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Model of bound interface dynamics for coupled magnetic domain walls
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A domain wall in a ferromagnetic system will move under the action of an external magnetic field. Ultrathin Co
layers sandwiched between Pt have been shown to be a suitable experimental realization of a weakly disordered
2D medium in which to study the dynamics of 1D interfaces (magnetic domain walls). The behavior of these
systems is encapsulated in the velocity-field response v(H ) of the domain walls. In a recent paper [P. J. Metaxas
et al., Phys. Rev. Lett. 104, 237206 (2010).] we studied the effect of ferromagnetic coupling between two such
ultrathin layers, each exhibiting different v(H ) characteristics. The main result was the existence of bound states
over finite-width field ranges, wherein walls in the two layers moved together at the same speed. Here we discuss
in detail the theory of domain wall dynamics in coupled systems. In particular, we show that a bound creep state
is expected for vanishing H and we give the analytical, parameter free expression for its velocity which agrees
well with experimental results.
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I. INTRODUCTION

A number of physical phenomena involve elastic interfaces
moving through disordered media. These phenomena range
from domain wall motion in ferromagnets,1–4 ferroelectrics,5

and multiferroics6 to wetting,7 as well as vortex motion
in high-Tc superconductors.8 The theoretical frameworks8–10

developed to model elastic interface dynamics are therefore
highly relevant for a number of real world processes which are
of interest both for their fundamental properties and eventual
applications. Indeed, theoretical studies of single interface
dynamics and statics have revealed a lot of interesting physics
with predictions of universality, in-depth studies of dynamic
and static critical exponents,9–13 and the development of now
well-known interface growth equations.14 Magnetic systems
in particular have been an ideal testing ground for these
theories1–4,15 since these systems can be easily probed and
manipulated.

A relatively recent theoretical, and more recently, ex-
perimental playground has been developing concerning the
physics of interacting interfaces in 2D systems. Theoreti-
cally, this problem has been studied via modified growth
equations,16,17 Monte Carlo modeling of repulsive or non-
interacting interfaces,18,19 and scaling arguments.20 Quasi-
2D experimental realizations of systems containing coupled
interfaces have also been conceived, ranging from interacting
fluid fronts21 to repulsive20 and attractive22,23 magnetic domain
walls.

Our work on field-driven, attractively coupled domain
walls22 has been carried out on a system consisting of two
physically separate, but magnetically coupled,24 ultrathin fer-
romagnetic Co layers [Fig. 1(a)]. The ferromagnetic coupling
tends to align the magnetization in the two layers. Therefore,
if a domain wall is present in each Co layer [e.g., Fig. 1(b)],
the ferromagnetic coupling will tend to align them, acting as
an attractive interaction between the walls. This attraction not

only favors a static domain wall alignment in zero field, but can
also stabilize the aligned state dynamically under an applied
field.22 In this case, walls in the two layers are dynamically
bound and move together at a common, unique velocity,
despite each wall having different intrinsic velocity-field
responses. These differing velocity-field responses however
do mean that dynamic domain wall binding can occur only
over field ranges in which wall velocities in each layer are
sufficiently close, placing a limit on the fields for which bound
motion can occur. Until this work, studies of pairs of interacting
interfaces in quasi-2D systems had been mostly carried out in
single media. While it was already thought that domain walls
in strongly coupled layers moved together,23,25–27 this was
the first study wherein both dynamically bound domain walls
and transitions between bound and unbound dynamics were
directly evidenced.

In this article we discuss in detail a theoretical description
of bound domain wall motion. The paper is outlined as follows.
In Sec II we briefly give some details about the model system.
In Sec. III we analyze how domain wall speed is affected by
interlayer coupling and in Sec. IV we study analytically the
bound state regimes and discuss the agreement between theory
and experiment. A short conclusion follows.

II. COUPLED ULTRATHIN MAGNETIC LAYERS

The experimental system shown in Fig. 1(a) is a magnetic
multilayer consisting of two ultrathin Co layers: a magnetically
hard 0.8 nm layer (layer 1) and a softer 0.5 nm layer (layer 2).
The layers are ferromagnetically coupled24 (coupling energy
J > 0) across a 3-nm thick Pt spacer. Seed and capping Pt
layers ensure an out-of-plane magnetic anisotropy within the
Co layers. Pt/Co-based films are now considered good ex-
perimental realizations of a weakly disordered, ferromagnetic
2D Ising system, due to their anisotropy-induced out-of-plane
magnetization, narrow domain walls, and intrinsic structural
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FIG. 1. (a) Using magnetic layers coupled via an interlayer
interaction energy J to create a model system for studying bound
domain walls. Measurements of domain wall motion in this system
consisted either of (b) coupled domain walls (boundaries of domains
which are statically aligned in zero field) or (c) single domain walls
(boundaries of domains existing in the hard layer only).

disorder.1,3 This disorder has a major role in determining the
velocity response v(H ) of a domain wall to an external field
H , applied perpendicular to the film plane.

Two types of domain wall velocity measurements were
carried out based upon the two domain (wall) types which
could be nucleated within the multilayer. Both types of
wall could be propagated under field to determine their
velocity-field responses using a quasi-static magneto-optical
method.3,22 (1) Coupled domain walls are the boundaries
of domains existing in both layers which, in zero field, are
aligned spatially with their magnetizations pointing in the same
direction, as shown in Fig. 1(b). Under field, and depending on
the field amplitude, they can move together in a dynamically
bound state, or separately. (2) Single domain walls are the
boundaries of domains existing in the hard layer only, as
illustrated in Fig. 1(c). Measurements of these domain walls
yield a reference velocity and a determination of the interlayer
coupling.

III. FROM ISOLATED TO COUPLED AND BOUND
DOMAIN WALL DYNAMICS

Here we analyze field-velocity responses of: (i) a single
domain wall in an isolated magnetic layer, (ii) a single domain
wall in one magnetic layer coupled to a second, saturated
magnetic layer, and (iii) two coupled domain walls, one in the
hard layer and the other in the soft layer. Domain walls will
be approximated as straight lines, whose position is given by a
single number. We begin with a single wall located at x = xw

in an isolated ultrathin Co layer [see Fig. 2(a)]. The Co layer is
positively magnetized for x < xw and negatively magnetized
for x > xw. The application of an external field H > 0 drives
the wall to the right, with the wall acquiring a positive velocity
v(H ) = dxw/dt . Experimental results3 obtained for domain
wall motion in Pt/Co(0.5–0.8 nm)/Pt films show that v(H )
is characterized by two distinct regimes at room temperature
(creep and flow) which were theoretically predicted8,9 and are
sketched in the schematic of Fig. 2(b). Domain walls exhibit
flow motion at high fields for which v ∝ H . However, below a

(a) (b)

(c) (d)

FIG. 2. (a) The average domain wall position is denoted xw . (b)
At finite temperature, walls exhibit a low field, thermally activated
creep regime and a high field, dissipation-limited, linear flow regime.
The two are separated by a thermally smeared depinning transition28

(not labeled). (c) Experimentally obtained domain wall dynamics in
layers 1 and 2 in the absence of coupling. The two curves cross at
H = 0 and H = H ∗. (d) Domain wall dynamics in layer 1 for a
coupling field H1 which reinforces the applied field H , [v1(H + H1)]
or works against it [v1(H − H1)].

layer-dependent critical depinning field Hdep (generally on the
order of a few hundred Oersted3), disorder-induced pinning
effects become significant and the walls exhibit thermally
activated creep.1 Within this latter regime, v(H ) has the form

v(H ) = v0 exp

[
− UC

kBT

(
Hdep

H

)1/4
]

, (1)

where the exponential factor UC/kBT is the ratio between the
typical pinning energy and the thermal energy. The exponent
1/4 is a universal exponent, characteristic of the dynamics
of a one-dimensional interface in a 2D weakly disordered
medium.

Films with different thicknesses have different microscopic
parameters and disorder strengths. As a result, they have
different v(H ) characteristics,3 as attested by the experimental
velocity-field curves for domain walls in the two layers in
the absence of coupling [Fig. 2(c)]. However, pairs of such
curves often intersect at two points: H = 0 and H = H ∗
(H ∗ � 860 Oe for our system). The first crossing point is
universal, because the velocity v(f ) of any isolated interface
in response to a generalized force f (here f = H ) is always
expected to vanish for vanishing f . The second crossing point
is less trivial and arises because domain walls in thicker Co
layers generally have a lower creep velocity but a higher flow
velocity than walls in thinner layers.

In the remainder of this article we shall use v1(H ) to refer
to the domain wall velocity in the hard layer and v2(H ) to
that in the soft layer. If the two films are not coupled, it is
clear that walls will propagate independently, with v2 > v1 for
H < H ∗ and v1 > v2 for H > H ∗ [Fig. 2(c)]. The question
we are now going to consider is the following: What is the
effect of interlayer coupling on domain wall velocities v1,2(H )
and domain wall binding phenomena?
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Before considering coupling between domain walls, let us
consider the simpler case of a single domain wall in layer
i = 1,2, interacting with a uniformly magnetized layer k =
2,1 [see, for example, Fig. 1(c)]. The interlayer coupling J

induces an effective coupling field hi given by29

hi = mk

J

Mi
Sti

≡ mkHi, (2)

where MS is the saturation magnetization, t is the layer thick-
ness, and m = ±1 is the magnetization orientation. hi adds to
the external field H and also drives the domain wall,30,31 in
turn allowing for a simple experimental determination of Hi .
To determine H1, domain wall velocities in the hard layer were
measured while keeping the soft layer magnetically saturated.
Through control of m2 and/or H , it was possible to determine
wall velocities with h1 either opposing or reinforcing the
applied field. We denote these data sets v1(H − H1) and
v1(H + H1), respectively. Plotted in Fig. 2(d), the two data sets
are separated by 2H1, allowing a determination of H1 = 120
Oe and v1(H ) [i.e., no coupling, see Fig. 2(c)].

The corresponding coupling field and isolated wall dy-
namics for layer 2 were determined in a different manner.
H2 = 220 Oe could be easily found using Eq. (2), which gives
H1M

1
S t1 = H2M

2
S t2 (M1,2

S are known22). Unfortunately, we
were not able to nucleate a domain in the soft layer while
keeping the hard layer in a single domain state and so v2(H )
had to be measured using a Co(0.5 nm) layer in a less strongly
coupled Pt/Co(0.5 nm)/Pt(4 nm)/Co(0.8 nm)/Pt film.31

Now, let us turn to dynamics of coupled walls [Fig. 1(b)].
The experimental determination of the coupled walls is as
follows. (i) Two aligned domain walls, at a common position
x1(0) = x2(0), are nucleated. (ii) A magnetic field pulse H is
applied for a time T , under which walls move to positions
x1(T ),x2(T ). (iii) The new wall positions are quasistatically
determined3,22 from Kerr microscopy images.

While x1(T ) = x2(T ) for dynamically bound walls,
x1(T ) �= x2(T ) for unbound walls since the walls separate
during their motion. However, the time interval between steps
(ii) and (iii) is large enough to allow the separated walls to
relax back to an aligned state under the action of effective
coupling fields (H = 0 for t > T ). Since v2(H2)/v1(H1) ≈
1010, if x1(T ) �= x2(T ), pre-imaging relaxation of the soft
layer wall gives x

imaged
2 = x1(T ). Therefore, the experimental

technique yields either the true bound wall displacement (and
subsequently the bound velocity) or the hard wall displacement
(and therefore the hard layer wall velocity) when the walls are
unbound.

In the unbound state, the hard layer velocity (and therefore
the experimentally determined velocity of the coupled walls),
will be that observed for hard layer walls under a field H ± H1

[Fig. 2(d)] since the walls in the two layers are not aligned:
+H1 if the hard layer wall trails the soft layer wall and −H1

if the hard layer wall leads the soft layer wall [Eq. (2)].
This is an important point, as it allows us to identify the
field ranges over which vC(H ) (the experimentally obtained
coupled wall velocity) corresponds to unbound motion. The
unbound (U) and bound (B) regions are labeled in Fig. 3(a)
in which vC(H ) is plotted together with v1(H ± H1) to allow
a direct comparison. This allows us to easily locate the three

FIG. 3. (a) and (b) Experimentally obtained coupled wall velocity
vC(H ) (•) plotted with hard domain velocities in the presence of
a positively saturated soft layer v1(H + H1) (�) and a negatively
saturated soft layer v1(H − H1) (	). Field regions in which bound
(B) and unbound (U) coupled wall dynamics are labeled with roman
numerals. Vertical solid lines represent the region limits (Hc(1,2,3)).
(c) vC(H ) (•) compared to hard and soft layer domain wall creep
velocities in the absence of coupling, v1(H ) (�) and v2(H ) (◦)
respectively.

critical fields Hc1,2,3 which separate bound and unbound states
[see vertical lines in Figs. 3(a) and 3(b)]: Hc1 ≈ 250 Oe,
Hc2 ≈ 750 Oe, and Hc3 ≈ 1150 Oe.

We first consider the unbound field ranges. In region II,
Hc1 < H < Hc2 of Fig. 3(a), v2(H ) � v1(H ) [see Fig. 2(c)],
so that the soft domain wall leads and the distance (x2 − x1)
between walls is positive and large. The soft wall is so far
ahead of the hard wall that the latter moves under the action of
a positively saturated soft layer. When H > Hc3, the situation
is reversed: v1(H ) � v2(H ) [see Fig. 2(c) again]. The hard
domain wall leads and the soft wall is so far behind it that the
hard wall moves under the action of a negatively saturated soft
layer. A schematic of these regimes is shown in Fig. 4.

While we can compare vC(H ) to v1(H ± H1) to obtain
values for the region limits Hcj (j = 1,2,3), these values can
also be evaluated from the experimentally obtained velocity
data in Fig. 2(c) and the H1,2 values. Before moving on to
analytical and numerical modeling results, we explain how
this is done using a simple graphical method.

In regime II, the walls in each layer move separately with
the soft wall leading. This can be sustained only if

v2(H − H2) > v1(H + H1). (3)
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FIG. 4. This figure shows the different field regimes. In the unbound states (thin, black lines), walls in layer 1 and 2 move at different
speeds, the leading wall at a higher velocity. In the bound states (thick, gray lines), walls move at the same speed. The distance between walls
is therefore constant in the steady state. The leading wall is the wall with the higher velocity, in the absence of coupling.

Therefore, it is straightforward to define the critical fields Hc1

and Hc2 through the equation

v2(H − H2) = v1(H + H1). (4)

This equation can be solved graphically using the data in
Fig. 2(c) to give H sf

c1 ≈ 260 Oe and H sf
c2 ≈ 600 Oe, where

the superscript means that critical field values have been
determined by the single, isolated, film velocities v1,2(H ).
Similarly, in regime IV, the walls are unbound again but with
the hard wall leading. This can be sustained only if

v1(H − H1) > v2(H + H2). (5)

The equation

v2(H + H2) = v3(H − H1) (6)

now has only one solution, which gives the lower limit of
regime IV: H sf

c3 ≈ 1050 Oe. The value H sf
c1 compares quite

well with Hc1, obtained from a visual inspection of the vC(H )
and v1(H ± H1) data above. The bounds H sf

c2,H
sf
c3 of region III

do not compare so well with Hc2,Hc3. We will comment on
that in Sec. IV C.

Having considered regions II and IV, we can now turn to the
remaining regions, regions I and III, which are located around
the crossing fields, H = 0 (region I) and H = H ∗ (region III).
In these field regions, the two walls cannot move separately at
different speeds, because neither Eq. (3) nor Eq. (5) is satisfied.
In the following section we argue that in this case a bound state
arises, for which the common domain wall speed depends on
vi(H ) in a nontrivial way.

IV. NUMERICAL AND ANALYTICAL RESULTS FOR
BOUND STATES

A. One-dimensional model for wall dynamics
and numerical results

In the following we want to introduce a minimal, one-
dimensional model, which can explain the rising of dynami-
cally bound states and gives quantitative expressions for the
common speed of two coupled walls. Each domain wall is
approximated by its average position xi(t), i = 1,2 [Fig. 2(a)].
A total field [H + H̄i(x)] acts on the ith wall. It is the sum
of the external field H and the coupling field H̄i(x), which
depends on the distance x = x2 − x1 between walls. We expect
that the coupling field H̄i is equal to ±Hi , if the two walls
are well separated, with the plus (minus) sign applying for

the trailing (leading) wall. It is useful to make the following
general assumption for the coupling fields:

H̄1(x) = H1f (x), H̄2(x) = −H2f (x), (7)

where f (x) is an unspecified odd function, interpolating
between −1 and +1, as x varies from negative to positive
values. Each wall moves with the velocity vi[H + H̄i(x)]. A
bound state corresponds to motion with

v1[H − H1f (x)] = v2[H + H2f (x)] (8)

for some value x, corresponding to the constant distance
between walls. If Eq. (8) has no solution, it means that the walls
are unbound (and therefore separated) either with the wall in
the hard layer leading [v1(H − H1) > v2(H + H2)] or with the
wall in the soft layer leading [v2(H − H2) > v1(H + H1)].

If we define the ratio α = H2/H1 between coupling fields,
we easily find that the solution x = x0 of Eq. (8),

v1[H − H1f (x0)] = v2[H + αH1f (x0)] (9)

has the form

H1f (x0) = G(H,α) (10)

and the common speed vb(H ) of bound motion is

vb(H ) = v1[H − G(H,α)] = v2[H + αG(H,α)]. (11)

Therefore the specific form of the function f (x) is irrelevant
to determine the velocity of bound motion: the speed depends
only on the external field H and the ratio α between coupling
fields. Different forms of f (x) give different equilibrium
distances x0, but the same common velocity.32

We can now solve Eq. (8) using experimental data for
single wall motion [v1(H ) and v2(H ), Fig. 2(c)]. This way
our theory provides the velocity of the bound states without
free parameters. Results are shown in Fig. 5. Comparison with
experimental data is very satisfying for the low field bound
state regime, with modest quantitative agreement in the high
field bound state regime. In the next Sections we are going
to discuss both regimes in more detail and derive analytical
expressions describing the bound dynamics.

B. The low field bound state regime

In the creep regime, analytical expressions are available for
the wall velocities in the uncoupled case [see Eq. (1)],

v1(H ) = v0
1 exp

[
−

(a1

H

) 1
4

]
(12a)

v2(H ) = v0
2 exp

[
−

(a2

H

) 1
4

]
, (12b)
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FIG. 5. Comparison between experimentally obtained coupled
wall dynamics vC(H ) (•) and the theoretically calculated bound state
velocity vb(H ) (�).

where experimental values for v0
i and ai are given in Table I.

We are now going to prove that, in the limit H → 0, Eq. (8)
has a solution which describes a bound creep motion such that
the common domain wall velocity is given by

vb(H ) = v0
b exp

[
−

(ab

H

) 1
4

]
. (13)

In order to reduce the notation, let us introduce the quantity
c = f (x), which varies in the interval (−1, + 1). We have

TABLE I. Experimental values for the coupling field magnitudes
and parameters for uncoupled domain wall creep dynamics [Eqs. (12)]
as well as bound creep [Eq. (13)].

Coupling field Exponent Prefactor
(Oe) (Oe1/4) ln(m/s)

Hard (1) layer H1 = 120 a
1
4

1 = 225.2 ln v0
1 = 45.3

Soft (2) layer H2 = 220 a
1
4

2 = 40.1 ln v0
2 = 10.8

Bound creep − a
1
4
b ≈ 202 ln v0

b ≈ ln v0
1

to solve Eq. (8), which using Eqs. (12), can be written
as

v0
1 exp[−(a1H − cH1)

1
4 ] = v0

2 exp[−(a2H + cH2)
1
4 ].

(14)

It is clear that walls must move with a positive velocity, if
the external field H is positive. This requires the sign of the
total driving fields H ± cHi to be the same as the sign of H ,
which demands that c vanishes in the limit H → 0. Therefore,
we use a small H expansion

c = c0H + c1H
1+γ , (15)

where the value of γ will be found below, while it is
straightforward that the leading term is linear. In fact, if c

vanishes faster than linearly, the coupling would not have effect
in the limit H → 0 and a bound state would be impossible for
small H . On the other hand, if c vanishes slower than linearly,
H ± cHi cannot both have the same sign as H . In conclusion,
using (15) we can rewrite Eq. (14) as

v0
1 exp

{
−

(
a1

H [1 − H1(c0 + c1Hγ )]

) 1
4

}
= v0

2 exp

{
−

(
a1

H [1 − H1(c0 + c1Hγ )]

) 1
4

}
≡ v0

b exp

[
−

(ab

H

) 1
4

]
, (16)

where we have used the fact that the common speed must have the form (13). Equation (16) can be rewritten as

v0
1 exp

[
−

(
a1

H (1 − c0H1)

) 1
4
(

1 − c1H1

1 − c0H1
Hγ

)−1/4
]

= v0
2 exp

[
−

(
a2

H (1 + c0H2)

) 1
4
(

1 + c1H2

1 + c0H2
Hγ

)−1/4
]

, (17)

which can be approximated, in the limit of vanishing H , as

v0
1 exp

[
−

(
a1

H (1 − c0H1)

) 1
4

(
1 +

1
4c1H1

1 − c0H1
Hγ

)]
= v0

2 exp

[
−

(
a2

H (1 + c0H2)

) 1
4

(
1 −

1
4c1H2

1 + c0H2
Hγ

)]
. (18)

If we take the logarithm of both sides, we get

ln v0
1 −

(
a1

H (1 − c0H1)

) 1
4

(
1 +

1
4c1H1

1 − c0H1
Hγ

)
= ln v0

2 −
(

a2

H (1 + c0H2)

) 1
4

(
1 −

1
4c1H2

1 + c0H2
Hγ

)
≡ ln v0

b −
(ab

H

)1/4
,

(19)
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which is put in the form of Eq. (13).
The equality in Eq. (19) requires, to leading order in H ,

that(
a1

H (1 − c0H1)

) 1
4

=
(

a2

H (1 + c0H2)

) 1
4

≡
(ab

H

)1/4
, (20)

that is to say
a1

1 − c0H1
= a2

1 + c0H2
≡ ab, (21)

which gives

c0 = a2 − a1

a1H2 + a2H1
. (22)

If we replace Eq. (21) in Eq. (19), we get

ln v0
1 −

1
4a

1/4
b c1H1

1 − c0H1
Hγ− 1

4 = ln v0
2 +

1
4a

1/4
b c1H2

1 + c0H2
Hγ − 1

4 ≡ ln v0
b

(23)

which has a solution for c1 only if γ = 1
4 :

c1 =
ln

( v0
1

v0
2

)
1
4a

5/4
b

(
H1
a1

+ H2
a2

) . (24)

Replacing c1 in the left or middle expression of (23), we get

ln v0
b = ln v0

1 − a2c0H1

a2 − a1
ln

(
v0

1

v0
2

)
. (25)

Using experimental values for separated domain wall veloci-
ties (see Table I) we find that a2/a1 � 10−3 and H1 < H2, so
that [see Eq. (22)] c0 ≈ −1/H2. A negative c0 means that walls
move at the same speed as a bound state, with the soft wall
leading (see Fig. 4). This is expected, because in the uncoupled
case, v2(H ) > v1(H ) for small H . Finally, we get

a
1/4
b � 202 Oe1/4, ln v0

b � ln v0
1 . (26)

a
1/4
b is closer to a

1/4
1 than a

1/4
2 as previously noted22 and

seen in Fig. 3(c). Notably, we can substitute the above creep
parameters into Eq. (13) to have a complete analytic expression
for the bound state velocity which compares well to the low
field vC(H ) data below Hc1 [see Fig. 6].

C. High field bound state regime

Let us now consider the high field bound state around
H ∗. In this regime, comparison between the one-dimensional
model and experimental results show only modest agreement.
Even if our theory correctly anticipates the existence of a
bound state regime around H = H ∗, the agreement between
observed (Hc2,3) and predicted (H sf

c2,3) limit field values is not
perfect. Furthermore, the theory [vb(H )] underestimates the
experimental [vC(H )] bound state velocity [vb(H ) < vC(H )]
for Hc2 < H < Hc3. Below, we discuss these details and,
in particular, why the experimental bound state velocity at
H ∗, vC(H ∗) � 24.5 m/s is significantly larger than v1(H ∗) =
v2(H ∗) = v∗ � 18 m/s. In Appendix B we also give an
analytical approximation for the bound state velocity in the
high field regime. Finally, it is worth mentioning that the
constant distance x0 = x2 − x1 between the soft and the hard

FIG. 6. Comparison between experimentally obtained vC(H ) (•)
and analytical bound state velocity (full line) [Eq. (13) using creep
parameters given in Eq. (26)].

walls in the bound regime is positive for H < H ∗ and negative
for H > H ∗ (see Fig. 4), because the leading wall in the bound
regime is the wall with the highest speed in the absence of
coupling.

Now, let us discuss the disagreement between our theory
and experimental results in the high field bound regime. There
are three main possibilities to explain this: (1) our coupling
model is inadequate, (2) the data used for v2(H ) is not
representative of the true v2(H ) in this system, or (3) the use
of the experimental v1,2(H ) data is not valid for the high field
limit.

(1) In Appendix A we discuss two modifications to the
coupling: a dipolar coupling [additional g(x) term in Eqs. (7):
see Eqs. (A1)] due to strong stray fields at the domain
edges33 and the use of differing f1(x) and f2(x) functions
in Eqs. (7) [see Eqs. (A2)]. However, both modifications still
lead to vb(H ∗) = v∗. Furthermore, since the low field bound
regime is well reproduced using only the exchange field, it is
questionable to make Eqs. (7) more complicated. One might
also consider the case in which f (x) is not continuous. For
example, we might have a step function f (x) = −1 for x < 0
and f (x) = +1 for x > 0. This implies that the bound state
is not characterized by a constant distance between walls,
but by a continuous interchange between the walls. However,
this neither solves the issue surrounding vb(H ∗) �= v∗, nor the
discrepancy between Hc2,3 and H sf

c2,3.
(2) As explained earlier, v2(H ) was not measured in this

multilayer but rather in a similar one with an equivalent Co(0.5
nm) layer. Using this data, we see that in the vicinity of H ∗,
walls in layer 2 exhibit flow motion wherein v2 = mH with
m ≈ 0.022 ms−1 Oe−1. There can be some sample to sample
variability however and previous measurements on a single
layer Pt/Co(0.5 nm)/Pt film3 yielded m ≈ 0.027 ms−1 Oe−1.
Using this m value to model dynamics in layer 2 for the
purpose of determining vb(H ) at high field changes H ∗, which
is now equal to H ∗ = 910 Oe. The new m value improves the
consistency between our calculated H sf

c2 and H sf
c3 values (700

and 1070 Oe, respectively) as compared to the experimental
values Hc2 and Hc3 (750 and 1150 Oe, respectively). However,
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the newly calculated value of v∗
b (24.5 m/s) remains too low

with respect to the experimental value vC(H ∗ = 910 Oe) �
29 m/s.34 Note that the film measured in Ref. 3 also had a
slightly lower a1/4 value (35.1) as compared to a

1/4
2 (40.1, see

Table I), however this has little effect on the predicted bound
dynamics since they are dominated by the larger a

1/4
1 value.

(3) Finally, our approach, which works well at low field,
may not actually be appropriate at high field where wall
dynamics are intrinsically different. At low field, wall motion
is thermally activated over field-dependent energy barriers.
In contrast, at high field, wall motion is, to a large extent,
determined by the internal structure of the wall (and associ-
ated internal dynamics)35,36 which can actually be modified
by interlayer coupling.37 As such, experimentally obtained,
isolated single wall velocities v1(H ) and v2(H ) may not be
the appropriate building blocks to be combined to calculate
vb(H ), as we did in Eq. (11).

V. CONCLUSION

Exchange coupled Pt/Co layers represent an ideal model
experimental system in which to study the interesting problem
of coupled interfaces moving through physically separate,
but coupled, media. Here we have detailed the principles
behind this system and presented both numerical and analytical
models of bound domain wall motion which compare well with
experiment.22 Most notably, we derive an analytical model
with no free parameters which describes bound creep. While
we have concentrated on a one-dimensional model we hope
our results will inspire others to apply micromagnetic37,38 or
interface models10,39 to this problem.
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APPENDIX A: ADDITIONAL AND MODIFIED COUPLING

A more general expression of Eqs. (7) which includes
dipolar interactions might be

H̄1 = H1f (x) + D1g(x) H̄2 = −H2f (x) − D2g(x), (A1)

where g(x) = ln[(d2 + x2)/d2] accounts for dipolar coupling,
d = 3 nm being the separation between the hard and the soft
layer. A simple calculation33 can show that in the vicinity
of the domain walls, dipolar fields can potentially be larger
than H1,2. However, as discussed in Sec. IV C, the good
agreement between theoretical and experimental results at low
field suggests that it is H1,2 which determine the bound state’s
stability.

An alternative generalization of Eqs. (7) is to make f (x)
different for the two films,

H̄1 = H1f1(x), H̄2 = −H2f2(x). (A2)

This might mean, for example, writing

fi(x) = tanh

(
x

�i

)
, (A3)

with �1 �= �2, as is expected for layers with differing
thicknesses.3

However, both of these approaches yield vb(H ∗) = v∗ since
g(0) = 0 and f1(0) = f2(0) = 0.

APPENDIX B: ANALYTICAL APPROXIMATION FOR THE
HIGH FIELD BOUND STATE

In the high field regime, the walls are no longer in the creep
regime and Eqs. (12) cannot be used. Instead, we can assume
a simple linear approximation1,3 in the proximity of H = H ∗,

vi(H ) = v∗ + āi(H − H ∗), (B1)

where v∗ = vi(H ∗) and āi ≡ dvi/dH |H=H ∗ . It can be easily
shown that the solution x = x0 of Eq. (8) satisfies the relation

f (x0) = − (ā1 − ā2)(H − H ∗)

ā1H1 + ā2H2
, (B2)

so that

vb(H ) = v∗ + āb(H − H ∗) (B3)

with

āb = ā1ā2(H1 + H2)

ā1H1 + ā2H2
. (B4)

Therefore, in the proximity of H = H ∗, the common speed
in the high field bound regime is linear, with a slope āb which
is in between ā1 and ā2:

ā2 < āb < ā1. (B5)

Using the fitting values ā1 � 0.025 and ā2 � 0.12, we find
āb � 0.035, so that

vb(H ) � 18 + 0.035(H − 850), (B6)

with H expressed in Oersted and the speed in meters per
second.
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and J. F. Scott, Phys. Rev. Lett. 100, 027602 (2008).

7A. S. Balankin, A. Bravo-Ortega, and D. M. Matamoros, Philos.
Mag. Lett. 80, 503 (2000).

8G. Blatter, M. V. Feigel’man, V. B. Geshkenbien, A. I. Larkin, and
V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

9P. Chauve, T. Giamarchi, and P. Le Doussal, Phys. Rev. B 62, 6241
(2000).

10A. B. Kolton, A. Rosso, T. Giamarchi, and W. Krauth, Phys. Rev.
B 79, 184207 (2009).

11D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54, 2708 (1985).
12D. A. Huse, C. L. Henley, and D. S. Fisher, Phys. Rev. Lett. 55,

2924 (1985).
13M. Kardar, Phys. Rev. Lett. 55, 2923 (1985).
14A. L. Barabasi and H. E. Stanley, Fractal Concepts in Surface

Growth (Cambridge University Press, Cambridge, 1995).
15L. Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac, and

D. Weller, Nature (London) 410, 444 (2001).
16A. L. Barabási, Phys. Rev. A 46, R2977 (1992).
17S. N. Majumdar and D. Das, Phys. Rev. E 71, 036129 (2005).
18J. Juntunen, O. Pulkkinen, and J. Merikoski, Phys. Rev. E 76,

041607 (2007).
19J. Juntunen and J. Merikoski, J. Phys. Condens. Matter 22, 465402

(2010).
20M. Bauer, A. Mougin, J. P. Jamet, V. Repain, J. Ferré, R. L. Stamps,
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