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Determination of boundary scattering, magnon-magnon scattering, and the Haldane
gap in Heisenberg spin chains
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Low-lying magnon dispersion in a S = 1 Heisenberg antiferromagnetic (AF) chain is analyzed using the
non-Abelian density-matrix-renormalization-group (DMRG) method. The scattering length ab of the boundary
coupling and the intermagnon scattering length a are determined. The scattering length ab is found to exhibit a
characteristic diverging behavior at the crossover point. In contrast, the Haldane gap �, the magnon velocity v,
and a remain constant at the crossover. Our method allowed estimation of the gap of the S = 2 AF chain to be
� = 0.0891623(9) using a chain length longer than the correlation length ξ .
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I. INTRODUCTION

To form a better understanding of interacting many-body
systems, it is very important to determine an effective field
theory and to clarify the low-energy physics involved. In the
physics of low-dimensional quantum systems, considerable
attention has been paid to the one-dimensional antiferro-
magnetic (AF) integer-spin Heisenberg model following the
discovery of the Haldane gap.1,2 Precise determination of
the gap has been reported by several authors.3–7 Its massive
elementary excitation, i.e., the magnon, has a relativistic
dispersion relation, which is often described by a nonlinear
sigma model (NLSM).1,2,8,9

In particular, the S = 1 AF Heisenberg chain has been
widely studied both theoretically and experimentally. When
open boundary conditions (OBC) are applied to a S = 1 AF
chain, owing to the unique effective S = 1/2 spins at the
ends, quasidegeneracy appears between the singlet ground
state and a low-lying triplet state.10 Various attempts at bound-
ary tuning,3 as exemplified by attachment of real S = 1/2
spins to maintain the high accuracy of the density-matrix-
renormalization-group (DMRG) method,11,12 have shown that
deformation of the boundary conditions can selectively modify
the magnon wave function while maintaining the uniformity
of the ground state.13

To form a better understanding of the physics involved in a
finite chain under OBC, we can use the NLSM to describe the
low-lying energy dispersion. Lou et al. have proposed usage of
a form

√
�2 + v2 sin2 keff for low-lying magnon dispersions,

where keff is the effective wave number.14 Here, � denotes the
Haldane gap and v is the velocity of the quasiparticle. They
described the asymptotic effects of boundary scattering and
intermagnon interactions in terms of the scattering lengths
ab and a, which appear in keff . When boundary tuning is
applied by introducing an antiferromagnetic coupling Jend

between the S = 1 spin chain and the extra real S = 1/2 spin,
these scattering lengths might be effected. This idea motivated
us to study low-lying elementary excitations using both the
DMRG and NLSM methods by describing the bulk properties
and the boundary-scattering effects in terms of an effective
theory. In this work, using the DMRG method, the energy
dispersion of various magnon modes was determined for S = 1
Heisenberg systems with up to 2048 spins. Finite-size scaling
analysis was performed to determine the boundary-scattering

length and the intermagnon scattering length, in addition to
� and v in the thermodynamic limit. We used a relation
of the correlation length ξ ∼ v/�, which is known to hold
approximately in the integer-spin AF Heisenberg chain.15,16

We found that ab changed sign around a critical value of Jend.
This value should be identical to that required to make local
quantities such as the local bond energy of the ground state and
the spin density of long-wavelength magnons uniform.3,6,17,18

In addition, a divergence-like behavior of ab was detected
around this critical value denoted as J c

end. However, the
intermagnon scattering length was found to be constant at
a = −0.383(6)ξ irrespective of Jend. In this derivation, �, v,
and ξ were confirmed to be always independent of Jend in the
thermodynamic limit. This allows the low-lying elementary
excitations to be effectively described. The results indicated
the presence of both itinerating magnons (IMs) and boundary
magnons (BMs) bound at the ends. At J c

end, the diagonal
magnetization induced by an IM shows a flat structure around
the center of the system when L � ξ , with L being the
number of S = 1 spins. Both the diverging behavior of ab

and the uniform distribution of the long-wavelength magnons
confirm the realization of bulk characteristics in an elementary
excitation at the critical point J c

end, where the ground state also
has a uniform nature around the center of the system.

Furthermore, this work clearly resolves the problem pointed
out by Todo and Kato;4 there is disagreement between
the DMRG19 and quantum Monte Carlo (QMC) simulation
results4 with respect to estimation of the excitation gap in the
S = 2 AF Heisenberg model. The reason for this disagreement
might be an inappropriate scaling assumption in the DMRG
study. This work applies finite-size scaling analysis to the
excitation gap in the S = 2 AF chain, and shows that the
corrected gap is within the error bar of the QMC value.

II. EFFECTIVE HAMILTONIAN

We consider an S = 1 AF chain with boundary S = 1/2
spins sj with j = 0 or L + 1, which is described by the
following Hamiltonian:

H (Jend) =
L−1∑
i=1

Si · Si+1 + Jend(s0 · S1 + SL · sL+1), (1)

where Si represents the S = 1 operator at the ith site.
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The low-energy physics of the Hamiltonian (1) can be
understood by using an approximate mapping onto the
NLSM.1,2,8,9 We let L → ∞, keeping X = Lb constant, with b

being the lattice spacing. Taking into account the effective S =
1/2 boundary modes seff

j , we obtain the following expression:

Heff = HNLSM + λs

[
φ(0) · seff

1 + (−1)Lφ(X) · seff
L

]
+ λu

[
l(0) · seff

1 + l(X) · seff
L

]
+ λ′

s[φ(0) · s0 + (−1)Lφ(X) · sL+1]

+ λ′
u[l(0) · s0 + l(X) · sL+1]

+ J eff
end

(
seff

1 · s0 + seff
L · sL+1

)
, (2)

with the bulk part of the NLSM expressed as

HNLSM = v

2

∫ X

0
dx

[
gl2 + 1

g

(
∂φ

∂x

)2 ]
, (3)

where φ and l ≡ (1/vg)φ × ∂tφ are low-energy Fourier modes
of the spin operators with wave vectors near π and 0. The
coupling parameter and the velocity are given as g = 2

S
and

v = 2S. Since all the bare couplings are antiferromagnetic,
solutions for the bulk fields follow the Neumann boundary
conditions (NBC): dφ/dx|x=0,X = 0.14 The λu and λ′

u terms
produce an effective boundary repulsive potential on an IM
and J eff

end is a renormalized coupling constant.
The validity of this description is also confirmed by

examining the spin density of an IM shown in Fig. 1. When
Jend is larger than J c

end, the lowest triplet mode has itinerating
behavior. Indeed, we see that 〈Sz

i 〉 exhibits a cosine-like be-
havior for Jend = 1.0 owing to both strong repulsive coupling
via λu and λ′

u and the NBC on φ(x). When Jend approaches
J c

end ∼ 0.51, the IM mode becomes uniform around the center
of the chain but 〈Sz

i 〉 exhibits damped oscillations near the
two ends. This known solution suggests that the mode should
continuously change into an end mode seff

j in the low-energy
eigenstate when Jeff < Jc

eff .
Thus the dispersion relation for N itinerating magnon

modes at low energies in the dilute limit may be simply
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FIG. 1. (Color online) Distribution of local magnetization 〈Sz
j 〉

for a single-magnon state with Stot = 1 for various values of Jend.

reproduced by a nonrelativistic effective Hamiltonian for N

virtual particles:

Heff(Jend) = 1

2m

N∑
i=1

d2

dx2
i

+
∑
〈i,j〉

V (xi − xj )

+
N∑

i=1

[Vb(Jend,xi) + Vb(Jend,X − xi)], (4)

where 0 � xj � X, with a wave function obeying the Neu-
mann boundary condition: ∂jψ(x1, . . . ,xN )|xj =0,X = 0. Here,
we use the Einstein relation m ≡ �/v2. Effective short-range
interactions between IMs and between an IM and a BM
are represented by V and Vb, respectively. We expect they
are short-range functions with a range of the order of the
correlation length ξ . All of the effects of Jend are produced by
the boundary potential Vb(Jend,x) In the asymptotic region, the
effects of V and Vb appear as scattering phase shifts, which
are represented by a and ab.

We now identify low-lying magnon modes. Each mode
is specified by a total spin of Stot. When Jend is small and
positive, since we have two effective S = 1/2 spins creating
the bulk low-lying triplet and two real S = 1/2 spins, we need
to polarize these four spins before we can create one IM. In this
case, the effective chain length for the IM becomes L − 2ab

and keff = π/(L − 2ab), when the system is about two times
longer than the correlation length ξ . Therefore, we have the
relation:

E32 =
√

�2 + v2 sin2
π

L − 2ab
, (5)

where Eji = Ej − Ei and Ej and Ei are the lowest energy of
the Stot = j and Stot = i states. The energy spectrum E42 for
two IMs is given by

E42 =
2∑

j=1

√
�2 + v2 sin2

jπ

L − 2ab − a
, (6)

where we use the small-k approximation for the magnon-
magnon phase shift. When Jend becomes large enough, the
effective boundary S = 1/2 modes couple strongly with the
real S = 1/2 spins. In this condition, the low-lying magnon
states are IMs, and the formulas for E10 and E20 are,
respectively, similar to Eqs. (5) and (6). Thus we can conclude
that a crossover value of J c

end exists where the low-energy
spectrum changes qualitatively.

III. NUMERICAL RESULTS

We used the non-Abelian DMRG method (NA-DMRG)20

to estimate the energy spectrum of the lowest Stot = 0, 1, 2, 3,
and 4 states for finite systems. Numerical convergence during
finite-system sweeping was accelerated by the use of a wave-
function-prediction method.21–26 Since the number of kept
states for the block spin is up to ms = 512, the truncation error
is smaller than 1.0 × 1012 in the lowest Stot = 4 state. This
corresponds to a number of kept states of msz ∼ 2500–2700
in the standard DMRG. In this case, the numerical cost of
the standard DMRG is about 110–140 times higher than that
of NA-DMRG because in the DMRG it varies as the cube
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FIG. 2. (Color online) Single-magnon energy with Jend under
the condition ms = 512 (msz ∼ 2500). The dotted line represents
v2 sin2[π/(L − 2ab)].

of the number of kept states. The system size L + 2 is up to
2048, where the two extra spins indicate the boundary S = 1/2
spins.

The energy of a single IM as a function of the system size
is shown in Fig. 2. The target energy spectrum is E32 when
Jend = 0, and E10 when Jend = 0.6 or 1. To estimate �, v, and
ab, we generated sequences A∗(L0 + 2) for different values of
L = L0, where A∗(L) denotes finite values of A = �, v, and
ab in the thermodynamic limit. The sequences were determined

by least-square fitting with the function
√
�2 + v2 sin2 π

L−2ab

for IM energies of L + 2 = 2�(L0 + 2), where � = 0, ± 1.
The value of A was estimated by power-law extrapolation with
elements of A∗(512) and A∗(1024). The estimation error was
taken to be |A − A∗(1024)|. Based on the optimum boundary
scattering length ab(Jend) for each Jend, we found a universal
finite-size dependence for a fixed energy gap � and spin
velocity v. As a result, we showed that only the boundary
scattering length ab was affected by changing Jend, whereas
� and v were independent of Jend (see Table I). This result is
consistent with the effective model in Eq. (4).

The estimated values of �, v, and ξ = v/� are consistent
to within � = 0.4104792485(4), v = 2.46685(2), and ξ =
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FIG. 3. (Color online) Boundary-scattering length and inter-
magnon scattering length as a function of Jend. The dotted line
represents Jend = 0.50865.

6.00967(5), respectively, except for a somewhat larger error
at Jend = 0.4 and 0.6, which are closest to J c

end. Since our
data is obtained by extrapolation using system sizes larger
than those treated in former studies,3,4 our results show
meaningful differences. The reported value of ab(Jend = 0) =
−1 in Ref. 14 is about three times larger than our result of
ab(Jend = 0) = −0.3748(1). The value of ab(Jend) changes
rather dramatically with Jend (see Fig. 3) with a change in
sign even occurring around Jend ∼ 0.5. The values seem to
diverge around J c

end. When the boundary-scattering length
becomes ab → −∞, keff = π/(L − 2ab) approaches zero, and
the energy of the lowest IM is almost at its minimum value, �,
and is independent of Jend. This is consistent with the report
in Refs. 3 and 17. However, we should note that the above
picture holds only when L � ab, requiring a high-performance
simulation tool such as NA-DMRG.

In the same manner, using the estimated �, v, and ab, we
determined the intermagnon scattering length a. The target
energy spectrum is E42 when Jend < J c

end, and is E20 when
Jend > J c

end. With a common a, universal behavior is observed
in the large L region. The estimated values of a are consistent
to within a = −2.30(4) = −0.383(6)ξ except for a somewhat
larger error at Jend = 0.4 and 0.6. (See Table I and Fig. 3.) Thus

TABLE I. Results of numerical simulations for a single itinerating magnon, showing magnon energy �, magnon velocity v, boundary-
scattering length ab, intermagnon scattering length a, and correlation length ξ = v/�, ab/ξ , and a/ξ .

Jend � v ab a ξ ab/ξ a /ξ

0 0.4104792487(1) 2.466838(1) −0.3748(1) −2.30(2) 6.009654(1) −0.06237(2) −0.383(4)
0.1 0.4104792486(1) 2.466844(2) −0.0836(3) −2.301(2) 6.009669(4) −0.01391(5) −0.3830(4)
0.2 0.4104792487(1) 2.46684(1) 0.540(2) −2.303(5) 6.00966(3) 0.0898(3) −0.3833(9)
0.3 0.4104792486(4) 2.46684(4) 2.081(8) −2.30(4) 6.0096(1) 0.346(1) −0.384(6)
0.4 0.410479248(2) 2.4668(3) 7.33(5) −2.3(2) 6.0098(7) 1.220(9) −0.38(5)
0.6 0.410479248(2) 2.4668(2) −16.93(2) −2.3(2) 6.0096(5) −2.821(6) −0.38(3)
0.7 0.4104792483(2) 2.46685(3) −9.586(5) −2.30(3) 6.00968(7) −1.5951(9) −0.382(4)
0.8 0.4104792483(2) 2.46685(2) −7.317(3) −2.30(2) 6.00968(4) −1.2176(5) −0.383(3)
0.9 0.4104792483(2) 2.46685(2) −6.233(3) −2.30(2) 6.00968(4) −1.0372(5) −0.383(3)
1.0 0.4104792485(1) 2.46684(1) −5.605(3) −2.30(2) 6.00967(4) −0.9328(5) −0.383(3)
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we conclude that the value of a is independent of Jend. The
estimated value of a is comparable to a = −0.32ξ in Ref. 14.
In Fig. 3, the dotted line represents Jend = 0.50865 determined
in Ref. 6.

IV. APPLICATION TO S = 2 HEISENBERG
CHAIN AND CONCLUSIONS

We have shown that the energy spectrum modified by
the tuning parameter Jend can be fitted using an effective
massive relativistic dispersion with a boundary-scattering
length ab(Jend) modified for lattice models. The intermagnon
scattering length a is constant irrespective of Jend as well
as other bulk quantities including the Haldane gap, the
magnon velocity, and the correlation length. In contrast,
ab(Jend) drastically changes around Jend ∼ 0.5, representing
a crossover point for the physics at the boundary.

Analysis of the boundary-scattering length and inter-
magnon scattering length was also carried out for an S = 2
AF Heisenberg chain, where Si and si in the Hamiltonian in
Eq. (1) represent the S = 2 and S = 1 operators, respectively.
In addition, we choose Jend = 1, so that the low-lying magnon
states are IMs and a similar formula for E10 is obtained to
that shown in Eq. (5). Our data was taken using ms = 1024,
which corresponds to msz ∼ 6000 and large systems up to
L + 2 = 2048. The truncation error is smaller than 1 × 10−11.
Note that the numerical cost using NA-DMRG is about 200
times less than that for the standard DMRG in this case. In
contrast to a former report,27 our results suggest a large value
of ab(Jend = 1) = −33(1) = −0.67(2)ξ . Our calculations give
the excitation gap � = 0.0891623(9), the spin velocity v =
4.42(1), and the correlation length ξ = 49.6(1). In particular,
the value of � obtained in the present study is consistent
with the value of 0.08917(4) determined by quantum Monte
Carlo simulations.4 The estimate of the Haldane gap has
thus been improved by two more significant digits. This
indicates the ability of the effective theory to correctly describe
the low-energy physics and the usefulness of the proposed
numerical approach is studying such problems.

It would be of interest to apply the approach used in this
work to finite-size scaling with different boundary tuning

methods such as hyperbolic deformation.13,28,29 In such a
situation, the excited quasiparticle is weakly confined near
the center of the system under the deformation. In Ref. 28, we
showed that it is necessary to introduce an additional parameter
d and replace L + 1 by L + d in order to reduce higher-order
corrections. This replacement is introduced in the effective
model shown in Eq. (4) by considering the effective boundary
scattering. The boundary-scattering length has an important
and universal influence on excitation energy scaling as long as
there are chain ends.

In this work, a relation ξ = v/� is used to estimate the
correlation length in each spin-S chain. If we use an assump-
tion for a relation between the low-energy dispersion curve and
the ground-state correlation length, namely sinh ξ−1 = �/v in
this case,30 the correlation lengths are evaluated as 6.03720(9)
in S = 1 and 49.6(1) in S = 2. In the case of S = 1, we have a
meaningful different value from the former estimation. On the
contrary, the difference is not confirmed in the case of S = 2.
To find correct relation between the low-energy dispersion and
the correlation length in each spin-S AF Heisenberg chain is
a future issue.

For a final development of the low-lying effective field
theory to describe the low-lying magnon dispersions, dis-
cussions for rigorous results of wave functions and energy
dispersions for low-lying states are important. The effective
dispersion relation of

√
�2 + v2 sin2 keff is known to appear

in the Haldane phase31 and also in the massive phase of
the S = 1/2 Heisenberg XXZ model.32 The Bethe-ansatz
solutions for OBC suggest that an analogous crossover from an
IM with real keff to a BM with a damping nature can be found
as a continuous change from a real to an imaginary rapidity.33
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