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Bosonic representation of quantum magnets with large single-ion easy-plane anisotropy
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We introduce a representation of an integer spin S via bosonic operators which is useful in describing the
paramagnetic phase and transitions to magnetically ordered phases in magnetic systems with large single-ion
easy-plane anisotropy D. Considering the exchange interaction between spins as a perturbation and using the
diagram technique we derive the elementary excitation spectrum and the ground-state energy in the third order
of the perturbation theory. In the special case of S = 1 we obtain these expressions also using simpler spin
representations some of which were introduced before. Comparison with results of previous numerical studies of
2D systems with S = 1 demonstrates that our approach works better than other analytical methods applied before
for such systems. We apply our results for the elementary excitation spectrum analysis obtained experimentally
in NiCl2-4SC(NH2)2 (DTN). It is demonstrated that a set of model parameters (exchange constants and D) which
has been used for DTN so far describes badly the experimentally obtained spectrum. A different set of parameters
is proposed, using which we fit the spectrum and values of two critical fields of DTN.
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I. INTRODUCTION

Many analytical approaches to consideration of quantum
magnetic systems with localized spins are based on representa-
tions of spins via bosonic or fermionic operators allowing one
to turn from spin Hamiltonians to those describing ensembles
of bosons or fermions.1 At low temperature the form of the
representation depends on the ground state of the spin system
under discussion. The Holstein-Primakoff and the Dyson-
Maleev representations are frequently used for magnetically
ordered phases; the Jordan-Wigner transformation proved to be
useful for S = 1/2 spin chains; the bond-operator formalism2

was proposed for spin liquids with singlet ground state; etc.
We propose in the present paper a representation of

an integer spin S. This representation should be useful in
describing the paramagnetic phase in which all spins are
mainly in the quantum state with zero quantum number for
projection onto a preferential direction. As an example of
particular system of this type we choose a Heisenberg magnet
with large single-ion easy-plane anisotropy which Hamiltonian
has the form

H = 1

2

∑
i,j

Jij SiSj + D
∑

i

(
Sz

i

)2
, (1)

where summations are taken over all sites of the lattice with
arbitrary spatial dimension, D > 0, and signs of exchange
constants Jij are not important in the following. The first term
in (1) is supposed to be small enough compared to the second
one that the system is in the paramagnetic phase at T = 0.
There is a quantum critical point (QCP) D = Dc separating
the paramagnetic phase at D > Dc and a magnetically ordered
or a spin-liquid one at D < Dc. The value of Dc as well as the
phase type at D < Dc depend on the lattice spatial dimension
and the exchange interaction.3–5

Quite a few compounds can be mentioned with the param-
agnetic ground state of the considered type which are described
by the Hamiltonian (1): CsFeBr3,6–9 CsFeCl3,7 Sr3NiPtO6,10

NENC,11–13 NENP,14–16 NBYC,17 NiCl2-4SC(NH2)2,18–25

(apparently the most intensively studied compound of this

type in recent years), (Ni(C5H5NO)6)(NO3)2,26 and NiSnCl6 ·
6H2O.27,28 All the mentioned materials have S = 1 and all
of them are quasi-1D magnets. This is probably the reason
why the majority of the recent theoretical investigations of
the model (1) with large D > 0 focus on weakly coupled or
independent spin chains.3,4,16,29–43 In particular, the elementary
excitation spectrum has been derived before using a random-
phase approximation,7,44 the regular perturbation theory,39 a
generalized spin-wave approach,19,25 and some other self-
consistent procedures.38,40,45,46

Treating the first term in Eq. (1) as a perturbation, using the
proposed spin representation and the conventional diagram
technique we derive below expressions for the elementary
excitation spectrum and the ground-state energy in the
paramagnetic phase in the third order in the perturbation
theory. For brevity, this approach is referred to hereafter as
an expansion in terms of J/D while one should bear in mind
that constants Jij in Eq. (1) are assumed to be arbitrary. We
also obtain these results in the special case of S = 1 using
simpler spin representations, some of which were introduced
before in Refs. 35 and 45. In the particular case of a spin
chain with S = 1 our expression for the spectrum coincides
with that obtained in Ref. 39 only for this special case using
the regular perturbation theory. Comparing our results with
those of numerical calculations45,47 which were carried out for
S = 1, a square lattice, and antiferromagnetic exchange, we
show that our approach works better than other theoretical
methods proposed so far.25,38,40,44 In particular, our results
are in very good agreement with the numerical ones45,47

not very close to the QCP. At D ≈ Dc only the spectrum
of long-wavelength excitations is reproduced unsatisfactorily,
which is a consequence of strong fluctuations near the QCP.

We demonstrate that our approach is applicable to the
intensively studied compound NiCl2-4SC(NH2)2 (DTN)18–25

described by the model (1). It is shown that our expression
for the spectrum describes badly the spectrum obtained in the
neutron experiment19 with the conventional set of parameters
(values of exchange constants and D) attributed to DTN
previously. A different set of parameters is proposed for DTN
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using which we fit well the neutron data and reproduce values
of critical fields found experimentally.22 It should be noted
that in comparison with the conventional model used for DTN
discussion we take into account also an exchange interaction
between two magnetic sublattices of DTN48 which should
be taken into consideration as the recent ESR (electron spin
resonance) experiment18 demonstrates.

The rest of the present paper is organized as follows. In
Sec. II the representation of an integer spin is proposed and
details of the diagram technique based on this representation
are discussed. In Sec. III expressions for the elementary
excitation spectrum and the ground-state energy are derived
in the third order in J/D. In Sec. IV we compare our results
with those obtained before using other approaches. We discuss
also representations which are valid only for S = 1 some of
which are simpler than the general one. The expression for
the spectrum derived in Sec. III is applied for analysis of the
DTN spectrum obtained in the neutron experiment.19 Sec. V
contains our conclusion.

II. REPRESENTATION OF AN INTEGER SPIN
AND TECHNIQUE

The ground state of a system described by the Hamiltonian
(1) in the limit of J/D → 0 is a direct product of states
|Sz

i = 0〉: �i ⊗ |Sz
i = 0〉. The lowest excited states can be

constructed from the ground state by substituting |Sz
i = ±1〉

for |Sz
i = 0〉 at any i. The energy of such states is equal to D and

one leads to the doubly degenerate dispersionless elementary
excitation spectrum

ε0p = D. (2)

The exchange interaction gives rise to the spectrum dispersion.
When it is small enough one can find expressions for the
spectrum and other observables considering the exchange as a
perturbation. In particular, the elementary excitation spectrum
of the spin chain with S = 1 and the exchange coupling
between only nearest neighbors was calculated in Ref. 39 in
the third order of the regular (nondiagrammatic) perturbation
theory. In contrast, our aim is to construct a spin representation
which opens the door to calculations utilizing the diagram
technique and which allows one to obtain such expressions for
observables more easily. In particular, we recover below the
result of Ref. 39 using the diagram technique.

We propose the following expressions for projections of an
integer spin S:

Sz
i = nb,i − na,i , (3)

S+
i = Sx

i + iS
y

i = b
†
i

√
(S − nb,i)(S + 1 + nb,i)

1 + nb,i

+
√

(S − na,i)(S + 1 + na,i)

1 + na,i

ai, (4)

where ai and bi are bosonic operators, na,i = a
†
i ai and nb,i =

b
†
i bi . The whole Hilbert space consists of states |p,q〉 with p

and q particles of a and b types, respectively, and operators ai

and bi act on these states as follows:

〈n + 1,q| a
†
i |n,q〉 = √

n + 1, ∀q,n � 0,

〈p,n + 1| b
†
i |p,n〉 = √

n + 1, ∀p,n � 0,

ai |0,q〉 = 0, ∀q � 0,

bi |p,0〉 = 0, ∀p � 0.

The subspace of physical states |Sz
i = −n〉 = |n,0〉 and |Sz

i =
n〉 = |0,n〉 with 0 � n � S is constrained by the following
conditions:

na,inb,i = 0, (5)

na,i � S,
(6)

nb,i � S.

Thus, operators a† and b† create in the physical subspace
excitations with Sz = −1 and +1, respectively. It can be
readily verified that representation (3)–(4) reproduces the spin
commutation relations on the physical subspace defined by
Eqs. (5) and (6).

Condition (5) selects states having at any site only excita-
tions of a or b type. This constraint can be satisfied by adding
to the Hamiltonian the term describing an infinite repulsion
between a and b particles

HU1 = U

N

∑
i

a
†
i b

†
i aibi, U → +∞. (7)

After this modification matrix elements of operators (3)–(4)
become zero between states from physical and unphysical
subspaces constrained by conditions (6). This means that
at zero (and most probably at low) temperature we can
use Eqs. (3)–(4) and the diagram technique forgetting about
condition (6), as it is done in a similar situation in the case of the
Holstein-Primakoff representation. We prove this statement
below for S = 1 by performing calculations using Eqs. (3)–(4),
taking into account constraint term (7) and introducing to the
Hamiltonian the additional term

HU2 = U

N

∑
i

(a†
i a

†
i aiai + b

†
i b

†
i bibi), U → +∞, (8)

which explicitly selects states with no more than one a or b

particle as condition (6) requires at S = 1. It is worth noting
that we could construct a spin representation similar to (3)–(4),
which matrix elements are zero on states from physical and
unphysical subspaces so that it was not necessary to introduce
term (7) to the Hamiltonian. However such a representation
would be very cumbersome. On the other hand term (7) does
not complicate calculations much at any integer S. That is why
we use below Eqs. (3)–(4) with constraint term (7).

At sufficiently small exchange interaction and low temper-
ature we expect densities of a and b particles to be small.
Therefore one can expand the square roots in Eq. (4) into a
series and restrict oneself by the first terms of the resulting
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normally ordered expressions which have the form

S+
i ≈ b

†
i (c1 − c2 b

†
i bi) + (c1 − c2 a

†
i ai)ai, (9)

c1 =
√

S(S + 1), (10)

c2 =
√

S(S + 1) −
√

(S − 1)(S + 2)

2
> 0. (11)

Using Eqs. (3) and (9) and taking into account Eq. (7) we
obtain from Eq. (1)

H =
∑

p

ε1p(a†
pap + b†pbp) (12a)

+
∑

p

c2
1

2
Jp(a†

pb
†
−p + apb−p) (12b)

+ 1

N

∑
p1+p2=p3+p4

{[
D + 1

2
J3−1 − c1c2

2
(J1 + J3)

]

× (a†
1a

†
2a3a4 + b

†
1b

†
2b3b4) + [U − J3−1]a†

1b
†
2a3b4

}
(12c)

− 1

N

∑
p1+p2+p3=p4

c1c2

2
J1(b†1a

†
2a

†
3a4 + a

†
1b

†
2b

†
3b4

+ a
†
4a3a2b1 + b

†
4b3b2a1), (12d)

where Jp = ∑
j Jij e

ipRij , N is the number of unit cells,

ε1p = ε0p + c2
1

2
Jp = D + c2

1

2
Jp, (13)

ε0p is defined by Eq. (2), and we omit indexes p in Eqs. (12c)
and (12d). Note that we take into account only terms with no
more than four operators in Eq. (12). It can be shown that
terms containing more than four operators which appear from
higher order terms in the series expansion of square roots in
Eq. (4) lead to contributions to the spectrum and to the ground
state energy of the order of (J/D)4 and higher. As our aim is
to calculate these quantities only up to the third order in J/D,
we can use Hamiltonian (12).

It is convenient to introduce the following Green’s
functions:

G(p) = −i〈apa†
p〉 = −i〈bpb†p〉, (14)

F (p) = −i〈b†−pa†
p〉, (15)

where p = (ω,p) and ap is the Fourier transform of ap(t).
Naturally, the equality 〈apa

†
p〉 = 〈bpb

†
p〉 is satisfied. Dyson

equations for these Green’s functions have the form

G(p) = G0(p)[1 + �pG(p) + �pF (p)],
(16)

F (p) = G0(−p)[�pG(p) + �−pF (p)],

where G0(p) = (ω − ε1p + iδ)−1, and �p and �p are normal
and anomalous self-energy parts, respectively. The solution of

Eq. (16) has the form

G(p) = ω + ε1p + �−p

D(p)
, (17)

F (p) = − �p

D(p)
, (18)

D(p) = ω2 − ε2
1p − ε1p(�p + �−p) + ω(�−p − �p)

−�p�−p + ∣∣�p

∣∣2
. (19)

III. APPLICATION OF THE APPROACH

In this section we apply the method described above for
calculation of the elementary excitation spectrum and the
ground-state energy.

A. Elementary excitation spectrum

The elementary excitation spectrum εp is defined by poles
of Green’s functions (17) and (18):

D(εp,p) = 0. (20)

Let us consider diagrams for the normal self-energy part �p

some of which are shown in Fig. 1. If a diagram contains a
contour that can be walked around while moving by arrows of
functions G0(p), integrals over frequencies in such a diagram
give zero.49 In diagrams without such contours there are at
least two vertexes (12d) or at least one vertex (12d) and one
anomalous Green’s function F (p). As the vertex (12d) is of
the order of J/D and the numerator of F (p) is O(J/D) [see

(a)

(b)

1

2

3

41

= +

2

1 3

4
2

FIG. 1. (a) Diagrams for the normal self-energy part �p giving
nonzero contributions of the second order in J/D. Solid and
dashed lines stand for Green’s functions G(p) of a and b particles,
respectively, defined by Eq. (17). Lines containing solid and dashed
parts stand for anomalous Green’s functions F (p) defined by Eq. (18).
Bare vertexes are defined by Eqs. (12c) and (12d). Open and filled
circles represent renormalized vertex equations which are presented
in panel (b).
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(b)

(a)

FIG. 2. (a) Diagrams for the normal self-energy part �p giving
nonzero contributions of the third order in J/D. (b) The diagram for
anomalous self-energy part �p of the second order in J/D. Same
notation as in Fig. 1.

Eq. (12b)], the normal self-energy part is the value of the order
of (J/D)2. Thus, we obtain for �p in the first order in J/D

�(1)
p = 0. (21)

Let us turn to diagrams for the anomalous self-energy parts
�p. One of them is shown in Fig. 2(b). The contribution to
�p of the first order in J/D is given by term (12b). Diagrams
for �p with one vertex contain sums like

∑
k Jp+k = 0 in the

first order in J/D. Therefore such diagrams are at least of
the second order in J/D. A consideration of other diagrams
similar to that presented above for �p shows that they give
contributions of the second order in J/D and higher. Then we
have in the first order in J/D

�(1)
p = c2

1

2
Jp. (22)

It is convenient to rewrite Eq. (20) using Eq. (19) in the
form

ε2
p = (

ε1p + �(εp,p)
)2 − ∣∣�(εp,p)

∣∣2

+ (
εp − ε1p − �(εp,p)

)(
�(εp,p) − �(−εp,−p)

)
. (23)

It follows from the previous discussion that

εp − ε1p − �(εp,p) = O((J/D)2),
(24)

�(εp,p) − �(−εp,−p) = O((J/D)2).

Bearing in mind these equations and that our aim is to find the
spectrum in the third order in J/D we can write Eq. (23) in
the form

ε2
p = (

ε1p + �(εp,p)
)2 − ∣∣�(εp,p)

∣∣2 + O((J/D)4). (25)

As follows from this equation, the first corrections to ε1p are
of the second order in J/D. Taking into account that the first
corrections to self-energy parts are also of the second order in
J/D, we can replace (εp,p) by (ε1p,p) in Eq. (25) and write
down the final formula for the spectrum calculation up to the
third order in J/D,

ε2
p = (

ε1p + �(ε1p,p)
)2 − ∣∣�(ε1p,p)

∣∣2
. (26)

Let us find the spectrum in the second order in J/D. As is
clear from Eq. (26), one has to use the anomalous self-energy
part in the first order in J/D for which we obtain Eq. (22). The
normal self-energy part has to be found in the second order
in J/D in which diagrams presented in Fig. 1(a) should be
taken into account. In order to calculate these diagrams it is
necessary to find vertexes denoted by open and filled circles in
the zeroth order. As follows from the diagram analysis
presented above, the zeroth- and the first-order contributions
to the vertexes are presented by a series of ladder diagrams
only [see Fig. 1(b)]. Diagrammatic equations in Fig. 1(b) have
the following explicit form in the zeroth order in J/D:

�
(0)
1 = D − 2

�
(0)
1 D

2D − �
, (27a)

�
(0)
2 = U − �

(0)
2 U

2D − �
, (27b)

where � is the sum of incoming line frequencies. The solution
of Eq. (27) at U → +∞ has a simple form

�
(0)
1 = D(2D − �)

4D − �
, (28a)

�
(0)
2 = 2D − �. (28b)

Substitution of Eqs. (28) to diagrams for self-energy parts
and integration over frequencies � give a difference of the kind
ε1k1 − ε1k2 with some momenta k1,2. Then � corresponds to
values of the order of J/D in diagrams for self-energy parts
and it can be neglected in the vertex calculation in the zeroth
order in J/D. As a result we obtain for vertexes from Eqs. (28)

�
(0)
1 = D/2, (29a)

�
(0)
2 = 2D. (29b)

One obtains for the normal self-energy part in the second
order in J/D, as a result of calculation of diagrams shown in
Fig. 1(a) taking into account Eqs. (29),

�
(2)
(ε1p,p) = 2c4

1 + 2c3
1c2 − c2

1c
2
2

8D

1

N

∑
k

J 2
k . (30)

Using Eqs. (30), (26), and (22) we have for the spectrum in
the second order in J/D [cf. Eq. (13)]

ε2p = ε1p + �
(2)
(ε1p,p) − 1

2ε0p

∣∣�(1)
(ε1p,p)

∣∣2

= D + c2
1

2
Jp + 2c4

1 + 2c3
1c2 − c2

1c
2
2

8D

1

N

∑
k

J 2
k − c4

1

8

J 2
p

D
.

(31)

In order to calculate the spectrum in the third order in J/D

one has to find the normal and anomalous self-energy parts in
the third and the second order, respectively. To find �p in the
third order we have to take into account diagrams shown in
Fig. 2(a). Besides, one has to consider also diagrams presented
in Fig. 1(a) taking into account the first-order corrections to the
vertexes for which we have after solving equations in Fig. 1(b)

�
(1)
1 = 1

2
D − 1

8
� + 1

2
J3−1 − c1c2

4
(J1 + J3), (32)

�
(1)
2 = 2D − � − J3−1. (33)
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The only diagram of the second order in J/D for the
anomalous self-energy part is shown in Fig. 2(b). It should be
found using Eq. (33). As a result of straightforward calculation
we obtain

�
(3)
(ε1p,p) = 3c4

1 + 2c3
1c2 − c2

1c
2
2

16D2

1

N2

∑
k,q

JqJkJq−k

− 3c6
1 + 8c5

1c2 − 5c4
1c

2
2

64D2
Jp

1

N

∑
k

J 2
k

+ 3c6
1 + 4c5

1c2 − 2c4
1c

2
2

32D2

1

N2

∑
k,q

JqJkJq−k+p,

(34)

�
(2)
(ε1p,p) = c2

1

4D

1

N

∑
k

JkJk−p + c4
1

4D

1

N

∑
k

J 2
k . (35)

Using Eqs. (26), (21), (22), (30), (35), and (34), one has for
the spectrum in the third order in J/D

ε3p = D + c2
1

2
Jp + 2c4

1 + 2c3
1c2 − c2

1c
2
2

8D

1

N

∑
k

J 2
k − c4

1

8D

1

N
J 2

p

+ 3c4
1 + 2c3

1c2 − c2
1c

2
2

16D2

1

N2

∑
k,q

JqJkJq−k

− 11c6
1 + 8c5

1c2 − 5c4
1c

2
2

64D2
Jp

1

N

∑
k

J 2
k

+ 3c6
1 + 4c5

1c2 − 2c4
1c

2
2

32D2

1

N2

∑
k,q

JqJkJq−k+p

− c4
1

8D2
Jp

1

N

∑
k

JkJk−p + c6
1

16D2
J 3

p . (36)

The spectrum ε3p has a minimum at some point p = p0,
in which it is separated from the ground state by a gap.
For example, this minimum is located at p equal to the
antiferromagnetic vector p0 in the simple square or the simple
cubic lattices with antiferromagnetic exchange interaction
between only nearest neighbors [p0 = (π,π ) and (π,π,π ),
respectively]. The gap decreases with decreasing D and it
vanishes at QCP D = Dc. Upon further decreasing of D a
“condensation” takes place of elementary excitations with
momentum p0 which corresponds to appearance of long-range
magnetic order. We show below by particular examples that at
D � Dc, series in J/D for some quantities converge slowly.
This is a manifestation of strong fluctuations near QCP.

It is worth noting that c1,c2 ∼ S at S � 1 [see Eqs. (10)
and (11)]. Therefore, as follows from Eq. (36), the expansion
parameter is actually S2J/D (not J/D) at S � 1. This means,
in particular, that Dc ∼ S2J in the case of antiferromagnetic
exchange interaction between nearest neighbor spins on the
simple square or the simple cubic lattices. This conclusion is
consistent with the result of the spin-wave analysis carried out
in antiferromagnetic phase (see, e.g., Ref. 48). Thus, a very
strong anisotropy or a very small exchange are required for the
paramagnetic phase stability at S � 1 and the paramagnetic
phase is absent in the classical spin limit at any finite J and D

as it must be.

FIG. 3. Diagrams giving nonzero contributions of the second and
the third order in J/D to the ground-state energy. Same notation as
in Fig. 1.

B. Ground-state energy

It is useful to calculate the ground-state energy for the
sake of comparison with numerical results. Diagrams giving
nonzero contributions of the second and the third order in J/D

are shown in Fig. 3. The straightforward calculation of these
diagrams leads to the following expression for the ground-state
energy:

Egs = − c4
1

8D

1

N

∑
p

J 2
p − c4

1

16D2

1

N2

∑
p,k

JpJkJp+k. (37)

Notice that the first nonzero term in Egs is of the second order
in J/D.

IV. DISCUSSION AND COMPARISON WITH PREVIOUS
RESULTS AND EXPERIMENT

Note that we do not specify the type of exchange interaction
Jij in Eq. (1) and the lattice type and dimension while deriving
Eq. (36). Then Eq. (36) is applicable, in particular, for the
spin chain with S = 1 and with exchange interaction between
nearest neighbors only. The spectrum in this special case was
calculated before in the third order in J/D in Ref. 39 using the
regular perturbation theory. It is easy to verify that the result
of Ref. 39 coincides with Eq. (36) in this case.

A. Other spin representations for S = 1

In the particular case of S = 1 a number of simpler spin
representations can be introduced. In one of them Sz

i is given
by Eq. (3) and S+

i has the form [cf. Eq. (4)]

S+
i =

√
2(b†i + ai). (38)

In contrast to Eqs. (3)–(4) the introduction of term (8)
into the Hamiltonian is necessary now because Eq. (38)
has nonzero matrix elements between states from physical
and unphysical subspaces. Representation (38) is actually
introduced in Ref. 35, where spin chains in magnetic field are
discussed. We have made calculations of the spectrum and the
ground-state energy using this representation and recovered
Eqs. (36) and (37) at S = 1.

It should be noted that at S = 1 one can make calculations
without taking into account the constraint term (8) by adding
to Eq. (38) projector operators 1 − na,i − nb,i as follows:

S+
i =

√
2[b†i (1 − na,i − nb,i) + (1 − na,i − nb,i)ai]. (39)

In contrast to Eq. (38) this representation has zero matrix ele-
ments between states from physical and unphysical subspaces
and there is no need to take into account Eq. (8) now. We have
carried out calculations with Eq. (39) and recovered Eqs. (36)
and (37) at S = 1 once again.
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The following spin representation for S = 1 is introduced
in Ref. 45:

S+
i =

√
2[b†i

√
1 − na,i − nb,i + √

1 − na,i − nb,i ai], (40)

which is equivalent to our representation (39) on the physical
subspace and which, therefore, should lead to the same results.
But the authors of Ref. 45 do not take advantage of the
opportunity to find physical quantities in the form of series in
terms of powers of J/D which such representations provide.
They expand roots in Eq. (40) and analyze the spectrum of
the Hamiltonian in the harmonic approximation. They also
find renormalization of this spectrum by taking into account
the simplest diagrams and carrying out some self-consistent
calculations for the square lattice and antiferromagnetic
exchange. We compare below results obtained in Ref. 45 with
our results.

B. Other approaches to the spectrum calculation

After substitution of the self-energy parts (21) and (22)
obtained in the first order in J/D to the general expression
(23) for the spectrum we recover Lindgard’s formula,7,44,50

εLp = √
D[D + S(S + 1)Jp], (41)

which was found in Refs. 7 and 44 within the random-phase
approximation. But as is clear from the above discussion,
Eq. (41) is correct only in the first order in J/D. The second-
and the third-order terms in J/D in Eq. (41) differ significantly
from those in Eq. (36). The case study that is done below shows
that Eq. (41) works quite badly when J/D is not very small.

A generalized spin-wave approach (GSWA) is used in
Refs. 19,25 for the spectrum consideration in DTN. In the
framework of this approach in which fluctuations are taken
into account in a mean-field fashion the following expression
is obtained:

εgswa
p =

√
μ(μ + 2s2Jp), (42)

where parameters s and μ are determined as a result of self-
consistent calculations using equations

D = μ

(
1 + 1

N

∑
p

Jp

ε
gswa
p

)
, (43)

s2 = 2 − 1

N

∑
p

μ + s2Jp

ε
gswa
p

. (44)

It is seen that Eq. (42) is a modification of Eq. (41) at
S = 1: D and Jp are renormalized. We show below by case
study that Eqs. (42)–(44) work much better than Eq. (41) but
Eq. (36) proves to be more precise and convenient because
the numerical solving of integral equations and numerical
calculations are not required.

It should be noted that an approach very similar to
that leading to Eqs. (42)–(44) is proposed in Refs. 38,46.
However the resulting equations in Refs. 38 and 46 are more
cumbersome than Eqs. (42)–(44) whereas they work slightly
worse than Eqs. (42)–(44) as our comparison shows with the
numerical results of Refs. 45 and 47. That is why we do not
consider here in detail the results of Refs. 38 and 46.

C. Comparison with numerical results

The elementary excitation spectrum is found in Ref. 47
by Monte Carlo calculations for the square lattice and S = 1.
The exchange interaction is taken in Ref. 47 to be positive
(antiferromagnetic) and equal for all nearest neighbors. Results
of Refs. 45 and 47together with the spectrum calculated using
Eqs. (36), (42)–(44), and (41) are shown in Fig. 4 for D =
6J and D = 10J . It is seen from Fig. 4 that Eq. (36) works
well in the whole Brillouin zone when D is not very close to
the critical value D2D

c ≈ 5.65J found numerically in Refs. 5,
47 and 51. The phase with the long-range magnetic order
(antiferromagnetic phase) is stable at D < D2D

c . Notice also

FIG. 4. (Color online) Elementary excitation spectrum εp of the model (1) on the square lattice with S = 1 and antiferromagnetic exchange
J > 0 between nearest neighbors for (a) D = 6J and (b) D = 10J . Monte Carlo data of Refs. 45,47 are shown by points. Dashed, dash-dotted,
and solid lines are drawn using Lindgard’s formula (41), GSWA formula (42), and Eq. (36) (the result from the present paper), respectively.
The deviation of the spectrum (36) from the numerical data at D = 6J in the close vicinity of the minimum at (π,π ) is a consequence of the
proximity to the QCP D = D2D

c ≈ 5.65J separating the paramagnetic and the antiferromagnetic phases (see the main text).
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FIG. 5. (Color online) The spectrum gap at p = (π,π ) is pre-
sented as a function of D in the model (1) with S = 1 and
antiferromagnetic exchange interaction J between only nearest
neighbors. Monte Carlo data of Refs. 45 and 47 are shown by points;
results by Hamer et al. (Ref. 45) are represented by the dashed line;
dash-dotted and dotted lines are drawn using GSWA formula (42)
and Lindgard’s formula (41), respectively. Spectra ε1p, ε2p, and ε3p

are also shown, which are found in the first, second, and third orders
in J/D and which are given by Eqs. (13), (31), and (36), respectively.
The critical value of the anisotropy D2D

c ≈ 5.65J (Refs. 47 and 51) is
marked, below which the phase with the antiferromagnetic long-range
magnetic order is stable.

that even at D � D2D
c Eq. (36) describes well the spectrum of

short-wavelength elementary excitations.
The noticeable deviation of the long-wavelength excitation

spectrum given by Eq. (36) [with momenta p ≈ p0 = (π,π )]
at D � D2D

c is a result of strong fluctuations near QCP which
manifest themselves in a bad convergence of the series in
terms of powers of J/D. This is illustrated by Fig. 5 which
shows the dependence of the spectrum gap at p = p0 on D.
It is seen that the second- and the third-order corrections to
the gap are approximately equal to each other at D � D2D

c

and the value of Dc found from the relation ε3p0 = 0 is 12%
smaller than the value of D2D

c ≈ 5.65J obtained numerically
in Refs. 5,47 and 51.

The result of the ground-state energy calculation is shown
in Fig. 6, which demonstrates that Eq. (37) works well when D

is not very close to D2D
c and that the series for Egs converges

slowly at D � D2D
c .

Comparison of the results obtained within different ap-
proaches and presented in Figs. 4–6 shows that the formulas
derived above using the method suggested in the present paper,
on the whole, work better. At the same time it should be noted
that despite its simplicity GSWA gives quite precise results.

D. Application to NiCl2-4SC(NH2)2

At the present time the most extensively studied com-
pound described by the model (1) and having the paramag-
netic ground state is NiCl2–4SC(NH2)2 which is known as
DTN.18–25 The magnetic subsystem of DTN consists of Ni
ions with S = 1 and the Lande factor g = 2.26. Magnetic
ions form a body-centered tetragonal lattice which can be

FIG. 6. (Color online) The ground-state energy of the model (1)
on the square lattice with S = 1 and antiferromagnetic exchange
between only nearest neighbors. Monte Carlo data of Refs. 45 and 47
are shown by points, results by Hamer et al. (Ref. 45) are presented
by the dashed line, and the solid line is drawn using Eq. (37), which
is obtained in the third order in J/D.

viewed as two interpenetrating tetragonal sublattices. The
exchange interaction between spins inside one sublattice is
antiferromagnetic and strongly anisotropic: The exchange
constant along the tetragonal hard axis (z axis) is much larger
than those along the x and y axes. That is why DTN is
considered as a quasi-1D compound. Hamiltonian (1) with
the following set of parameters is used for interpretation of the
majority of experimental data:

D = 8.9 K,

Jz = 2.2 K, (45)

Jxy = 0.18 K,

where Jz is the exchange constant along the chains and Jxy

is the exchange coupling constants between chains inside
one tetragonal sublattice. Interaction between tetragonal sub-
lattices is supposed to be negligibly small19 in most of the
considerations.

DTN behavior attracts special attention near two QCPs
in magnetic field H applied along the hard z axis. The first
QCP H = Hc1 separates the paramagnetic and the canted
antiferromagnetic phases and the second one separates the
canted antiferromagnetic phase and the ferromagnetic one in
which all spins are parallel to the field. Values of these critical
fields are defined by the following exact relations (see, e.g.,
Refs. 19 and 25):

Hc1 = εp0 , (46)

Hc2 = 2SJ0 + V0 + D(2S − 1), (47)

where εp is the spectrum at H = 0 and V is the exchange
coupling between sublattices considered below which has been
neglected so far. The following values of the critical fields are
obtained experimentally in Ref. 22:52

H DTN
c1 = 2.05 T,

(48)
H DTN

c2 = 12.175 T.
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(a) (b) (c)

(d) (e) (f)

FIG. 7. (Color online) (a)–(c) Elementary excitation spectrum of DTN along three directions in the Brillouin zone at zero field. The data
of the neutron experiment (Ref. 19) at T = 80 mK are shown by points; dashed and dash-dotted lines are drawn using Eqs. (42)–(44) with
parameters D = 8.12 K, Jxy = 0.17 K, and Jz = 1.74 K (which are proposed in Ref. 19) and with the conventional set of parameters (45),
respectively; solid lines are drawn using Eq. (36) with the conventional parameters (45). (d)–(f) The spectrum of the first order in J/D given
by Eq. (13) and the second- and the third-order corrections in J/D to the spectrum found using Eqs. (31) and (36) and the conventional set of
parameters (45).

In the present paper we focus on analysis of the DTN
elementary excitation spectrum at zero magnetic field, which is
observed in the neutron experiment19 and shown in Figs. 7(a)–
7(c). Its current theoretical interpretation looks inconsistent.
Equations (42)–(44) are used for the spectrum analysis in
Refs. 19 and 25. As is shown in Ref. 19, Eqs. (42)–(44) describe
the DTN spectrum very well with parameters D = 8.12 K,
Jxy = 0.17 K, and Jz = 1.74 K, which differ from those used
in the literature now (45) [see the dashed line in Figs. 7(a)–
7(c)]. However in a subsequent paper20 these parameters were
declined because the value of the critical field Hc2 found
using Eq. (47) with these parameters differs significantly
from the experimentally obtained value. The set of parameters
(45) is proposed in Ref. 20, which has been used up to the
present. In particular, in a recent paper25 Eqs. (42)–(44) are
used with the conventional parameters (45) for the spectrum
analysis in the paramagnetic phase near the antiferromag-
netic vector p0. However, as is seen from Figs. 7(a)–7(c)
(the dash-dotted line), GSWA with this set of parameters
describes unsatisfactorily the spectrum of short-wavelength
excitations.

Because the body-centered tetragonal magnetic lattice of
DTN is a Bravais lattice, all expressions obtained above are
applicable to DTN. The spectrum obtained using Eq. (36) with
the conventional parameters (45) for DTN is presented by the
solid line in Figs. 7(a)–7(c). It is seen that the agreement with
experimental data is poor. At the same time the method of the
spectrum calculation proposed in the present paper appears
suitable for DTN. This is illustrated by Figs. 7(d)–7(f), in
which the second- and the third-order corrections in J/D to
the spectrum and the first-order spectrum ε1p given by Eq. (13)
are presented. It is seen that the third-order corrections are 3–5
times smaller than the second order ones in almost the whole
Brillouin zone except for the vicinity of the antiferromagnetic
vector, where they are almost equal but still remain much
smaller than ε1p.

Thus, the theoretical description of DTN needs revision
that is indicated also by recent ESR-experimental data. As
it is mentioned above, the interaction between spins from
different DTN sublattices is usually ignored. But the data
of the recent ESR experiment18 indicate that it should be
taken into consideration: One of the spectrum branches has a
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(a) (b) (c)

FIG. 8. (Color online) DTN spectrum along three directions in the Brillouin zone calculated using Eq. (36) and parameters (50). Neutron
experimental data are taken from Ref. 19.

gap in the canted antiferromagnetic phase at Hc1 < H < Hc2

and the optical mode is slightly split. At the same time
the model (1) without the inter-sublattice interaction has the
doubly degenerate spectrum (due to two equivalent magnetic
sublattices).

In our previous paper48 the spin-wave approach and the
magnon Bose-condensation technique (near Hc2) are used for
analysis of the canted antiferromagnetic phase. It is shown that
the inter-sublattice interaction of the form

HV =
∑
i,j

Vi,j SiSj , (49)

where index i labels sites of one sublattice and j labels sites of
another sublattice nearest to i, leads to the effects observed in
the ESR experiment (the gap in one of the spectrum branches
and the optical mode splitting). Unfortunately the lack of
experimental data near Hc2, large anisotropy, and the quasi-1D
nature of DTN did not allow us to make reliable quantitative
predictions about the value of Vi,j . It is only shown in Ref. 48
that if Vi,j = V , then V ∼ 0.1 K.

In the present paper we continue our discussion started in
Ref. 48 and fit the elementary excitation spectrum using the
least-squares method by varying parameters D, Jz, Jxy , and
V , while keeping the critical fields given by Eqs. (46) and (47)
equal to the experimentally obtained values (48). As a result
of this fit we obtain the following set of parameters that differs
noticeably from the conventional one (45):

D = 7.72 K,

Jz = 1.86 K,
(50)

Jxy = 0.2 K,

V = 0.1 K.

The spectrum obtained is presented in Fig. 8, which is in good
agreement with the neutron data of Ref. 19. The inter-sublattice
interaction removes the double degeneracy of the spectrum in
DTN. This splitting is zero in panels (a) and (b) of Fig. 8,
but it is clearly seen in panel (c). It should be noted that the
upper branch of the spectrum in Fig. 8(c) goes beyond the
experimental error near p = 0. However, the branch splitting

value δεp = ε+
p − ε−

p is very small compared to ε+
p + ε−

p and
it appears to be given in DTN by a slowly convergent series in
J/D: δεp = (1.7 − 1.0 + 0.4) K, where the first, the second,
and the third terms stand for the values of corresponding
corrections in J/D. Then, one has to take into account higher
order terms in J/D in order to find the small value of δεp in
DTN, which is out of the scope of the present paper.

Note also that the value of V = 0.1 K found above agrees
with the estimation V ∼ 0.1 K obtained as a result of our
consideration48 of the canted antiferromagnetic phase.

V. CONCLUSION

We propose representation (3), (4) for an integer spin
S via bosonic operators, which is useful in describing the
paramagnetic phase and transitions to magnetically ordered
phases in magnetic systems with large single-ion easy-plane
anisotropy. Using this representation the diagram technique
and treating the exchange interaction as a perturbation
we obtain Eq. (36) for the elementary excitation spectrum of
the model (1) in the paramagnetic phase in the third order of
the perturbation theory (which is referred to as an expansion in
terms of J/D for short). Expression (37) is also found for the
ground-state energy in the third order in J/D. Equation (36)
coincides with that obtained in Ref. 39 in the special case of
a spin chain with S = 1 and the exchange interaction between
nearest neighbors only. We recover Eq. (36) also at S = 1
using simpler spin representations (3), (38) and (3), (39).

Comparison with numerical results obtained in Refs. 45,
47 for the square lattice, S = 1, and the antiferromagnetic
exchange between nearest neighbors only shows that Eqs. (36)
and (37) work better than results of other analytical methods
proposed so far. In particular, Eqs. (36) and (37) work very
well when D is not very close to the critical value Dc, below
which the antiferromagnetic phase becomes stable5,45,47 (see
Figs. 4–6). At D � Dc Eq. (36) poorly describes only the
spectrum of long-wavelength quasiparticles.

It is shown that Eq. (36) is applicable for the spectrum anal-
ysis of the intensively studied compound NiCl2-4SC(NH2)2

(DTN), which is described by the model (1).18–25 We show

054445-9



A. V. SIZANOV AND A. V. SYROMYATNIKOV PHYSICAL REVIEW B 84, 054445 (2011)

that Eq. (36) with the conventional set of parameters for
DTN20 (45) describes the experimentally obtained spectrum19

unsatisfactorily (see Fig. 7). A different set of parameters (50)
is proposed for DTN which provides a good description of
the experimental spectrum (see Fig. 8) and reproduces the
experimentally obtained critical field values22 (48). In contrast
to the conventional model proposed for DTN previously, we
take into account also the exchange interaction (49) between
DTN magnetic sublattices, which becomes apparent in the
recent ESR experiment.18

Properties of the model (1) near the QCP separating
the paramagnetic and magnetically ordered states can be

considered using the proposed approach in terms of conden-
sation of one type of particle (a or b).
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