

is smaller than the average magnitude of the resonance field
but larger than the minimal value of this field. Therefore, the
nonparallelism between the field vector and unit magnetic vec-
tor should be taken into account for the accurate computation
of the Hr (ϕ) function in the vicinity of its minimums.

Figure 7 illustrates the degree of perfection of the in-plane
anisotropy compensation in the twinned film: the bifurcation
of the Hr (ϕ) function becomes noticeable even in the case of
small deviation �α = 0.05 of the fractional parameter α from
the value of α = 1/2, which provides the perfect compensation
of the orthorhombic in-plane anisotropy. This takes place
because the strong inequality K‖ 
 Ka + Kc is fulfilled.
The experimental difference between the values Hr (90) and
Hr (180) is substantially smaller than the theoretical one.

Twinning changes the FMR conditions also for the magnetic
field perpendicular to the film plane. The computations
carried out using Eq. (17) and Sets I–III of the physical
parameters showed that the resonance field value H⊥

r (1/2),
which is inherent to the twinned film, is nearly half of the
value H⊥

r (0), which corresponds to the single-variant film.
Thus, the twinning results in the considerable reduction of
the perpendicular resonance field. It should be stressed that
the second experimental value of the resonance field H ≈
11.5 kOe is considerably different from the theoretical values
that were computed for the single-variant state of the film.

IV. DISCUSSION

The computed values of the magnetic anisotropy constants
enable the estimation of the magnetic domain wall width l0. As

it is known, the width of the 90o domain wall can be roughly
estimated from the formula l0 ∼ a(HE/HA)1/2/2, where HE

and HA are the internal magnetic fields that characterize
the spin exchange interaction and the magnetocrystalline
anisotropy, respectively. The value of HE ≈ 9 × 102 kOe
was reported for the Ni-Mn-Ga alloy.25 For the Bloch domain
wall, the characteristic anisotropy field is defined as HA =
|2K⊥|/M, and therefore, the estimated values of the domain
wall width are equal to 8, 19, and 7 nm for the Sets I, II, and
III of the lattice parameters.

All estimated values of the magnetic domain wall width
are comparable with the widths of twins, which are visible
in Fig. 3. This confirms an idea that the components of
twins are strongly coupled by the exchange interaction. The
frequency of the homogeneous precession of the magnetic
moments of atoms is predetermined by the average MAED,
which is expressed by Eq. (16). The experimental values of the
resonance field coincide with the theoretical ones computed
for the parameter α = 1/2 because they correspond to the
resonance of the ensemble of twins, which means that α =
1/2 is an average value being inherent to this ensemble. The
homogeneous precession of the magnetic moments of the twin
components is not accompanied by the variation of the local
values of magnetization function M(r), and so it was described
above by the precession of unit magnetic vector [see Eq. (14)].

The inhomogeneous oscillations of the magnetic moments
of twin components result in the variation of the local values of
the magnetization function M(r). As so, these oscillations are
accompanied by the periodic variation of the spatial density
of spin exchange interaction. Due to this, the resonance value
of the transversal magnetic field coincides neither with the
value of H⊥

r (1/2) that is inherent to the twinned film, nor
with the magnitude of H⊥

r (0), which corresponds to the
FMR in the single-variant film. As so, the exchange energy
density Fex(r) ∝ [∇M(r)]2 should be taken into account for
the computation of the second resonance value of a transversal
magnetic field. In essence, this energy density describes the
exchange interaction between the spins of atoms situated in
the neighboring twin components. This interaction prescribes
the width of the magnetic domain walls and may contribute
to the spatial dispersion of the spin waves propagating in the
twinned magnetic film or the bulk single crystal. The role of the
energy Fex(r) in the formation of the properties of fine-twinned
magnetic films may be considered as a subject of the further
theoretical work.
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N. Scheerbaum, L. Schultz, and S. Fähler, New J. Phys. 10, 023040
(2008).

18M. Thomas, O. Heczko, J. Buschbeck, L. Schultz, and S. Fähler,
Appl. Phys. Lett. 92, 192515 (2008).

19J. Tillier, D. Bourgault, S. Pairisa, L. Ortega, N. Caillault, and
L. Carbone, Physics Procedia 10, 168 (2010).

20G. Jakob, T. Eichhorn, M. Kallmayer, and H. J. Elmers, Phys. Rev.
B 76, 174407 (2007).

21J. Enkovaara, A. Ayuela, L. Nordström, and R. M. Nieminen, Phys.
Rev. B 65, 134422 (2002).

22K. Y. Guslienko, N. A. Lesnik, A. I. Mitsek, and B. P. Vozniuk,
J. Appl. Phys. 69, 5316 (1991).

23V. V. Martynov and V. V. Kokorin, J. de Phys. III 2, 739
(1992).

24A. Sozinov, A. Likhachev, and K. Ullakko, IEEE Trans. Mag. 38,
2814 (2002).

25V. A. Chernenko, V.A. L’vov, E. Cesari, and P. McCormick, Mater.
Trans. JIM 41, 928 (2000).

054450-7

http://dx.doi.org/10.1063/1.1306635
http://dx.doi.org/10.1063/1.1306635
http://dx.doi.org/10.1016/j.msea.2003.10.353
http://dx.doi.org/10.1016/j.msea.2003.10.353
http://dx.doi.org/10.1103/PhysRevB.81.224428
http://dx.doi.org/10.2320/matertrans.43.856
http://dx.doi.org/10.4028/www.scientific.net/MSF.684.31
http://dx.doi.org/10.1088/0953-8984/10/21/015
http://dx.doi.org/10.1088/0953-8984/10/21/015
http://dx.doi.org/10.1063/1.3357409
http://dx.doi.org/10.1063/1.3357409
http://dx.doi.org/10.1063/1.1641956
http://dx.doi.org/10.1063/1.1641956
http://dx.doi.org/10.1063/1.3293455
http://dx.doi.org/10.1063/1.3293455
http://dx.doi.org/10.1063/1.3075395
http://dx.doi.org/10.1103/PhysRevLett.66.1354
http://dx.doi.org/10.1103/PhysRevLett.66.1354
http://dx.doi.org/10.1063/1.1639144
http://dx.doi.org/10.1063/1.1639144
http://dx.doi.org/10.1088/1367-2630/10/2/023040
http://dx.doi.org/10.1088/1367-2630/10/2/023040
http://dx.doi.org/10.1063/1.2931082
http://dx.doi.org/10.1016/j.phpro.2010.11.094
http://dx.doi.org/10.1103/PhysRevB.76.174407
http://dx.doi.org/10.1103/PhysRevB.76.174407
http://dx.doi.org/10.1103/PhysRevB.65.134422
http://dx.doi.org/10.1103/PhysRevB.65.134422
http://dx.doi.org/10.1063/1.348061
http://dx.doi.org/10.1051/jp3:1992155
http://dx.doi.org/10.1051/jp3:1992155
http://dx.doi.org/10.1109/TMAG.2002.803567
http://dx.doi.org/10.1109/TMAG.2002.803567

