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Electron theory of magnetoelectric effects in metallic ferromagnetic nanostructures
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The physics of magnetoelectric effects in metallic films is investigated by use of the ab initio spin density
functional theory for Fe films and Fe-Au-Fe heterofilms with various thicknesses. Based on the magnetic force
theorem for the calculation of the magnetocrystalline anisotropy energy, Emca, a method for the definition of
layer-resolved contributions to Emca is introduced, and the reliability of this method is discussed in detail. The
knowledge of such layer-resolved contributions is important for a theoretical modeling of magnetoelectric effects
on an atomic level in systems that are too complicated for an ab initio treatment. Quantities that characterize the
anisotropic electron charge density and its magnetoelectric modification are introduced, and these quantities are
useful for the interpretation of the magnetoelectric effects on Emca in the spirit of Kittel’s explanation of Emca.
Finally, it is shown that for certain average thicknesses of ultrathin Fe films in Fe-Au-Fe it is possible to switch
the magnetization between in-plane and out-of-plane directions by rather small electric fields.
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I. INTRODUCTION AND OUTLINE

Nanostructured materials like real nanoparticles or films
with nanometer thickness may exhibit exciting magnetic
properties. Among these are the magnetoelectric effects, i.e.,
the influence of external electric fields on magnetic quantities
like the size of magnetic moments or the magnetocrystalline
anisotropy energy. The interest in these effects is twofold.
First, it is a great scientific challenge to understand the physics
of the interaction between electric and magnetic degrees of
freedom. Second, it is a great technological challenge for
the field of spintronics to control the magnetic properties
not only by magnetic fields or spin-polarized currents but
by electric fields, e.g., a switching of the magnetization by
electric fields with ultralow-energy power consumption in
information-processing and -storage technologies.

The materials in which the magnetoelectric effects have
been investigated may be subdivided into two classes. In the
first class the primary effect of the electric field probably is a
spin-dependent electronic polarization. Examples are metallic
magnetic films1 of Fe-Pt and Fe-Pd or nanoparticles2 of
Co-Pd alloys, both with interfaces to an electrolyte or with
heterostructures3–5 composed of insulators (like MgO) and
magnetic (e.g., Fe) and nonmagnetic (e.g., Au) metals as
used for magnetic tunnel junctions. It is assumed that the
large magnetoelectric effect in the latter systems results from
an enhancement of the electronic polarization of Fe at the
Fe-MgO interface due to the contact with the dielectrical
surface polarization of the MgO interface layer (an additional
effect of an electric-field-induced displacement of Fe atoms
in a possibly formed interfacial FeO layer is discussed in
Ref. 6). It should be noted that for the experimentally
observed magnetoelectric change of the magnetic moments
of nanoparticles in an electrolyte another possible mechanism
has been suggested in Ref. 2, namely an electrostrictive-
magnetostrictive mechanism. In the second class7–10 there is a
coupling between ferroelectric and magnetic properties, e.g.,
in multiferroics or in heterostructures formed by ferroelectric
and magnetic materials. In these systems the primary effect of
the electric field is a displacement of atoms that then modifies
the magnetic properties.

Concerning theory for the first class of materials, a density-
functional treatment of the magnetoelectric effects on the
magnetic moments and on the magnetocrystalline anisotropy
energy in thin metallic films has been performed in Ref. 11.
This reference may be considered as predecessor of our
present paper, in which we make further contributions to the
interpretation of the spin-dependent electronic polarization
effect on the magnetoelectric properties by density functional
calculations for Fe films and for Fe-Au-Fe films. Thereby, we
explore the magnetoelectric effect on the magnetocrystalline
anisotropy by use of two methods. First, we introduce a
method to subdivide the total magnetoelectric effect on the
system into layer-resolved contributions. Such a layer- (or
site-) resolved interpretation of the magnetoelectric effect
is very important for the theoretical investigation of such
systems (e.g., facetted nanoparticles) that are too complex for
a full ab initio treatment. For such systems the effect may be
investigated by a parametrization of the magnetic energy on the
atomic level with a model that contains Heisenberg interatomic
exchange interactions, dipolar interactions, the magnetocrys-
talline anisotropy energy for the bulk atoms and for the atoms
near the surface (or interface), and so on. The parameters of
such a model, e.g., those describing the magnetocrystalline
anisotropy energies for various atoms near the surface, may be
modified by an electric field. Our layer-resolved interpretation
of the magnetoelectric effect will provide a method to
determine these electric-field dependent parameters with the
help of ab initio calculations, for instance, for the modeling of
facetted nanoparticles. Second, we relate the magnetoelectric
effect on the magnetocrystalline anisotropy energy to electric-
field–induced changes of the symmetry of the electron density.
A final objective of our paper is the following. It is known (see,
e.g., Ref. 11) that the magnetoelectric effects in ferromagnetic
metal films are significant only for large electric fields, i.e.,
very large electric fields are usually required to switch the
magnetization from the in-plane alignment (favored by dipolar
shape anisotropy) to the out-of-plane alignment (favored
by the electric-field–dependent surface magnetocrystalline
anisotropy). We show that for very thin layers of Fe on an
Au substrate the total magnetic anisotropy (composed of the
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shape anisotropy and the magnetocrystalline anisotropy) is
small and may be switched in sign by relatively small fields.

II. THEORY

A. Description of our density-functional methods

We performed ab initio density functional calculations
using the full-potential linearized augmented plane wave
method12 as implemented in the FLEUR code.13 In this code
the system is represented by a supercell which is repeated
periodically in lateral directions but not in the direction
normal to the film. Experimentally, a magnetoelectric effect
is generated by electric fields that are produced either by
electrolytically charging the sample2 or directly by a capacitor
with a magnetic film on one plate.3 In the FLEUR code,
primarily the effects produced by charging the sample are
investigated. However, we will show in the following that the
magnetoelectric effect of an external electric field also can
be calculated by use of this code. The basic idea is that in
the experiment an external electric field induces charges at
the surface of a metallic body (which lead to an additional
electric field compensating the external field in the interior
of the metal). When a single metallic film is in an external
electric field perpendicular to the film surfaces, the electric
field then induces the movement of electrons from one surface
(which then has a positive net charge formed by electrons
and nuclei) to the other surface (which then has a negative
net charge), and at each surface a magnetoelectric effect is
generated by the electronic surface charges. Instead, in the
FLEUR code we consider a metallic film for which the total
number of electrons per surface atom is modified by �Nel.
For �Nel < 0 (�Nel > 0) this means a removal (an addition)
of electrons to the film, leading to a change of the net charge
per surface atom (formed by electrons and nuclei) of the film
by �q > 0 (�q < 0). In the experiment the situation with
additional charge of just one sign is realized, e.g., when the
magnetic film is on one plate of a capacitor. The additional
charges are then localized at the free surface of the film,
whereas the surface contacting the capacitor does not exhibit
additional charges. If the film is thick enough, then the two
surfaces do not influence each other, and we thus can study,
with the FLEUR code, the magnetoelectric effect generated by
the electronic surface charges induced by the electric field.
In order to avoid a diverging electrostatic Ewald energy for
the supercells repeated periodically in lateral directions, each
supercell as a whole must have zero net charge. In Ref. 14
this is achieved by changing the nuclear charges at the surface
layers in such a way that this compensates in net the change of
the electronic surface charges. In the FLEUR code the neutrality
of the supercell is achieved by the introduction of two layers
that exhibit a δ-shaped charge density with the charge −�q

per surface atom, respectively; see Fig. 1.
For each density functional calculation �q is fixed, but the

electron density of the charged metal film is calculated self-
consistently (and the density of the additional charge appears
close to the surface of that film). In contrast, the charge density
of the two additional layers is fixed in the calculations, and this
density is localized in such a distance to the metallic film that
the electron density leaking out of the film into the vacuum is

FIG. 1. (Color online) Illustration of the super cell of the charged
metal film. The electric field (arrows) arises between the surface
charge ( ) on the metal film, which consists of muffin-tin spheres
and interstitial region in between, and the neutralizing charge sheets
( ).

close to zero at the position of these two layers. As indicated in
Fig. 1 the surface charge density of the film and the additional
δ-shaped charge densities generate electric fields in the vacuum
in between. Its strength is given by E = ε0

�q

area of a surface atom ,
where ε0 is the dielectric vacuum constant. For instance, for the
(001) Fe films we have E = 0.660 V/Å for �q = 0.03. This
means that in all our following figures we could give on the
abscissa the electric-field strengths instead of the charges �q

of the film. However, we will discuss everything as function of
�q, because we are mainly interested in the magnetoelectric
effects of the charges �q produced by electrolytically charging
the sample or induced by an external electric field.

The in-plane components of the atom positions of the film
are fixed to the values they have in the respective layers of
bcc Fe and fcc Au. The out-of-plane components of the atom
positions were relaxed by the use of atomic forces for zero
external electric field, and they were fixed when charging
the films. In general the relaxation will differ slightly for the
charged films, but it is generally assumed (see, e.g., Ref. 14)
that this has only a minor influence on the magnetoelectric
effect. Indeed, we found by test calculations that the effect of
the additional charge �q on the out-of-plane components of
atomic positions is very small and has only a tiny influence on
the magnetocrystalline anisotropy energy (thereby, according
to the prescription of Ref. 15, we had to substract the relaxation
effect due to the electroelastic interaction between the charge
per surface atom �q of the film and the charges −�q of
the two neutrality-generating layers that do not appear in a
real experiment). The calculations were performed with the
generalized gradient approximation.16

For our films with (001) orientation we calculate the magne-
tocrystalline anisotropy energy Emca as the difference between
the total electronic energies Etotal(〈001〉) and Etotal(〈100〉) found
for the orientations of the magnetization in the out-of-plane
〈001〉 direction and the in-plane 〈100〉 direction, Emca =
Etotal(〈100〉) − Etotal(〈001〉). To save computer time, we use the
magnetic force theorem for the calculation.17 To do this, we
perform a self-consistent calculation for the ferromagnetic
system in scalar-relativistic (SR) approximation, i.e., by
neglecting the spin-orbit coupling (SOC). Then we determine
the Kohn-Sham eigenvalues εjk(〈001〉) and εjk(〈100〉), where j

is the band index and k is the electron wave vector, for systems
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with SOC and magnetization in the 〈001〉 and 〈100〉 directions
by a respective one-shot solution of the Kohn-Sham equations
with the self-consistent SR potential. The quantity Emca is then
given by the difference of the so-obtained band energies

Emca =
∑
jk

εjk(〈001〉)ωjk(〈001〉) −
∑
jk

εjk(〈100〉)ωjk(〈100〉),

(1)

where ωjk are the Fermi-Dirac occupation numbers.
We have tested that our results have a good convergence

with respect to the convergence parameters of the method.
The Brillouin zone integrations have been performed with
the Fermi-smearing method. Thereby, the irreducible Brillouin
zone of the system with SOC is larger than the one of the
system without SOC. To achieve a rapid convergence of Emca

with respect to the number Nk of k points used for sampling
of the irreducible Brillouin zone it is important to choose the
respective k points in such a way that the set of k points used
for the sampling of the larger Brillouin zone contains all the
k points that have been used for the sampling of the smaller
zone. Consequently, for the Fe film a good convergence was
found for about 7000 k points in the full Brillouin zone. A
good convergence with respect to the cutoff wave vector Kmax

for the plane waves of the FLAPW method was obtained for
Kmax = 3.6 a.u.−1.

B. Definition of layer-resolved contributions

We first discuss a possible definition of layer-resolved
contributions to the total magnetoelectric effect. To do this we
first give possible definitions of layer-resolved contributions
to the total magnetocrystalline anisotropy energy. In Ref. 18
it has been outlined that this can be done when starting
from the representation of the density-functional electronic
energy as a space integral over the electronic energy density;
Eqs. (7)–(9) of Ref. 18. It should be noted that this real-space
decomposition is not completely unambiguous as it depends
on the shape of the integration cells around the various atoms.
This is the method proposed in Ref. 19; however, no detailed
discussion of the layer-resolved contributions is given there.
More often, the total electronic energy is represented by the
sum of the band energy (given by the sum of the occupied
single-electron energies εjk) and a double-counting term.
When using, in addition, the magnetic force theorem, the
magnetocrystalline anisotropy energy is then given by our
Eq. (1). In the literature attempts have been made to introduce
atom-resolved contributions to Emca by representing the sums
in Eq. (1) by the integrals involving the densities of states
and by subdividing the densities of states into atom-resolved
quantities. However, it has been shown18 that this introduces
a great ambiguity for the so-defined atom-resolved magne-
tocrystalline anisotropies, and this ambiguity is related to the
fact that the choice of the energy zero for the single-electron
energies is completely arbitrary. We use a method for the
introduction of atom-resolved magnetocrystalline anisotropy
energies suggested in Ref. 20. This method does not suffer
from that arbitrariness, but we will show that it is also not
exact. Nevertheless, it produces meaningful results at least for
the pure Fe films we have investigated. It should be noted that
in Ref. 11 layer-resolved contributions to Emca are defined via

a simplified Bruno’s relation between the magnetocrystalline
anisotropy energy and the orbital-moment anisotropy, but no
detailed discussion of the contributions of various layers are
given.

Following the suggestion of Ref. 20 we introduce layer-
resolved contributions to Emca by switching on the SOC
operator Ĥ SOC for the calculation of the single-electron
energies and occupation numbers in Eq. (1) not for all atoms
of the system but, respectively, just for the atoms of one atomic
layer. We denote the various layers by the superscript ν, where
ν = 1 is for the outermost layer of the film and increasing
numbers ν are for the layers with increasing distance from the
outermost layer. This procedure is possible because the SOC
operator is a local operator, and in the FLEUR code the SOC is
taken into account only within the muffin-tin spheres but not in
the interstitial regions. We denote the single-electron energies
and the occupation numbers for the SR situation in which there
is no SOC for all layers by εSR

jk and ωSR
jk , the corresponding

quantities for the SOC switched on just for the layer ν by εν
jk

and ων
jk, and the quantities for systems with SOC at all layers

by εjk and ωjk, and we define

εν
jk = εSR

jk + �εν
jk; εjk = εSR

jk + �εjk, (2)

ων
jk = ωSR

jk + �ων
jk; ωjk = ωSR

jk + �ωjk. (3)

The SR eigenvalues εSR
jk are determined by the self-consistent

solution of the SR Kohn-Sham equations

Ĥ SRψSR
jk = εSR

jk ψSR
jk . (4)

The eigenvalues εν
jk and εjk are determined by the one-shot

solutions (see above) of the Kohn-Sham equations

(Ĥ SR + Ĥ SOC,ν)ψν
jk = εν

jkψ
ν
jk (5)

and (
Ĥ SR +

∑
ν

Ĥ SOC,ν

)
ψjk = εjkψjk. (6)

It is clear that the deviations �εν
jk do not simply add up to the

deviations �εjk, i.e., the equation

�εjk =
∑

ν

�εν
jk (7)

does not hold strictly, because the presence or absence of the
SOC in one layer also influences the shape of the wave function
in the other layers; see also Ref. 20. This holds especially
when the atoms for which the SOC is switched on and off
are heavy atoms that thus have a large SOC (see Sec. III B).
Equation (7) would be strictly valid if we could confine
ourselves to a calculation of �εjk in the first order of a
perturbation theory,

�εjk = 〈
ψSR

jk

∣∣∑
ν

Ĥ SOC,ν
∣∣ψSR

jk

〉
, (8)

but it can be shown that these expectation values vanish for
systems with collinear atomic magnetic moments that we
consider (see, e.g., Ref. 21).
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Because of the same reason, the deviations �ων
jk also do

not simply add up to the deviations �ωjk, i.e., the equation

�ωjk =
∑

ν

�ων
jk (9)

also does not hold strictly. Nevertheless, inserting Eqs. (2),
(3), (7), and (9) into Eq. (1), and neglecting terms of the type
�εν

jk�ων ′
jk, we find

Emca =
∑

ν

Eν
mca, (10)

with the layer-resolved contributions

Eν
mca =

∑
jk

εν
jk(〈001〉)ων

jk(〈001〉) −
∑
jk

εν
jk(〈100〉)ων

jk(〈100〉).

(11)

This derivation clearly shows that the subdivision of the mag-
netocrystalline anisotropy energy into layer-resolved contribu-
tions is not strictly valid. We will show, however, that Eq. (10)
holds with satisfactory accuracy in Fe films. Furthermore,
we will show that Emca and Eν

mca depend on the additional
charge in a nearly linear manner, and we thus introduce the
“anisotropy voltages”

Umca = ∂Emca

∂q

∣∣∣∣
q=o

(12)

Uν
mca = ∂Eν

mca

∂q

∣∣∣∣
q=o

. (13)

C. Characterization of the anisotropic electron charge density

We now discuss the physical mechanisms that are respon-
sible for the magnetoelectric effect on Emca induced by the
spin-dependent electronic polarization in metallic films. The
basis is to start from models for Emca and to investigate how
the electric field changes the quantities appearing in these
models. The investigation in Ref. 11 starts from Bruno’s22

relation between Emca and the anisotropy of the magnetic
orbital moments that holds if several preconditions are ful-
filled. Unfortunately, it is not discussed in Ref. 11 whether
this is really the case for the investigated metallic films. Our
discussion is based in Kittel’s interpretation23 of the physical
origin of Emca (see Fig. 1 of Ref. 18). In this interpretation
the covalent bond energy between neighboring atoms depends
on the orientation of the magnetization in the crystal, because
in a system with SOC the occupation of electronic orbitals
changes with the orientation of the magnetization. For an
orientation in the easy direction those electronic orbitals that
exhibit an optimum overlap are occupied and hence lead to an
optimum covalent bond energy, whereas for an orientation
in the hard direction the SOC enforces the occupation of
electronic orbitals that do not exhibit an optimum overlap
and hence belong to a lower covalent bond energy. In
Refs. 3 and 24 it has been suggested that the electric field
leads to a modification of the relative occupation of the various
electronic orbitals (and hence to a modification of the covalent
bond energy), especially of the various 3d orbitals in Fe, Co,
or Ni, and that this results in a magnetoelectric effect on Emca.

In Refs. 25 and 26 the electric-field–induced modifications of
the electronic band structure that are related to a modification
of the occupation numbers of various electronic orbitals are
investigated. In Ref. 18 Kittel’s explanation of Emca via the
covalent bond energy has been cast in a strict mathematical
form called Ecov method.27 In principle, this tool can be used
to define layer- or atom-resolved contributions to Emca and to
investigate quantitatively the magnetoelectric effect on Emca.
However, the use of Ecov requires some effort to implement
special tools into the band-structure code. Instead, we now
want to characterize the anisotropic electron charge density
that is related to the covalent bond energy (and which changes
with the orientation of the magnetization and hence is related to
Emca) by simple quantities defined via the occupation numbers
of various electronic orbitals. We will investigate whether these
quantities evaluated for each atomic layer ν are related to the
Eν

mca, and we will show that their changes by the application of
electric fields are indeed related to the magnetoelectric effect
on Eν

mca.
In the FLAPW method the single-electron crystal wave

functions are represented within the muffin-tin spheres in a
basis of orbitals that are proportional to spherical harmonics.
Thus the occupation numbers Nel for these orbitals can be
determined. In a system with cubic symmetry the t2g orbitals
dxy , dxz, and dyz are degenerate, Nel(dxy) = Nel(dxz) =
Nel(dyz); the eg orbitals dx2−y2 and d3z2−r2 are degenerate,
Nel(dx2−y2 ) = Nel(d3z2−r2 ); and the p orbitals are also degen-
erate, Nel(px) = Nel(py) = Nel(pz). The degeneracy is broken
when going from the bulk to a film with free surfaces,
and when an external electric field is switched on. If the
surface normal and the external electric field are along the z

direction, then Nel(dxy) �= Nel(dxz) = Nel(dyz), Nel(dx2−y2 ) �=
Nel(d3z2−r2 ), and Nel(pz) �= Nel(px) = Nel(py). As measures
for this symmetry reduction we introduce the quantities

�t2g = |Nel(dxy) − Nel(dxz)|, (14)

�eg = |Nel(dx2−y2 ) − Nel(d3z2−r2 )|, (15)

�p = |Nel(px) − Nel(py)|. (16)

Of course, these quantities can be evaluated also separately for
each atomic layer ν, yielding �t2g,ν , �eg,ν , and �p,ν . Finally,
we introduce the charge derivatives of these quantities,

Ci = ∂�i

∂q

∣∣∣∣
q=0

, (17)

with i = t2g, eg, p, (t2g,ν), (eg,ν,), (p,ν). We thereby calcu-
late the �i,ν and Ci,ν in the scalar-relativistic approxima-
tion, because the scalar-relativistic charge densities enter the
magnetic force theorem for the calculation of the Emca (see
Sec. II A).

It should be noted that it is very difficult or even impossible
to derive a general quantitative relation between Kittel’s
explanation of Emca via the covalent bond energy and the
anisotropies �i of the orbital occupations for the following
reason. It is clear that, in Kittel’s view, a magnetocrystalline
anisotropy appears only if the charge densities around the
atoms are not spherically symmetric. Therefore, our �i
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(which is calculated in the scalar-relativistic approximation)
are measures for the precondition for a noncubic anisotropy.
However, Emca is related to the change of the covalent bond
energy when changing in the systems with SOC the orientation
of the magnetization, and therefore there is no quantitative link
between Emca and the �i (although it is, of course, expected
that the uniaxial Emca is large for large �i). It will be shown
in Sec. III C via numerical results that the quantities Eν

mca
nevertheless show a similar behavior as the function of ν in
the quantities �i,ν and the same holds for the quantities Uν

mca
and Ci,ν . This may be considered as support for the intuitive
suggestion of Refs. 3 and 24 (see above).

An electric-field–induced modification of the occupa-
tion numbers for the various orbitals is discussed also in
Refs. 19, 25, and 26. However, no quantities characterizing
the anisotropic electron charge density (like our �i) and their
magnetoelectric modifications (like our Ci) are introduced,
and we think that such quantities are helpful for the explanation
of the magnetoelectric effect on Emca in the spirit of Kittel’s
interpretation of the magnetocrystalline anisotropy energy.

III. RESULTS

A. Magnetoelectric effect on Emca in Fe films

In Fig. 2 we show the magnetocrystalline anisotropy energy
per surface atom as a function of the additional charge28 �q

for nonrelaxed [Fig. 2(a)] and relaxed [Fig. 2(b)] Fe films with
(001) orientation for different numbers NL of atom layers.
Therefore, only the results for positive �q (corresponding to
�Nel < 0) are given, and for �q < 0 we found results that
can be represented very well by inflecting the data for �q > 0
at the origin. For bulk Fe the Emca as defined in Eq. (1) is zero
because εν

jk(〈001〉) = εν
jk(〈100〉) and ων

jk(〈001〉) = ων
jk(〈100〉).

For the film Emca is nonzero. Without relaxation Emca/(surface
atom) should converge to a finite value with increasing NL

because for very thick films the two surfaces of the film
do not interact with each other, and additional layers in the
interior of the film do not contribute to Emca because they see
bulklike surroundings. Figure 2 shows that this convergence
is rather slow and that Emca(NL)/(surface atom) exhibits
a nonmonotonic behavior. In Ref. 29 such a behavior is
related to Friedel-like oscillations of the electronic charge
density resulting from quantum-well states. For a relaxed very
thick film (with infinite lateral extension) there is a constant
tetragonal distortion in the interior. Therefore, each additional
layer in the interior of the film contributes to Emca, and
Emca/(surface atom) does not converge to a constant value
with increasing NL. We nevertheless show also the results for
the relaxed films [Fig. 2(b)] because of the interesting fact that
for the relaxed films the oscillations of Emca are smaller than
for nonrelaxed films, and this certainly has to do with the fact
that the influence of the quantum-well states is reduced because
the distances between the relaxed atom layers are not uniform.

Because Emca varies linearly with increasing �q (especially
for the nonrelaxed films), we can characterize the magneto-
electric effect on Emca by the above-defined anisotropy voltage
Umca. Figure 3 also shows that Umca exhibits a nonmonotonic
dependence on NL, which is stronger for the relaxed film.
When in an experiment the film is produced by molecular
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FIG. 2. (Color online) Emca per surface atom for nonrelaxed
(a) and relaxed (b) Fe 〈001〉 films as a function of additional charge �q

for different numbers of atomic layers NL (e represents the elementary
charge).

beam epitaxy the average film thickness does not necessarily
correspond to integer numbers of atom layers.3 Therefore, we
want to characterize the “typical” strength of the magnetoelec-
tric effect by an average Ūmca of the values of Umca given in
Fig. 3, yielding Ūmca = 2.42 mV for the nonrelaxed films and
Ūmca = 2.23 mV for the relaxed films. In the experiment of
Ref. 3 it was found that for a Fe (001) film grown on an Au
film and covered by a MgO film the quantity Emca/(surface
atom) changes by 4 μeV when applying an electric field of 200
V that changes the number of electrons per Fe surface atom
at the Fe-MgO interface by 0.002. From our Ūmca = 2.23 mV
we find for �q = 0.002 a change of Emca/(surface atom) by
4.46 μeV, in good agreement with the experimental value.

B. Layer-resolved contributions

Figure 4 shows the layer-resolved magnetocrystalline
anisotropies Eν

mca [Fig. 4(a)] and the layer-resolved anisotropy
voltages Uν

mca [Fig. 4(b)] for nonrelaxed Fe films with different
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FIG. 3. (Color online) The anisotropy voltages30 in mV for
nonrelaxed ( ) and relaxed ( ) Fe films as functions of the number
of atom layers NL.

numbers NL of atom layers. The Eν
mca are by far largest

for the surface layer, but they are non-negligible also for
layers with greater distance from the surface, and they show
a nonmonotonic behavior as a function of ν. In contrast, the
Uν

mca are more strongly localized at the surface layer. The
sum

∑
ν Eν

mca deviates from the quantity Emca that we get
when switching on the SOC simultaneously for the atoms
of all layers, and the deviations are 6, 23, 21, and 25%; for
NL = 11, 13, 15, and 17. The deviations of

∑
ν Uν

mca from the
quantity Umca are 22, 20, and 23%; for NL = 9, 11, and 13.
This demonstrates that the layer-resolved contributions do not
simply ad up, as discussed above. However, for Fe films the
deviations are not very large, and thus the subdivision into
layer-resolved contributions defined by Eq. (11) does make
sense and is helpful for a modeling of the systems on an atomic
level.

For the Fe-Au-Fe films (see Sec. III D) the subdivision into
layer-resolved additive contributions does not work well, and
this results from the large SOC for the heavy Au atoms (see
Sec. II B). For instance, for the system with seven Au layers
covered on both surfaces with two Fe layers, the sum

∑
ν Uν

mca
deviates from the Umca by 95%;. Furthermore, switching on
the SOC only for the outermost Au atoms produces a large
magnetocrystalline anisotropy energy (comparable with the
values obtained by switching on the SOC for the Fe atoms),
although these Au atoms carry only a very small induced mag-
netic moment. This shows that this large magnetocrystalline
anisotropy energy does not indicate a strong direct anisotropy
contribution of the Au atoms themselves, but it results from
the large modification of the shape of the wave functions at
the Fe atoms when switching on the SOC only at the Au
atoms.

C. Anisotropy of the orbital-occupation numbers

Figure 5 shows the quantities �i,ν [Fig. 5(a)] and Ci,ν

[Fig. 5(b)] for the nonrelaxed Fe film. For a relaxed film these
quantities would not converge to zero for increasing ν, because
of the constant tetragonal distortion in the interior of the film
(see Sec. III A). The data of Fig. 5(a) are for �q = 0.03
electrons/(surface atom), for other values of �q the curves
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FIG. 4. (Color online) Layer-resolved Eν
mca (a) and Uν

mca (b) in Fe
〈001〉 films with NL = 9 ( ), NL = 11 ( ), NL = 13 ( ), NL = 15
( ), and NL = 17 ( ) (only the values for nonequivalent atoms are
shown).

look qualitatively similar. At least close to the surface the
values of �t2g,ν are larger than those of �eg,ν and �p,ν (which,
however, are also considerable for small ν). They are largest
for the surface layer, but they are non-negligible also for
layers with greater distance from the surface, and they show a
nonmonotonic behavior as a function of ν. All this resembles
the behavior of the Eν

mca shown in Fig. 4(a). In contrast, the
Ct2g,ν are more strongly localized at the surface layer, and
their behavior as function of ν resembles very much the one of
Uν

mca. The Ceg,ν and Cp,ν are very small. Obviously the effect
of an electric field is by far strongest for the anisotropy of the
occupations of the d-t2g orbitals, i.e., the magnetoelectric effect
on the magnetocrystalline anisotropy energy may be related to
the magnetoelectric effect on the anisotropy in occupation of
these orbitals.

Figure 2(a) (and Fig. 7) shows that for the nonrelaxed Fe
films the quantity Emca per surface atom is maximum for
NL = 7. We have calculated �t2g,1 for various NL, and
indeed we found a maximum for NL = 7. This demonstrates,
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FIG. 5. (Color online) Differences in the occupations (a) and
their charge derivatives (b) for i = t2g ( ), eg ( ), and p ( ) (see
descriptions in the main text).

again, the important role of �t2g,1 for the magnetocrystalline
anisotropy energy in these films.

Kittel illuminates his notion of the magnetocrystalline
anisotropy energy (Sec. II C) by assuming for simplicity an
infinitely large SOC, so an anisotropic atomic charge density
is rigidly corotated with the magnetization (Fig. 1 of Ref. 18),
and our �i characterize the anisotropy of the charge density.
In systems with finite (and often rather small) SOC this sketch
is, of course, too rough for a quantitative description of Emca.
According to Eq. (1), what matters in such systems is the
change of the electronic energies by SOC, especially for states
with energies close to the Fermi energy εF . Figure 6(a) shows
the spin-, atom-, and lz-resolved scalar-relativistic electronic
densities of states for the outermost layer of the nonrelaxed
Fe film with NL = 15. It is gratifying to see that the t2g states
that yield the largest �i,1 (relevant for Kittel’s simplified view)
have the largest density of states around εF (relevant for the
more quantitative view). Figure 6(b) shows that also for the
second-outermost atomic layer the density of states near εF is
dominated by the t2g states, so that their modifications by the
SOC are probably most important for the magnetocrystalline
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FIG. 6. (Color online) The spin-, atom-, and lz-resolved electronic
densities of states per eV of the scalar-relativistic calculation for the
outermost (a) and the second-outermost (b) layer of the unrelaxed Fe
film consisting of 15 atomic layers. The majority (minority) states are
denoted by spin-up (spin-down). The full (dotted) lines represent the
sum of the contributions of the three (two) t2g (eg) states, divided by
3 (2).

anisotropy energy E2
mca of this layer. Figure 5(a), however,

shows, that the anisotropy of the orbital occupation numbers
is much smaller for this layer, and therefore E2

mca is rather
small (see Fig. 4).

D. Fe films on substrates

As mentioned in the Introduction, it is known that for simple
ferromagnetic films the magnetoelectric effect is small, so very
large fields are required to switch the magnetization from in-
plane alignment to out-of-plane alignment. We confirm this
for Fe films. We then show that it is possible to switch the
magnetization direction already by small fields for very thin
films grown on metallic substrates like Au.

The total magnetic anisotropy that determines the orien-
tation of the magnetization usually is the sum of the mag-
netocrystalline anisotropy and the dipolar shape anisotropy.
We calculated the shape anisotropy energy Esa by use of the
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FIG. 7. (Color online) The various magnetic anisotropy energies
Emca, Esa, and Eta (see text) and their sum for neutral (�q = 0) and
charged [�q = 0.053 |e|/(surface atom)] Fe films as functions of
the film thickness. Emca (�q = 0) , Emca [�q = 0.053 |e|/(surface
atom)] , Esa(�q = 0) , Esa [�q = 0.053 |e|/(surface atom)] ,
Eta(�q = 0) , Eta [�q = 0.053 |e|/(surface atom] .

method described in Ref. 17 by calculating the dipole-dipole
interaction energy between the atomic magnetic moments
that we define by integrating the ab initio calculated spin-
magnetization density over the muffin-tin spheres around
the atomic positions. Thereby, there is only a very small
magnetoelectric effect on the atomic magnetic moments (see
also Refs. 11 and 31). For instance, when changing the number
of electrons of the film by �Nel/(surface atom) the magnitude
of the moment of the surface atom changes linearly with
�Nel, going from 2.963 μB for �Nel = 0 to 2.99 μB for
�Nel = −0.05. Therefore, the magnetoelectric effect on Esa

is much smaller than the one on Emca.
Figure 7 shows Emca, Esa and the total magnetic anisotropy

Eta = Emca + Esa for the Fe (001) films as function of the
number NL of the atom layers for �q = 0 and �q = 0.053
electrons/(surface atom). [Please note that in the energy
resolution of Fig. 7 the curves that represent the Esa for
different �q (empty squares and triangles) coincide.] The
magnetocrystalline anisotropy prefers an out-of-plane orienta-
tion of the magnetization and the shape anisotropy an in-plane
orientation. The out-of-plane Emca increases for positive �q,
but Eta is negative for �q = 0 and for the rather large value
of �q = 0.053 electrons/(surface atom) that corresponds to
a large electric field of 1.166 V/Å. This means that the
magnetization of these films cannot be switched by application
of reasonably large electric fields. In principle, the switching
to the out-of-plane direction could be assisted by an additional
large static out-of-plane magnetic field (see also Ref. 4), for
instance, for NL = 5 such a field of strength 0.6 T would
enable us to switch the magnetization direction by a rather
small electric field (leading to a small �q).

We have performed the calculations also for Fe films
on a Au substrate. Experimentally, a bcc Fe film can be
grown epitaxially on a fcc Au substrate with nearly no lateral
distortions in the Fe film. Thereby, the cubic unit cells of
the bcc film are rotated in the plane of the interface by 45◦
with respect to the cubic unit cells of the Au substrate. In our

TABLE I. The values of Emca, Esa, and Eta [all in meV/(surface
atom)] for the two uncharged systems.

Emca Esa Eta

Fe2-Au7-Fe2 1.593 −0.329 1.264
Fe3-Au7-Fe3 0.073 −0.502 −0.429

calculation we model this situation in the following way. The
Au substrate consists of seven infinitely extended fcc (001) Au
layers, and the Au atoms are in the positions they would have if
they were part of fcc bulk Au. Both surfaces of the Au substrate
are covered by two (Fe2-Au7-Fe2) or three (Fe3-Au7-Fe3)
infinitely extended bcc (001) layers, which are rotated with
respect to the Au substrate in the above discussed way and
that have an interlayer distance of abcc/2 = afcc/(2

√
2) (where

afcc and abcc denote the cubic lattice constants of the fcc and
bcc system) as long as the vertical positions of the Fe atoms
are not relaxed. In our calculations we have relaxed these
vertical positions of the Fe atoms. Thus, the Fe layers form
a continuation of the fcc stacking of the Au substrate with
modified, i.e., relaxed, layer distances. Please note that we
do not have a multilayer system but a “trilayer” Fe-Au-Fe
because the supercells are periodically repeated only in the
lateral dimensions. The values of Emca, Esa, and Eta for the
uncharged systems (Fe2-Au7-Fe2) and (Fe3-Au7-Fe3) are given
in Table I.

As discussed in Sec. III B, there is no direct contribution
of the Au atoms to Emca but an indirect contribution resulting
from the large modifications of the shape of the wave functions
at neighboring Fe atoms. The difference between the system
with two or three Fe cover layers shows that this effect is not
restricted to the Fe layer that is closest to the Au substrate,
but there is a change in the wave functions and hence a
modification of the atomic charge densities also in further
distant Fe layers.

As explained in Sec. III A, the experimentally produced
epitaxial Fe films do not necessarily have film thicknesses
that correspond to integer numbers of atom layers. By linear
interpolation between our data for two and three Fe layers we
find that at a critical thickness corresponding to 2.75 atom
layers there would be a transition between the in-plane and
out-of-plane orientation of the magnetization. In Ref. 32 it
was found experimentally that for Fe grown on Au(001) at
100 K, the easy axis of the magnetization is out of plane for
films thinner than 2.8 atom layers and in plane for thicker
films. When using a system close to the critical thickness, a
switching of the magnetization direction can be achieved by
application of rather small electric fields.

IV. CONCLUSIONS

In the present paper the physics of the magnetoelectric
effect resulting from the electric-field–induced spin-dependent
electron polarization is discussed. To do this, ab initio
calculations within the spin-density functional electron theory
are performed.

A method for the definition of layer-resolved contribu-
tions to the magnetoelectric effect on the magnetocrystalline
anisotropy energy Emca is introduced, which is based on the
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very often used magnetic force theorem for the calculation
of the Emca. It is shown by the general theoretical arguments
that this method is not strictly valid and, therefore, that the
sum of the so-defined layer-resolved contributions in general
is not identical to the ab initio calculated Emca for the whole
system. Nevertheless, it is shown numerically that at least for
our considered systems the method is rather accurate. The
knowledge of layer-resolved contributions to Emca and their
modifications by electric field is very helpful for a modeling
of the magnetoelectric effects on the atomic level in systems,
which are structurally too complicated for a complete ab initio
treatment.

The physics of the magnetoelectric effect is analyzed
in the spirit of Kittel’s explanation of Emca, in which the
covalent bond energy related to the anisotropic charge density
plays an important role. Quantities that characterize this
anisotropic electron charge density and its magnetoelectric
modification are introduced. Our numerical results show that
these quantities are indeed helpful for the interpretation of the

magnetoelectric effects on Emca. Finally, it is shown that in
the heterosystem Fe-Au-Fe the magnetization direction can be
switched between the in-plane and out-of-plane orientation
by rather small fields, if the average thicknesses of the
ultrathin Fe films have values close to a critical value. This
is in contrast to the general opinion that a magnetoelectric
manipulation of purely metallic systems requires extremely
high electric fields, and this may suggest a new class of systems
that can be used for special technological magnetoelectric
devices.
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