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Recently, it has been found that an effective long-range interaction is realized among local bistable variables
(spins) in systems where the elastic interaction causes ordering of the spins. In such systems, we generally expect
both long-range and short-range interactions to exist. In the short-range Ising model, the correlation length
diverges at the critical point. In contrast, in the long-range interacting model the spin configuration is always
uniform and the correlation length is zero. As long as a system has nonzero long-range interactions, it shows
criticality in the mean-field universality class, and the spin configuration is uniform beyond a certain scale. Here
we study the crossover from the pure short-range interacting model to the long-range interacting model. We
investigate the infinite-range model (Husimi-Temperley model) as a prototype of this competition, and we study
how the critical temperature changes as a function of the strength of the long-range interaction. This model can
also be interpreted as an approximation for the Ising model on a small-world network. We derive a formula for
the critical temperature as a function of the strength of the long-range interaction. We also propose a finite-size
scaling form for the spin correlation length at the critical point, which is finite as long as the long-range interaction
is included, though it diverges in the limit of the pure short-range model. These properties are confirmed by
extensive Monte Carlo simulations.
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I. INTRODUCTION

Divergence of the susceptibility is considered one of the
characteristics of second-order phase transitions. However,
it has been pointed out that in spin-crossover (SC) type
systems which belong to the mean-field universality class,
the spin configuration is uniform even at the critical point.
SC materials are molecular crystals in which the molecules
can exist in two different states: the high-spin (HS) state and
the low-spin (LS) state. The HS state is preferable at high
temperatures because of its high degeneracy, while the LS
state is preferable at low temperatures because it has a low
enthalpy.1 This type of competition exists not only in SC
materials, but also in charge-transfer materials, Prussian-blue
type materials, Jahn-Teller systems, and martensitic materials.
Such systems are generally characterized by the following
parameters: the enthalpy difference between the HS and the LS
states, the difference between their degeneracies (or entropies),
and the strength of the intermolecular interactions. A general
classification of types of ordering processes in such systems
has recently been proposed.2

An important characteristic of this phase transition is an
effective long-range interaction caused by an elastic interaction
due to the lattice distortion caused by the different sizes
of the HS (large) and LS (small) molecules, and the spin
configuration at the critical point is uniform with no large-
scale clustering.3 It has also been found that the long-range
interaction affects dynamical properties.8,9 In particular, the
critical spinodal phenomena predicted by the mean-field
theory are truly realized. This contrasts sharply with the case
of short-range models, in which the spinodal phenomena occur
as a crossover because nucleation-type fluctuations smear out
the criticality.10

This uniform spin configuration is one of the crucial
characteristics of the pure elastic model without short-range
interactions. However, in real materials, we expect that both
short-range and long-range interactions should exist. For
example, if we consider a usual Lennard-Jones potential
between molecules which depends on the spin states, the
model has both elastic and short-range interactions.11 In
such systems we expect to see ordering clusters due to the
short-range interaction, though the critical phenomena would
still be governed by the long-range interaction. Thus, it is an
interesting problem to study the crossover between short-range
and long-range models. In particular, we expect that the
correlation length of the spin-correlation function is finite in
the thermodynamic limit, even at the critical point, as long
as any long-range interaction exists. In the present paper,
we study how the critical correlation length increases and
ultimately diverges when the long-range interaction vanishes.

Much previous research has been devoted to understanding
aspects of the competition between long-range and short-
range interactions. For example, Suzuki introduced exactly
soluble models of quantum systems with both short-range and
long-range interactions,12 and Oitmaa and Barber introduced
a model of an Ising magnet with long-range lattice coupling.13

Effects of long-range interactions on phase transitions in
short-range interacting systems were investigated in detail by
Capel, den Ouden, and Perk,14 who focused on the instability
of the short-range critical behavior. The model studied in the
present paper is a special case of the models considered in
their study. More recently, Hastings studied the Ising model
on a small-world network.15

In this paper we study a model in which the long-range
interactions are those of the Husimi-Temperley (the equivalent
neighbor) model, which is the simplest model in which one
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can study this effect. We investigate how the spin-correlation
function develops due to the short-range interactions, finding
that if the long-range interactions are weak, the system shows
ordered clusters near the critical point of the short-range model,
T IS

c . Therefore we expect that if we take the cluster size as
the unit length, the model can be regarded as a pure long-
range model, showing the critical properties of the mean-field
universality class at the critical temperature of the model, Tc.
This picture enables a scaling analysis of the crossover. The
difference of the critical temperatures, Tc − T IS

c , is a function
of the strength of the long-range interaction. We introduce a
formula for the critical temperature as a function of the strength
of the long-range interaction and a finite-size scaling relation
for the correlation length, and we perform extensive Monte
Carlo simulations to test these relations.

A characteristic of the present model is that the correlation
length is finite, even at the critical point. We study how
the cluster size diverges as the strength of the long-range
interaction decreases, and we propose a scaling form for
the divergence, which is also confirmed by Monte Carlo
simulations.

The rest of this paper is organized as follows. In Sec. II,
we explain our model with both long-range and short-range
interactions and obtain a scaling formula for the critical
temperature of the model. We also give the result of Monte
Carlo simulations for the critical temperature, confirming the
formula. In Sec. III, we show that the correlation length at the
critical point remains finite due to the long-range interactions.
In Sec. IV, we obtain a finite-size scaling formula for the
correlation length at the critical point. We also present the
results of Monte Carlo simulations for the correlation length,
confirming the scaling behavior. In Sec. V, we summarize our
results.

II. MODEL : FERROMAGNETIC ISING MODEL WITH
NEAREST-NEIGHBOR AND WEAK INFINITE-RANGE

INTERACTIONS

A. Hamiltonian

First, we consider the effects of a weak, infinitely long-
range interaction (Husimi-Temperley model) on the Ising
model with ferromagnetic nearest-neighbor interactions on a
square lattice,

HIS = −J
∑
〈i,j〉

σiσj , (1)

where 〈i,j 〉 denotes nearest-neighbor pairs, and σi = ±1
denotes the Ising spin on lattice site i. The critical temperature
of this model16 is

T IS
c = 2J

ln(1 + √
2)

� 2.269 . . . J. (2)

We adopt the following Hamiltonian for the long-range
interaction:

HHT = −4J0

2N

N∑
i=1

N∑
j=1

σiσj . (3)

The critical temperature of this model17 is

T HT
c = 4J0. (4)

With J0 = J , this critical temperature is equal to that of the
mean-field approximation for the Ising model on the present
lattice.

For the crossover, we study the following hybrid model:

H = (1 − α)HIS + αHHT, 0 � α � 1 . (5)

Here, α controls the relative strength of the long-range
interaction.

B. Dependence of the critical temperature on α

The critical temperature of the model defined by (5) changes
from T IS

c to T HT
c as α changes from 0 to 1. First, we consider the

situation in a naive picture. At a temperature T , the short-range
order is developed byHIS, and we assume that Ncluster spins are
tightly correlated and behave as one effective spin. In this case,
we introduce an effective spin {τi},i = 1, . . . ,N ′ = N/Ncluster,

Si =
Ncluster∑

j∈cluster i

σj = Nclusterτi, τi = ±1. (6)

Using this effective spin, HHT is expressed as

HHT = − 4J0N
2
cluster

2NclusterN ′

N ′∑
i=1

N ′∑
j=1

τiτj

= −4J0Ncluster

2N ′

N ′∑
i=1

N ′∑
j=1

τiτj . (7)

The short-range part has contributions from interactions at the
interfaces between clusters, and HIS is given by

HIS � −J
√

Ncluster

N ′∑
〈i,j〉

τiτj . (8)

As the clusters grow, the long-range interactions become
effectively stronger than the short-range interactions, and the
critical temperature is given by

Tc = 4αJ0Ncluster. (9)

If we estimate Ncluster using the Ising correlation length ξ IS,
which has its origin in the short-range interaction, it can be
written as

Ncluster � (ξ IS)
γ

ν = (ξ IS)2−η, (10)

where η is the Ising anomalous dimension and the exponent
relations are

α + 2β + γ = 2, (11)

γ = (2 − η)ν, (12)

and α = 0, β = 1/8, γ = 7/4, ν = 1, and η = 1/4 in the
two-dimensional Ising model.18 Then, using the relation ξ IS ∝
(T − T IS

c )−ν ,

Tc − T IS
c ∝

(
4αJ0

Tc

) 1
γ

=
(

4αJ0

Tc

) 4
7

. (13)
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In the case where α is very small, Tc � T IS
c , so

Tc − T IS
c ∝

(
4αJ0

T IS
c

) 4
7

∝ α
4
7 . (14)

We can confirm the above picture by an exact argument
involving the free energy. Let us consider the free energy of
the total system with a fixed magnetization, m = ∑

i σi/N .
The partition function is given explicitly by

Z(β,m) = Tre−β[(1−α)HIS+αHHT]

= Tre−β(1−α)HIS+β4αJ0m
2N/2

= ZIS[β(1 − α),m]eβ4αJ0m
2N/2, (15)

where ZIS(β,m) is the partition function of the Ising model at
the inverse temperature β for a fixed value of m. Therefore,
the free energy is given by

F (β,m)/N = − 1

βN
ln[Z(β,m)]

= (1 − α)f IS[β(1 − α),m] − 4αJ0m
2/2. (16)

Here f IS is the free energy per spin of the Ising model, and we
assume that it can be expanded around the critical point in the
following form:

f IS[β(1 − α),m] � 1

2χ IS[β(1 − α)]
m2 + · · · . (17)

Thus the critical point of the present model is given by
∂2F (βc,m)

∂m2 |m=0 = 0, or

(1 − α)

χ IS[βc(1 − α)]
− 4αJ0 = 0, (18)

where the susceptibility of the hybrid model, (5), diverges. If
we adopt the relation

χ IS(T ) ∝ (
T − T IS

c

)−γ
, (19)

the critical point is given by

Tc − (1 − α)T IS
c ∝ (4αJ0)

1
γ (1 − α)1− 1

γ � α
1
γ , (20)

which agrees with (14) for small α. We note that Eq. (19) holds
only when T is very close to T IS

c , so Eq. (20) holds only when
Tc is very close to (1 − α)T IS

c . Namely, Eq. (20) is only valid
for α 	 1.

For α = 1,

lim
α→1

F (β,m)/N = lim
α→1

(1 − α)f IS[β(1 − α),m] − 4αJ0m
2/2

= T

2
m2 − 4J0m

2/2 + · · · . (21)

In this case (18) yields Tc = 4J0, the critical temperature of
the Husimi-Temperley model, (4).

To obtain the numerically correct amplitude for Tc(α), we
need the Ising susceptibility near the critical point for T >

T IS
c ,19

χ IS(β) = βC0

(
1

t̃

)γ

, γ = 7/4, (22)

with C0 = 0.962582 . . ., and

t̃ = T − T IS
c

T
= T IS

c

T
t. (23)

Equation (18) can be written as

Tc

C0

(
(1 − α)T IS

c

Tc

) 7
4
(

Tc − (1 − α)T IS
c

(1 − α)T IS
c

) 7
4

= 4αJ0. (24)

We write tc(α) = Tc−T IS
c

T IS
c

, so

(1 + tc)
4
7 (tc + α) = (1 + tc)

(
4αJ0C0

T IS
c

) 4
7

. (25)

Expanding to lowest order in tc and α while setting J0 = J ,
we get

tc � Aα
4
7 with A =

(
4J0C0

T IS
c

) 4
7

� 1.352745, (26)

or equivalently,

Tc(α) − T IS
c

T MF
c − T IS

c

� 1.773517α
4
7 . (27)

This result confirms relation (14), and it agrees with the results
in Sec. 6.4 in the paper by Capel, den Ouden, and Perk,14 in
which the scaling form for the free energy under perturbations
is given for general cases. This scaling property is also obtained
in Hastings’ paper.15

C. Monte Carlo study of the α dependence of Tc

In order to confirm the scaling relation of Sec. II B (above),
we estimated the critical temperatures for various values of α

by Monte Carlo simulations. Here we fixed both J and J0 to
1.0. Therefore, T IS

c = 2.269 . . . and T HT
c = 4 in these units.

We used a standard Metropolis method, adopting periodic
boundary conditions. In most cases, we performed 500,000
MCS (Monte Carlo steps) for the data with 100,000 MCS for
the equilibration. Henceforth, L denotes the linear system size
in units of the lattice constant, so the total number of spins
is L2.

We estimate a candidate for the critical temperature Tc(α)
for each value of α. In order to obtain this value, we study the
size dependence of the peak position of the so-called absolute
susceptibility,20

χ̃ ≡ 1

N
(〈M2〉 − 〈|M|〉2), (28)

as a “critical point” Tc(α,L) for the size L. We expect that
the peak position saturates at the critical temperature in the
thermodynamic limit:

Tc(α,L) → Tc(α,∞). (29)

In Fig. 1, we depict a typical size dependence of the peak for
α = 0.001. By a general finite-size scaling argument21,22 we
expect the following size dependence:

Tc(α,L) − Tc(α,∞) ∝ L−1/ν . (30)

Here, ν is the critical exponent of the correlation length.
However, in the present case, the critical phenomena belong
to the mean-field universality class, and the definition of ν

is subtle. Namely, if we consider the spatial correlation of
the Gaussian model, ν = 1/2, while in the scaling relation
in the mean-field universality class, we have the effective
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FIG. 1. (Color online) Temperature dependences of χ̃ for α =
0.001 and L = 20, 40, 80, 160, and 320 from bottom to top. Peak
positions are marked by open circles with crossed error bars. For large
systems, they increase with increasing L. Approximate error bars are
also shown on each curve for points at about two-thirds of the peak
height. The left vertical dashed line represents the critical temperature
for the pure Ising model, and the right-hand line represents the critical
temperature for α = 0.001 obtained by the Binder cumulant method
(see below).

ν = 2/d.3,23,24 In the infinite-range (HT) model, distances are
not well defined, and only the total number of spins, N , has a
meaning. Thus, we should rewrite relation (30) as

Tc(α,L) − Tc(α,∞) ∝ N−1/dν, (31)

where we take the latter case (ν = 2/d) as we did in a previous
paper.3 In the present case d = 2 and thus N = L2, which gives

νHT = 1, (32)

which accidentally agrees with that of the short-range Ising
model,

νIS = 1. (33)

In Fig. 2, we plot the peak position of χ̃ by open squares as a
function of L−1 for several values of α. The critical temperature
Tc(α,∞) could in principle be estimated by linear extrapolation
in L−1. However, we find a nonmonotonic dependence of the
peak position as a function of L−1 for small values of α. (See
also Fig. 1.) Only when the size becomes large enough to show
the critical behavior of the HT model can we apply the scaling
relation, (30). For small sizes, the system behaves like a short-
range model, and the peak position moves differently. Indeed,
we find that in the scaling region, the peak position approaches
Tc(α,∞) from below. However, for α � 0.01 we find that it
decreases with L for small values of L. For α = 0.001, we
find that the peak position finally increases again when L goes
from 160 to 320, while for α = 0.0001, it continues to decrease
for all values of L considered. Thus, we cannot estimate the
infinite-system value by a simple extrapolation of the peak
position in L−1 for α = 0.0001.
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FIG. 2. (Color online) Estimates for Tc(α,L) for different values
of α vs L−1. α = 0 (pure Ising), 0.0001, 0.001, 0.01, 0.1, 0.5, and 1
(Husimi-Temperley), from bottom to top. L = 20, 40, 80, 160, and
320. Squares denote the peak positions of χ̃ , and circles denote the
crossing positions of the Binder cumulant for L and L/2. The upper
and lower dashed lines mark the exact critical temperatures for the HT
and Ising models, respectively. Inset: Detail for α = 0.001,0.0001,

and 0 (pure Ising).

To obtain more accurate estimates for small α, we also
estimated Tc(α,L) from the crossing point of the fourth-order
Binder cumulant,25

U4(α,L) = 1 − 〈m4〉
3〈m2〉2

, (34)

for L and L/2. In the present case of an isotropic inter-
action system on a square lattice with periodic boundary
conditions, the Ising fixed-point value of the cumulant is
U ∗IS

4 � 0.61 . . ..26 The exact value for the HT model is
U ∗HT

4 = 1 − �4(1/4)/24π2 = 0.27 . . .,27,28 where �(x) is the
� function. Other shapes of the system, boundary conditions,
and anisotropy may lead to different values of U4 at the
crossing point.29,30 When L and α are small, the crossing value
of U4(α,L) is near the Ising fixed-point value, U ∗IS

4 � 0.61 . . .,
while for larger L and/or α, the crossing moves down toward
the exact value for the HT model, U ∗HT

4 � 0.27 . . .. The
values of T at the crossing points are shown as circles vs
L−1 for different values of α in Fig. 2. The temperature
dependences of U4(α,L) for different α and L are shown
in Fig. 3. For α = 0.1, we find the crossing points located
near U ∗HT

4 , indicating that the critical properties belong to the
mean-field universality class. For α = 0.01 and 0.001, we find
that the crossing points move from near U ∗IS

4 toward U ∗HT
4

as L increases. These results indicate that the critical point
of the hybrid model belongs to the mean-field universality
class for all α > 0. In the case of α = 0.0001, the crossing
point of the Binder cumulants for (L,L/2) = (320,160) is still
near U ∗IS

4 . Because we assume that the critical behavior for
nonzero α belongs to the mean-field universality class, we get
a series of upper bounds on the critical temperature as the
temperature at which U4(α,L) crosses UHT

4 . Lower bounds
are given by the cumulant-crossing temperatures. Our best
estimates for Tc are obtained by linearly extrapolating the
crossing temperatures to L−1 = 0. In this way, we estimated

054433-4



CROSSOVER BETWEEN A SHORT-RANGE AND A LONG- . . . PHYSICAL REVIEW B 84, 054433 (2011)

2.8 2.85 2.9 2.95 3 3.05 3.1
T

0.2

0.3

0.4

0.5

0.6

U
4(T

)

L = 20
L = 40
L = 80
L = 160

2.3 2.35 2.4 2.45 2.5 2.55 2.6
T

0.2

0.3

0.4

0.5

0.6

U
4(T

)

L = 20
L = 40
L = 80
L = 160

(a) (b)

2.25 2.3 2.35 2.4 2.45 2.5 2.55
T

0.2

0.3

0.4

0.5

0.6

U
4(T

)

L = 20
L = 40
L = 80
L = 160
L = 320

2.25 2.3 2.35 2.4 2.45 2.5 2.55
T

0.2

0.3

0.4

0.5

0.6

U
4(T

)

L = 20
L = 40
L = 80
L = 160
L = 320

(c) (d)

FIG. 3. (Color online) Temperature dependence of the Binder cumulant for (a) α = 0.1, (b) α = 0.01, (c) α = 0.001, and (d) α = 0.0001.
Points are Monte Carlo data, and solid lines are polynomial fits. The upper and lower horizontal lines are the fixed-point values for the Ising
model and the Husimi-Temperley model, respectively, and the leftmost vertical lines in (c) and (d) represent the critical temperature of the
pure Ising model. Dashed vertical lines with horizontal error bars represent the critical temperatures obtained by extrapolation of the crossing
temperatures as described in the Appendix.

the Tc(α = 0.0001) = 2.281 ± 0.005. In the Appendix we
show in detail how we estimated this value.

The extrapolated values for Tc(α,∞) − T IS
c are shown on

a log-log scale in Fig. 4. For small α, the data points fall on

α

 α

FIG. 4. (Color online) The α dependence of the normalized
critical-temperature difference, [Tc(α) − T IS

c ]/[T HT
c − T IS

c ] in a log-
log plot. Circles and triangles (red) denote critical temperatures
obtained from the peak position of χ̃ for L = 320 and 80, respectively,
and squares (blue) denote critical temperatures obtained from Binder
cumulants. The horizontal dashed line (red) represents y = 1, and the
oblique dashed line (blue) represents the numerically exact theoretical
estimate, 1.773517α4/7, (27). The latter line, which involves no
adjustable parameters, agrees very well with the cumulant-generated
data for small α.

a straight line of slope 4/7. As mentioned above, to obtain
more accurate estimates of the critical temperatures from χ̃ ,
we would need to perform Monte Carlo calculations with
much larger systems. For small α, the results from the Binder
cumulants are in good agreement with the power law, Tc(α) −
T IS

c ∝ α4/7. Thus, we confirm the scaling relation, (13):

Tc(α,∞) − Tc(0,∞) ∝ α1/γIS . (35)

III. CLUSTER SIZE AT THE CRITICAL POINT

In the pure long-range model, all spins interact with each
other. Thus, the concept of distance has no meaning, and the
system does not show any clustering. On the other hand,
in the short-range model, the ordering process occurs as a
development of short-range order, and the cluster size, i.e.,
the correlation length, represents the extent of the ordering. In
Fig. 5(a) and Fig. 5(b), we depict typical spin configurations
at the critical temperature Tc(α) of the short-range model and
the long-range model, respectively. A clear difference between
the two cases is evident.

Here it should be noted that nondivergence of the correlation
length does not mean nondivergence of the susceptibility. In the
mean-field model, the susceptibility diverges as |T − T HT

c |−1.
This means that the fluctuation of the magnetization M

diverges as

1

N
(〈M2〉 − 〈M〉2) ∝ ∣∣T − T HT

c

∣∣−1
. (36)
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FIG. 5. (Color online) (a) Spin configurations for Ising model at
T IS

c = 2.269J , L = 100; (b) Husimi-Temperley model at T HT
c = 4J0.

This fluctuation can be observed as the fluctuation of the
uniform density of the spin configuration. In Fig. 6 we depict
typical configurations at T HT

c with different M/N = m. We
note that the spin configurations are uniform, but the ratio of
numbers of up and down spins fluctuates. This causes large
fluctuations in the magnetization M , but not in the cluster
size. In the long-range model, large numbers of spins change
uniformly.

In the hybrid model, (5), the criticality belongs to the
mean-field universality class. However, short-range order also
develops. Thus, we expect a finite correlation length at the
critical point, which increases as α decreases. In Fig. 7, we
depict typical configurations at the critical temperature for
various values of α. We clearly see that the size of the clusters
decreases with increasing α.

IV. FINITE-SIZE SCALING OF THE CLUSTER SIZE AT
THE CRITICAL POINT

A. Scaling function

In this section, we study the correlation length at the critical
point for several values of α. From relation (20), we expect
the following relation between the correlation length ξc at the
critical temperature and α:

ξc(α) ∝ (
Tc − (1 − α)T IS

c

)−νIS

� ((4αJ0χ0)1/γIS )−νIS ∝ α−νIS/γIS (37)

FIG. 7. (Color online) Typical configurations of the hybrid model
at the critical temperature Tc(α) for (a) α = 0.0001, (b) α = 0.001,
(c) α = 0.01, and (d) α = 0.1.

for α 	 1. Moreover, for α 	 1 we may assume the following
finite-size scaling relation with the linear dimension of the
system L:

ξc(α,L) = Lf
(
Lα

ν
γ

) = Lf
(
Lα

4
7
)
, (38)

where f (x) is a scaling function which is proportional to 1/x

for large x and constant for small x.
In the case of the short-range Ising model, we can estimate

the divergence of the correlation length by making use of the
susceptibility:

χ = 1

NkBT

∑
i,j

〈σiσj 〉

∼ 1

kBT

∫ L

0

1

rd−2+η
e−r/ξ dr ∼ ξ 2−η = ξ

γ

ν . (39)

FIG. 6. (Color online) Spin configurations for the Husimi-Temperley model at T HT
c for (a) 〈m〉 � 0.3, (b) 〈m〉 � 0.0, and (c) 〈m〉 � −0.3.
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FIG. 8. (Color online) Disconnected spin correlation function
c(r) at the critical point Tc(α) = 2.332 for α = 0.001. For each value
of L, the results of seven independent runs of 106 MCS each are
shown.

However, in the present long-range interaction model, the
value of the magnetization fluctuates uniformly but not
spatially. Therefore, we cannot estimate ξ from χ .

B. Measurement of ξ at Tc: Direct measurement of the
correlation function

Here we estimate the correlation length from the spin
correlation function c(r) = 〈σiσj 〉, where r is the distance
between site i and site j , by the following definition:

ξ (L) =
∫ L/2

0 [c(r) − c(L/2)] rdr∫ L/2
0 [c(r) − c(L/2)] dr

. (40)

This definition gives the correlation length if c(r) decays
exponentially to its large-r value, and also for general cases
it gives an estimate of the correlation length. In Fig. 8, we
depict a typical example of c(r). At a large distance, c(r) is
constant,3 proportional to

√
N . The size dependence of ξ (α,L)

is depicted in Fig. 9, where we confirm that the correlation
length saturates for large L as expected, even for quite small
values of α. The estimated ξ (α,L) are plotted in the finite-size
scaling plot in Fig. 10, in which we assume that ξ at the critical
point depends on α as (38). We find that the data collapse onto
a scaling function and thereby confirm the theoretical scaling
relation (38).

V. SUMMARY

We found that in systems with both long- and short-range
interactions, the long-range interaction dominates the critical
properties, even if it is infinitely weak. This finding is in full
argument with previous results by Capel, den Ouden, and
Perk on the instability toward weak perturbations of critical
phenomena in short-range interaction system.14 At the critical
temperature, although the susceptibility diverges, the cluster
size does not, and the system has a finite correlation length.

In this paper, we obtained a formula for the change of
the critical temperature as a function of the strength α of
the long-range interaction and, also, a finite-size scaling form

0 100 200 300
0

10

20

L

C
or

re
la

tio
n 

le
ng

th

FIG. 9. (Color online) Size dependence of the correlation length
at the critical point Tc(α). Circles, squares, upward triangles, and
downward triangles represent T = 2.281 for α = 0.0001, T = 2.332
for α = 0.001, T = 2.477 for α = 0.01 and T = 2.984 for α = 0.1,
respectively.

for the spin correlation length at the critical point. At the
critical point, the spin correlation function at large distances is
constant,3 proportional to

√
N , with a short-range component

characteristic of the correlation length ξ . We obtained the
value of the correlation length from the simulated spin
correlation function, thus providing numerical confirmation
of our proposed scaling function.

The crossover of the nature of the spatial order as the
length scale changes was studied by a Monte Carlo method.
We investigated the values of the Binder cumulant at its
crossing points. It moved from the value of the short-range
Ising model to that of the mean-field universality class, which
enabled us to estimate the critical point systematically. The

10−1 100 101 102

10−2

10−1

αL
4/7
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le
ng

th
 / 

L

FIG. 10. (Color online) Scaling plot of the correlation length
at the critical point. Circles, squares, upward triangles, and down-
ward triangles represent T = 2.281 for α = 0.0001, T = 2.332 for
α = 0.001, T = 2.477 for α = 0.01 and T = 2.984 for α = 0.1,
respectively. The linear system sizes are L = 20, 40, 80, 160, and
320. The dashed line is proportional to y = 1/x. Data are in excellent
agreement with the scaling relation, (38).
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FIG. 11. Detail of the crossings of the Binder cumulant for
α = 0.0001. This figure is a magnified portion of Fig. 3(d).

result agrees well with our proposed formula. In the present
paper, we studied only the case of ferromagnetic long-range
interactions, but we note in passing that with J0 < 0, (5) may
serve as a useful approximation for static31 and dynamic32

demagnetizing effects. We further note that our model can be
considered a well-stirred approximation for the Ising model
on a small-world network.15

We expect that the results found in this paper are applicable
also for real systems with degrees of freedom corresponding to
lattice deformation. A study of such a model will be published
elsewhere.33 We hope that this kind of phenomena will be
found in future experiments.
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APPENDIX: ESTIMATION OF Tc(α) FROM THE CROSSING
POINTS OF THE BINDER CUMULANT

In the present models, the system behaves like a short-range
Ising model for small α and L. If we study the crossing point
of the Binder cumulants, U4(α,L), for small values of L and
at small α, the crossing point gives a value close to that of
the Ising model, i.e., U ∗IS

4 � 0.61 . . .. However, as the size
increases, the crossing points approach the fixed-point value
of the mean-field model, U ∗HT

4 � 0.27 . . .. For α = 0.0001,
the crossing point of the two largest sizes simulated, L = 320
and 160, still stays near 0.57, which is far from U ∗HT

4 . Thus,
we cannot obtain the critical temperature directly. Here we
estimate Tc (α = 0.0001) in the following way. We obtain the
crossing points for systems with L and L′ = L/2 as depicted
in Fig. 11. Solid lines for the cumulants as functions of T were
obtained as polynomial fits to densely spaced Monte Carlo
data obtained from simulation runs of up to 107 MCS. We
assume the following properties: (1) U4 at the crossing point
for large L equals U ∗HT

4 , (2) U4(α,L) is a monotonic function
of the temperature, and (3) the crossing temperature increases
monotonically with L. From these assumptions we find in
Fig. 11 that Tc(α) is above T = 2.277, which is the crossing
temperature for L′ = 160 and L = 320. Because U4(α,L =
320) crosses U ∗HT

4 at T = 2.289, Tc(α) is below T = 2.289. By
linear extrapolation with respect to 1/L of the crossing values
for L′/L = 80/160 and 160/320 (see the inset in Fig. 2), we
estimated the critical temperature as

Tc(α = 0.0001) = 2.281 ± 0.005. (A1)
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24E. Luijten and H. W. J. Blöte, Phys. Rev. B 56, 8945 (1997), and

references therein.
25K. Binder, Phys. Rev. Lett. 47, 693 (1981).
26G. Kamieniarz and H. W. J. Blöte, J. Phys. A 26, 201 (1993).
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