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Magnetoelectric transitions of a distorted triangular-lattice antiferromagnet in a magnetic field
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Large-scale Monte Carlo simulations are performed to analyze magnetoelectric transitions of a spin-lattice
model in a magnetic field. The model explains well an experimental field-temperature phase diagram of RbCoBr3.
The magnetic structure in each phase is determined. Simultaneous magnetoelectric transitions observed in the
zero-field case are found to occur only in the low-field region, whereas magnetic transitions and electric transitions
are decoupled in the high-field region. When the spin-lattice correlation is weak, an asymmetric ferrimagnetic
state and a half-ferrimagnetic state appear. The former is the intermediate state between the partial-disordered
state and the ferrimagnetic state. The latter phase is characterized by a sublattice order parameter with a ↑

2 - ↑
2 -↓

ordering pattern.
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I. INTRODUCTION

Frustration is an important key word in recent developments
of magnetic materials.1 Ordinary magnetic order is destroyed
by frustration and new exotic states may appear. The ground
state of a frustrated system is usually unstable against small
perturbations, and such magnetic systems sometimes couple
to other degrees of freedom to relax frustration. The interplay
between magnetism and electricity in so-called magnetoelec-
tric (ME) multiferroic materials is a typical example and is
heavily investigated nowadays.2 A main concern of this paper
is also the ME effect found in ABX3-type antiferromagnets.

ABX3-type antiferromagnets are typical frustrated mag-
nets. Let us restrict our attention to Ising antiferromagnets,
in which the magnetic ions are located on triangular-lattice
planes, which are stacked in the c-axis direction. There
have been many investigations both experimentally3–7 and
theoretically.8–15 These compounds are characterized by spin
frustration and a quasi-one-dimensionality. Frustration is
caused by antiferromagnetic interactions on the triangular
lattice. Exchange interactions along the c axis are larger than
those on the triangular-lattice plane, so the correlation length
along the c axis becomes very long.

In the absence of a magnetic field, successive magnetic
phase transitions occur. The low-temperature magnetic struc-
ture is the ferrimagnetic state. There exists a partial-disordered
(PD) phase between the paramagnetic phase and the ferri-
magnetic phase. In the PD phase, one of three sublattices is
completely disordered, while the other two sublattices take
antiferromagnetic configurations.

The KNiCl3 family of compounds are regarded as dis-
torted triangular-lattice antiferromagnets.16–18 They exhibit
structural phase transitions as well as magnetic phase tran-
sitions. Because each BX3 chain has a negative charge, these
compounds have both magnetic and electric character. The
magnetic phase transitions and the electric phase transitions
usually occur at different temperatures.

Morishita and co-workers19,20 found that the magnetic
transition and the electric transition occur at the same temper-
ature in RbCoBr3. This simultaneous ME transition is a very
rare finding in ABX3 compounds. The real and imaginary
parts of the dielectric constant show an anomaly at 37 K,
where the magnetic phase transition is observed by neutron

experiments.21–23 These magnetic and electric measurements
revealed that the phase transitions in RbCoBr3 are quite
unusual among the KNiCl3 family of compounds. The electric
transition temperature is 37 K, which is very low compared
to that of other compounds. The transition usually takes place
around room temperature. The magnetic PD phase appears
in a much narrower temperature region. The growth of the
ferrimagnetic order is very slow. These unusual characteristics
are well understood by considering the frustrated spin-lattice
model proposed by Shirahata and Nakamura.24 Nishiwaki and
Todoroki25 discussed the appearance of the three-sublattice
(asymmetric) ferrielectric state using the mean-field approxi-
mation. Nakamura and Nishiwaki26 modified the spin-lattice
model and explained the experimental results quantitatively
by Monte Carlo (MC) simulations.

Recently, Nishiwaki et al.27 reported a high-field mag-
netization experiment on this compound. They obtained a
field-temperature (H -T ) phase diagram from a small dM/dH

anomaly in the magnetization process. As the applied mag-
netic field decreases, the transition temperatures approach
two successive transition temperatures at zero field. The
experimental results suggest that successive phase transitions
occur even in a magnetic field. However, it is not yet
accepted whether the small dM/dH anomaly observed in the
experiment corresponds to the real phase transition. Motivated
by the experimental results explained above, we perform MC
simulations on the spin-lattice model in a uniform magnetic
field. Our aim is to clarify whether or not successive ME
transitions occur. We investigate the possibility of controlling
the transitions with a magnetic field. Another aim is to
determine the magnetic structure of each ordered phase. It
is not yet known experimentally whether or not the PD state
exists in a magnetic field.

The present paper is organized as follows. We explain
our model Hamiltonian in Sec. II. Our numerical method is
explained in Sec. III, and the results are presented in Sec. IV.
A discussion is presented in Sec. V.

II. SPIN-LATTICE MODEL

We use the theoretical model proposed in a previous
paper.26 This is a phenomenological model that explains the
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experimental results of RbCoBr3. Our aim is to understand
the ME effects of this compound as simply as possible. There
is no microscopic derivation of the model, and we neglect
long-range interactions of electric dipoles and quantum effects.
The former are very important in electric systems and the latter
are important at low temperatures. Therefore, this model partly
succeeds in explaining the experiment quantitatively but partly
fails owing to a lack of microscopic accountability to the real
compound.

Let us briefly explain the model here. Consider a stacked
triangular lattice with an Ising spin variable Sij = ±1/2 and a
lattice variable σij = ±1/2 at each site. Here, the subscript i

denotes the position in the c axis, and j denotes the position on
the ab plane. We neglect the transverse spin components, Sx

and Sy , for simplicity, although these may be important at low
temperatures, where quantum fluctuations become relevant.
The lattice variable σij denotes the displacement from the
symmetric lattice point along the c axis. Each ion is considered
to shift either upward (σij = 1/2) or downward (σij = −1/2).

The Hamiltonian consists of the lattice part HL and the spin
part HS, written as H = HL + HS, where

HL = −2J L
c

∑
i,j

σij σ(i+1)j − 2J L
1

∑
i

n.n.∑
〈jk〉

σijσik

− 2J L
2

∑
i

n.n.n.∑
〈jk〉

σijσik, (1)

HS = −2J S
c

∑
i,j

Sij S(i+1)j

− 2J S
1

∑
i

n.n.∑
〈jk〉

(1 − �(σij − σik)2)SijSik

− 2J S
2

∑
i

n.n.n.∑
〈jk〉

(1 − �(σij − σik)2)SijSik

− gμBH
∑
i,j

Si,j . (2)

Here, H denotes a uniform magnetic field. Each subscript (c,
1, 2) denotes a direction of the interaction: c denoting along
the c axis, 1 denoting nearest-neighbor (nn) pairs on the ab

plane, and 2 denoting next-nearest-neighbor (nnn) pairs on the
ab plane. The lattice part is a realization of the elastic energy,
(σij − σi ′j ′ )2, and J L

(c,1,2) is the spring constant.
The nn spin-spin interaction is antiferromagnetic (J S

1 < 0)
and the nnn interaction is ferromagnetic (J S

2 > 0) to realize
the ferrimagnetic ground state. Interactions along the c axis
are antiferromagnetic (J S

c < 0), and the magnitudes are set
as |J S

c | � |J S
1 |,|J S

2 | because of the quasi-one-dimensionality.
Spins along the c-axis order antiferromagnetically first. The
uniform magnetization vanishes in the ground state. When we
apply a uniform magnetic field to this system, a local magneti-
zation is induced in a region where the antiferromagnetic order
is broken. The sign of J L

c is positive (ferroelectric) and those
of J L

1 and J L
2 are set negative (antiferroelectric). Therefore,

there is frustration in the lattice system as in the spin system.
Assumptions of the lattice system are consistent with exclusion
volume effects.

(a) (b)

FIG. 1. (Color online) Relaxation of frustration by the lattice
distortion. Filled red circles depict c chains shifting upward. Filled
blue circles depict c chains shifting downward. Open circles depict c

chains not shifting. Thin (thick) lines depict weak (strong) magnetic
interactions. (a) When the lattice is deformed to a lattice-ferri (↑-↑-↓)
configuration, the spin-PD state is favored. (b) When the lattice is
deformed to a lattice-PD (↑-↓-0) configuration, the spin-ferri state is
favored.

We suppose that the spin-spin exchange interactions depend
on the lattice variables in this model. The magnetic interaction
becomes weak if the exchange path is distorted. A parameter
� is defined as the ratio of the distortion effect. When lattice
distortion occurs, the magnetic interaction is reduced by (1 −
�). The lattice system influences the spin system only by this
term. Therefore, it serves as a spin-lattice coupling. We use the
same value of � for J S

1 and J S
2 for simplicity. The exchange

path along the c axis is rigid against ion shift and hence we
assume J S

c to be unaffected.
The spin-lattice coupling produces the following stable

ordering patterns as discussed earlier by Plumer et al.28

for static lattice distortion. When the lattice takes a ↑-↑-↓
configuration, the PD state of the spin system is favored, as
shown in Fig. 1(a). We call the lattice ↑-↑-↓ configuration
“lattice ferri,” and the PD state of the spin system “spin PD,”
in this paper. In contrast, when the lattice system takes a ↑-↓-0
configuration, the ferrimagnetic spin state is favored, as shown
in Fig. 1(b). We call the lattice ↑-↑-0 configuration “lattice
PD,” and the ferrimagnetic state of the spin system “spin ferri,”
in this paper.

III. MONTE CARLO METHOD

Spin states and lattice states are updated separately and
alternatively in the present simulations. When a spin state or a
lattice state is updated, the molecular fields from the interacting
spin and lattice states are calculated. We apply both the axial-
cluster-flip algorithm29,30 and the single-spin-flip algorithm.
When all the spin states and the lattice states are updated, we
count one MC step. Our cluster-flip algorithm solves for the
slowdown that is caused by the long correlation length along
the c axis. Therefore, the MC step needed to equilibrate the
system depends little on the temperature or the magnetic field
except in the very vicinity of the transition temperature.

An axial-cluster-flip algorithm29,30 is an application of the
cluster-flip algorithm31–36 of the quantum MC method. The c

axis in our model is regarded as the Trotter axis in the quantum
MC method. A distinct difference from the original cluster-flip
algorithms is that a cluster is only defined along one c axis at
one spin site on the ab plane. We do not connect spins on the
ab plane.
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The present cluster algorithm works well when no magnetic
field is applied.26 However, we have to modify the algorithm
and use the single-spin-flip algorithm together at the same
time in simulations with a magnetic field. The nn magnetic
interactions along the c axis, Jc, are antiferromagnetic in our
model. We transform them to ferromagnetic ones by rotating
every other spin direction by 180◦. A uniform magnetic field
becomes a staggered magnetic field after this transformation.
In this situation, whether a cluster length is an even or an odd
number is important. When it is even, the magnetic field term
in the Hamiltonian vanishes. This term only remains when the
cluster length is an odd number. Therefore, we cannot make
the c axis continuous as in the original cluster-flip algorithm;
it must remain an integer. To determine a discrete cluster
length, we first generate an exponential random number as
in the continuous imaginary-time cluster-flip algorithm.32,36

The mean value of a random number is the correlation length
along the c axis, ξc. Then we convert the random number to an
integer and set it to a cluster length. Since the one-dimensional
Ising spin model is solved exactly, we use an exact expression
for ξc written as

ξ−1
c = ln

⎛
⎜⎜⎜⎝

(
cosh(βH ) +

√
sinh2(βH ) + exp[4βJ S

c ]

)2

exp[4βJ S
c ] − 1

⎞
⎟⎟⎟⎠ ,

(3)
where β is the inverse temperature. It is noted from this
expression that the correlation length does not depend on the
direction of the magnetic field. If we apply this cluster flip
alone, spin states with field +H and spin states with field −H

are mixed. The net magnetization always becomes 0 in this
case. Therefore, a single-spin-flip algorithm is also applied
after the cluster flip to select spin states that are relevant to the
direction of the magnetic field. A mixture of spin states with
different magnetic directions accelerates the MC dynamics
with the fields.37

We observe in the present MC simulations the following
physical quantities: the sublattice order parameters, 1/3-
structure factors, 1-structure factors, and the uniform magnetic
susceptibility. The sublattice order parameters for the lattice
part, mL

η , and the spin part, mS
η , are defined as

mL
η = 1

Nsub

∑
i

∑
j∈η

σij , (4)

mS
η = 1

Nsub

∑
i

(−1)i
∑
j∈η

Sij , (5)

where η = 1,2,3 denote one of three sublattices in the
triangular lattice, and Nsub ≡ N/3. Note that we need the (−1)i

phase factor owing to the antiferromagnetic order along the c

axis. The structure factors are defined by the sublattice order
parameters as

(
f L

1/3

)2 = 1

8

〈 ∑
η=1,2,3

(
mL

η − mL
η+1

)2

〉
, (6)

(
f S

1/3

)2 = 1

8

〈 ∑
η=1,2,3

(
mS

η − mS
η+1

)2

〉
, (7)

(
f L

1

)2 = 〈(
mL

1 + mL
2 + mL

3

)2〉
, (8)(

f S
1

)2 = 〈(
mS

1 + mS
2 + mS

3

)2〉
. (9)

Detailed simulation procedures are the same as in our
previous paper.26 We use the mixed phase initialization,38–40

where we prepare several initial spin-lattice states and spatially
mix them. It is a standard initialization method when a
first-order transition occurs. A typical number of initialization
MC steps is 10 000. The total number of MC steps is set to more
than 30 000 near the transition temperature. We performed
mostly from 10 to 50 independent MC runs and took the
average over these runs. The linear size of the system on the
ab plane is L = 59, and that along the c axis, Lc, is a multiple
of 4 that is closest to 59ξc. The total number of spins is roughly
593ξc, and there are on average 593 correlated clusters in this
system. As a typical example in the H -T phase diagram, when
H = 15 T and T = 25 K, the correlation length is ξc = 27.6
and the c-direction lattice size is Lc = 1632. The total spin
number is 5.8 million in this case. It exceeds 38 million at the
lowest temperature at which the simulation is performed. We
may consider the system size to be sufficiently large. Our aim
is not to accurately calculate the phase transition temperatures
but to compare them to the experimental data and to determine
the magnetic structures. Therefore, it is sufficient to use the
raw simulation data in our analyses without any finite-size
scaling.

The physical parameters in our spin-lattice Hamiltonian
were estimated in our previous paper26 as J S

c = −97 K,
J S

1 = −2.4 K, J S
2 = 0.14 K, J L

c = 73 K, J L
1 = −49 K, J L

2 =
0.38 K, and � = 0.20. However, a mean-field-like approxi-
mation was applied in that simulation. For an update of a spin
(lattice) state, the interacting lattice (spin) states were replaced
with a mean value along the c axis. This approximation
might influence the numerical estimates of physical parameters
and the phase transition properties. We do not apply this
approximation in the present simulations. Therefore, we first
check the physical parameters by comparing the numerical
results to the experimental results when the magnetic field is
not applied. The results are shown in Fig. 2, which presents
the neutron experimental data and the magnetic susceptibility
data. The MC data reproduce the experimental results very
well. The parameters are determined as

J S
c = −95 K, J S

1 = −3.0 K, J S
2 = 0.13 K,

J L
c = 74 K, J L

1 = −50 K, J L
2 = 0.21 K,

� = 0.20. (10)

These parameters are consistent with the previous estimates.
We use the parameters of Eq. (10) in all simulations in this
paper.

IV. RESULTS

A. Successive phase transitions in the low-field region

In this section we examine successive phase transitions
and spin-lattice ordering patterns when the magnetic field is
weak. Particularly, we focus on the issue of whether or not a
small magnetic field affects the ordering patterns and the phase
transitions. When a magnetic field is not applied, there are five
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FIG. 2. (Color online) (a) MC data on the structure factor compared with neutron experimental data.23 MC data are multiplied to coincide
with experimental data. (b) MC data on the uniform magnetic susceptibility compared with experimental data.22 Amplitudes of the simulation
data and a constant contribution from the nonmagnetic impurity are determined so that the maximum value and the minimum value agree with
the experimental data.

different spin-lattice ordering patterns, which are divided by
two spin transitions and two lattice transitions.26 We apply a
5-T magnetic field and observe the sublattice order parameters.
The result is compared to the zero-field result, as shown in
Fig. 3. Let us first explain the zero-field case.

The first magnetic transition occurs at 37 K, which is usually
referred to as TN1. The sublattice order parameters jump to
small finite values. Then they continuously increase as the

temperature decreases. As shown in Fig. 3(c), no algebraic
relaxation is observed in the nonequilibrium process of our MC
simulations. Relaxation functions on the high-temperature side
exhibit exponential decays and those on the low-temperature
side exhibit convergences, indicating a first-order transition.41

The second transition, at 36 K, is a simultaneous, first-order
spin-lattice transition. Spin and lattice systems are strongly
correlated and assist each other in changing their states.

-1

-0.5

 0

 0.5

 1

 15  20  25  30  35  40

S
ub

la
tti

ce
 o

rd
er

 p
ar

am
et

er

Temperature [K]

Spin-Ferri
Lattice-Ferri

(a) 0T

Spin-Ferri
Lattice-PD

Spin-PD
Lattice-Ferri

Spin-1/2Ferri
Lattice-PD

Spin-Para
Lattice-PD

m1S
m2S
m3S
m1L
m2L
m3L

-1

-0.5

 0

 0.5

 1

 15  20  25  30  35  40

S
ub

la
tti

ce
 o

rd
er

 p
ar

am
et

er

Temperature [K]

intermediate
  phase

(b) 5T
m1S
m2S
m3S
m1L
m2L
m3L

10-3

10-2

10-1

102 103 104

m
1S

t

(c)  0T

T=37.00
37.20
37.30
37.40
37.45
37.50
37.60

FIG. 3. (Color online) Sublattice profiles of spin variables and lattice variables. (a) Zero-field case: H = 0 T. (b) Small-field case: H = 5 T.
The amplitude is normalized to unity when the sublattice order is perfect. Data for each sublattice, 1, 2, and 3, are plotted with squares, circles,
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FIG. 4. (Color online) Sublattice profiles of spin-lattice variables for applied magnetic fields of (a) H = 16 T, (b) H = 26 T, and
(c) H = 42 T. The amplitude is normalized to unity when the sublattice order is perfect. Data for each sublattice are plotted with squares,
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The ground state of the lattice system appears below this
temperature. Therefore, the transition is mainly driven by the
lattice degrees of freedom. The spin-PD state appears because
it is favored by both spin-lattice coupling and the entropy
effects of the spin system.

The third transition, at 29.6 K, is usually referred to as TN2. It
is also a simultaneous, first-order spin-lattice transition. This
transition is mainly driven by the spin degrees of freedom
because the ground state of the spin system (spin-ferri state) is
realized on the low-temperature side. The lattice system gives
up to take its ground-state configuration.

The fourth transition, at 23 K, is driven by the lattice degrees
of freedom. The lattice system takes an asymmetric ferri-
electric state in the low-temperature region. The space group
changes from P 3̄c1 to P 3c1. An asymmetric ferrimagnetic
state also appears in the spin system. These asymmetric spin-
lattice states recover symmetry as the temperature decreases.
The ground state of the whole spin-lattice system is realized
below 15 K, and it is a perfect ferrimagnetic and ferrielectric
state.

A new finding in the zero-field case is the appearance of
a “half-ferrimagnetic state” below TN1. Magnitudes of the
up-spin states are one-half the magnitudes of the down-spin
states, as represented by ↑

2 -↑
2 -↓. The summation of the three

sublattice order parameters vanishes, an outcome of the spin-
lattice coupling. The spin-PD (↑-0-↓) state usually appears
below this transition temperature, because it is favored by
entropy effects of the spin system. In contrast, the lattice
system [lattice-PD(↑-↓-0) state] favors the spin-ferri (↑-↑-
↓) state through the spin-lattice coupling energy. The half-
ferrimagnetic state appears as a compromise between these

two states. Since the summation of the spin sublattice order
parameters vanishes, the neutron experiment alone cannot
distinguish the half-ferrimagnetic state from the PD state.
Another experiment that can detect the inner molecular field is
needed.

When a magnetic field is applied, temperature dependencies
of the order parameters mostly agree with those of the zero-
field case, with the exception of the third phase transition. The
transition temperature shifts to the low-temperature side, and
an intermediate ordering pattern appears. The order parameters
continuously change in this phase. Since the third transition
is mainly driven by the spin degrees of freedom, the magnetic
field is relevant to changing the nature of the phase transition,
effectively weakening the spin-lattice correlation.

B. H-T phase diagram

We examine temperature dependencies of the sublattice
order parameters up to a high-field region and determine
the spin-lattice transition temperatures. Typical examples
are shown in Fig. 4. As the magnetic field increases, the
spin-lattice correlation becomes weaker. The spin transition
and the lattice transition occur independently in the high-field
region.

We summarize the results and plot a phase diagram in
Fig. 5. The g value is set to 5.2 to fit the MC phase
boundary to the experimental results. The simulation results
of the spin-driven transition temperatures are consistent with
the experimental results. This consistency continues until
the temperature reaches 20 K. Clearly the small dM/dH

anomaly observed in the magnetization process experiment
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Circles depict spin-driven transition points, and lines depict lattice-
driven transition points. A spin-lattice ordering pattern in each phase
is also denoted.

signals the magnetic phase transition, a conclusion also verified
by the fact that the spin-driven transition temperature strongly
depends on the field. However, the lattice-driven transition
temperatures are rather robust, depending on the magnetic
field only when the simultaneous spin-lattice transition occurs
in the low-field region.

We compare the MC results with the experimental results
in the phase diagram (Fig. 5). At lower temperatures, the
spin-PD state is stabilized in a wider region in the real
compound. The present theoretical model is only valid when
the temperature is higher than 20 K. We have neglected
the Sx and Sy components of the magnetic spins. These
quantum fluctuations may destabilize the ferrimagnetic state
and stabilize the spin-PD state. Dielectric measurements22

have also revealed that another structural transition occurs at
9 K. The real compound at low temperatures may be beyond
the valid range of our model.

The spin-PD phase and the half-ferrimagnetic phase clearly
exist in a magnetic field. The half-ferrimagnetic state becomes
unstable in the high-field region. It disappears when H � 20 T.
This is the magnetic field at which the first spin-driven
transition temperature [filled (red) circles in Fig. 5] coincide
with the lattice-driven transition temperature [dotted (blue)
line in Fig. 5]. Both transitions occur simultaneously in the
field range of 20 � H < 30 T.

C. Magnetization process and the structure factor

Let us consider other physical observables in the magnetic
field in this section. First, we compare our magnetization
process results with the experimental results27 as shown in
Fig. 6. Figure 6(a) shows the raw magnetization data, and
Fig. 6(b) shows the numerical differentials. An impurity effect
(Van Vleck term) is estimated from the slope in the low-field
region. The plotted MC results include this term. The g value
is set as g = 5.2, which is the same as estimated when we draw
the phase diagram. Consistency between the experimental data
and the MC data is excellent for the data at 34 and 20 K.
The present model can explain the experimental results when
T � 20 K. We can observe a small anomaly of dM/dH in the
MC data, which is consistent with the experimental one. An
experimental phase boundary between the paramagnetic phase
and the PD phase (TN1) can be determined by this anomaly.
Nishiwaki et al.27 also reported that a phase boundary between
the PD phase and the ferrimagnetic phase can be determined
by a small shoulder-like anomaly of dM/dH . However, we
cannot observe such a small anomaly within our magnetic field
resolution. Consistency between MC results and experimental
results becomes poor at T = 10 K, and the raw magnetization
data and the numerical differentiation do not agree with
each other. The discrepancy is already exhibited at the phase
boundary in Fig. 5. The spin-PD state is stabilized in a wider
range in real RbCoBr3 experiments. The discrepancy suggests
that the theoretical model needs an additional fluctuation term
to explain the low-temperature behavior.

Figure 7(a) shows the temperature dependence of the
structure factors in a magnetic field. This is a theoretical
prediction for the neutron experiments. The low-field data
(H = 5 T) are consistent with the zero-field results. There
are two characteristic behaviors in the low-field (and also
the zero-field) data: one is a small jump of f(1,1,1) near
30 K, and the other is a slow increase in f(1,1,1) below 30 K
that is almost linear with temperature. The small jump is
caused by a sharp first-order transition from the spin-PD
state to the symmetric spin-ferri state. The lattice system
also changes state from the lattice-ferri state to the lattice-
PD state. This sharp first-order transition occurs because a
strong spin-lattice correlation assists in promoting a sudden
and simultaneous configuration change. These characteristic
behaviors disappear in the high-field region, where the spin
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and the lattice are decoupled. The first-order transition is
weak in this situation. The asymmetric ferrimagnetic state
becomes the low-temperature state as shown in Fig. 4. Only
the 0 sublattice of the PD (↑-↓-0) state changes the state
from disorder to a small order. As the temperature decreases,
this order grows continuously and saturates to the full order.
Therefore, the jump behavior disappears and the structure
factor shows an upward bending (nonlinear) behavior with
temperature. The temperature dependencies of the structure
factors in the high-field region resemble those of CsCoCl3,
where the lattice system does not couple with the spin
system.

Figure 7(b) shows the MC results of the spontaneous
polarization compared with the experimental results.22 The
experimental data in the zero field exhibit a maximum at 32 K
and a minimum at 23 K. A decrease in the polarization below
T = 32 K is an unusual behavior, because the ground state
is the polarized state. This re-entrant behavior corresponds to
the low-field MC results, which exhibit a sudden vanishing at
T = 30 K and a sudden appearance at T = 23 K. Although
the quantitative consistency is poor, we may speculate from
our MC results that the decreasing polarization below T =
32 K can be explained by the simultaneous spin-lattice
transition from the lattice-ferri state to the lattice-PD state.
The increasing polarization below 23 K can be explained
by the spin-lattice transition from the lattice-PD state to the
lattice-ferri state.

The present model is too simple for the lattice degrees
of freedom. The experimental polarization data are partly
contributed by Rb ions that are not taken into account in
our model. However, the most characteristic temperature
dependence of the polarization is observed in our simulations.
If we consider that the present model can represent the most
essential part of the lattice system in RbCoBr3, we can also
speculate that the polarization can be enhanced by applying
a magnetic field in the intermediate temperature region, 20 �
T � 30. The arrow in Fig. 7(b) depicts this enhancement.
When the magnetic field is larger than 16 T, the decrease
in polarization disappears. The magnetic field decouples the
spin system from the lattice system. The electric polarization,
which has been suppressed by the spin-ferri order, is now free
to take a finite order, leading to a positive ME correlation. An
experimental check for this speculation is strongly desired.

V. DISCUSSION

The successive phase transitions of the spin-lattice system
under a magnetic field are studied in connection to the
experimental results on RbCoBr3. When the magnetic field is
weak, there are four successive transitions at low temperatures.
The first spin transition [filled (red) circles in Fig. 5] occurs
singly; it is not accompanied by a lattice transition. The
other three transitions are simultaneous spin-lattice transitions.
Only the spin-driven transition temperature [open (green)
circles in Fig. 5] strongly depends on the magnetic field. The
lattice-driven transition temperature is robust against the field.
We may speculate that in the real ME system the transition may
be driven by the electric degrees of freedom if the magnetic
phase boundary does not depend on the magnetic field. As the
magnetic field increases, the spin-lattice correlation becomes
weaker. Both systems are finally decoupled in the high-
field region. The magnetic field lowers only the spin-driven
transition temperature. If the spin transition occurs at very low
temperatures, the lattice order is already rigid. There is no
room to change the lattice state cooperatively with the spin
system. This is the scenario for spin-lattice decoupling by a
magnetic field.

All phase transitions discussed in the phase diagram are
first-order phase transitions. No algebraic relaxation is ob-
served in the nonequilibrium process of the MC simulations, as
shown in Fig. 3(c). Since the spin system and the lattice system
are connected by the spin-lattice coupling �, we must consider
this spin-lattice system as one system with six sublattices.
Even when the spin system is disordered, the lattice system
has a finite order. This state is regarded as the PD state in the
whole spin-lattice system. The first magnetic transition [filled
(red) circles in Fig. 5] is the first-order transition of this type.
Note that this transition is the second-order one if there is no
spin-lattice coupling. A small spin-lattice coupling makes the
first-order phase transition. The change in the sublattice order
parameter is not sharp, with the order continuously growing
as the temperature decreases. An asymmetric ferrielectric or
ferrimagnetic state appears at low temperatures. Although the
existence of the asymmetric ferrimagnetic state was predicted
by the mean-field theory,8,25 whether this state is just an artifact
of the theory has not been clarified. The present simulations
make it clear that the asymmetric state exists and continuously
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changes to the symmetric state without any phase transition.
The temperature dependence of the f(1,1,1) structure factor
shows an upward bending in this case, consistent with the
experimental results of CsCoCl3, which is a typical ABX3

Ising antiferromagnet. Therefore, we may speculate that the
low-temperature magnetic ordered state in real compounds is
the asymmetric ferrimagnetic state. It becomes the symmetric
ferrimagnetic state when the f(1,1,1) structure factor saturates
at low temperature.

In the low-field region we found a half-ferrimagnetic state,
which is the product of a compromise between the spin-PD
state and the spin-ferri state. The half value of the sublattice
order parameter is uniformly distributed within the ab plane;
it is not a summation of the spin-PD cluster and the spin-ferri

cluster separated by the domain wall. The half-ferrimagnetic
state has not been predicted in the spin-only system and it
appears with the help of the lattice system. This state may be a
sign of spin-lattice coupling. Experiments that can detect the
internal field distribution, such as μ-SR, are expected to check
this theoretical prediction.
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