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Role of quadratic terms in the Heisenberg model for quantum spin dynamics
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The dynamics of the expectation value of a spin operator Ŝn in the quantum mechanical Heisenberg model has
been compared with the trajectory of the corresponding classical spin Sn. A Hamilton operator Ĥ linear in the
spin operator Ŝn shows a perfect agreement between quantum mechanical and classical trajectories. Quadratic
or higher-order terms in the Hamilton operator lead to disagreement. The corresponding correction term can be
found for different physical descriptions and methods dealing with the quantum mechanical Heisenberg model.
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I. INTRODUCTION

Micromagnetic simulations are a common tool to in-
vestigate, e.g., the dynamics of domain walls1–3 or the
reversal mechanism of a magnetic nanoparticle.4,5 While
magnetism is a pure quantum mechanical phenomenon
that can not be described by classical physics, mostly
all spin-dynamics simulations are dealing with a classical
description. The explanation for this is manifold. At the
beginning, micromagnetic simulations were introduced as an
approximation caused by the fact that the correct quantum
mechanical description is impossible or too complex.6,7

The approximation was strengthened by experimental re-
sults showing a good agreement with the micromagnetic
predictions.

As a reason for the agreement, we can mention, on
the one hand, the correspondence principle,8 which states
that if the quantum numbers describing the system are
large, an agreement between quantum and classical physics
occurs. On the other hand, we have the Ehrenfest theorem,9

which states that the expectation values obey the classical
dynamical laws. However, a satisfying answer to the question,
in which case it is possible to use a classical equation
such as the Landau-Lifshitz-Gilbert10–12 (LLG) or the Bloch
equation13 to describe the spin dynamics, has not been given
so far. To answer this question, we have investigated the
dynamics of quantum mechanical spins and compared the
trajectories of their expectation values with the trajectories
of classical spins using the according classical Heisenberg
Hamiltonian.

The paper is organized as follows. In Sec. II, we give a
simple rule that allows us to decide if the dynamics behaves
classical or not, followed by a first analytical proof of our
theorem. Due to the complexity of the underlying differential
equations, the analytical consideration was restricted to linear
excitations. A further proof for nonlinear situations will
be given by numerical methods in Sec. III. After that,
Sec. IV brings the previous results into a bigger (historical)
context. Section V gives a short summary followed by an
appendix, which describes an alternative way for calculating
ferromagnetic spin waves in a quantum mechanical Heisenberg
model with single-ion anisotropy solving the Schrödinger
equation.

II. ANALYTICAL CONSIDERATION

The probably best starting point for analytical consider-
ations of the dynamics of quantum spins is the Heisenberg
equation of motion

ih̄
∂Ŝn

∂t
= [Ŝn,Ĥ]. (1)

It is known7,14–16 that this differential equation for the
Heisenberg Hamiltonian Ĥ with an additional Zeeman term

Ĥ = − 1

2h̄2

∑
l,m

JlmŜl · Ŝm − μSBz

∑
l

Ŝz
l (2)

can be written as

∂Ŝn

∂t
= Ŝn × Ĥn (3)

with an effective field Ĥn = −gradŜn
Ĥ. This equation looks

like the famous Landau-Lifshitz equation17 without damping.
Therefore, it is the starting point of any classic consideration
concerning spin dynamics. However, the terms are still
operators and not classical numbers. Furthermore, all the
terms of the Hamiltonian equation (2) are linear in Ŝn. This
is an important point, as it means that Ĥn does not contain
Ŝn anymore and, therefore, the commutator [Ŝn,Ĥn] is zero.
However, terms quadratic in Ŝn such as single-ion anisotropies
[e.g., Dz(Ŝn)2] or the biquadratic exchange Jbi(Ŝn · Ŝm)2 will
lead to an effective field Ĥn, which depends on Ŝn. In this case,
we have to deal with commutators such as [Ŝx

n ,Ŝ
y
n ] = ih̄Ŝz

n (and
cyclic permutations) and therefore [Ŝn,Ĥn] �= 0.

The consequence is the occurrence of a correction term of
the order of h̄ in the resulting Heisenberg equation (3):

∂Ŝn

∂t
= Ŝn × Ĥn + O(h̄). (4)

Alternatively, one can write Eq. (4) as

∂Ŝn

∂t
= 1

2
(Ŝn × Ĥn − Ĥn × Ŝn). (5)
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This becomes more clear in the case of the following exam-
ple: the Heisenberg equation for the Heisenberg Hamiltonian
Ĥ with additional single-ion anisotropy:

Ĥ = − 1

2h̄2

∑
l,m

JlmŜl · Ŝm − Dz

∑
l

(
Ŝz

l

)2

= ĤJ + ĤDz
. (6)

Here, we can write the Heisenberg equation as

ih̄
∂Ŝn

∂t
= {[Ŝn,ĤJ ] + [Ŝn,ĤDz

]}. (7)

The first term on the right-hand side can be directly written
utilizing Eq. (3) as

[Ŝn,ĤJ ] = ih̄
∑
m

Jlm

h̄2 Ŝn × Ŝm = −ih̄Ŝn × ĤJ
n , (8)

again ĤJ
n = −gradŜn

ĤJ . The second commutator contains the
quadratic Hamiltonian of the single-ion anisotropy:

[Ŝn,ĤDz
] = −Dz

h̄2

∑
l

⎛
⎜⎝
[
Ŝx

n ,Ŝz
l Ŝ

z
l

]
[
Ŝ

y
n ,Ŝz

l Ŝ
z
l

]
[
Ŝz

n,Ŝ
z
l Ŝ

z
l

]
⎞
⎟⎠

= ih̄
Dz

h̄2

⎧⎪⎨
⎪⎩
⎛
⎝ Ŝ

y
n Ŝz

n

−Ŝx
n Ŝz

n

0

⎞
⎠ +

⎛
⎜⎝

Ŝz
nŜ

y
n

−Ŝz
nŜ

x
n

0

⎞
⎟⎠
⎫⎪⎬
⎪⎭

= ih̄

2

{
Ŝn × ĤDz

n − ĤDz

n × Ŝn

}
(9)

with ĤDz
n = −gradŜn

ĤDz
. It is not difficult to see that this

equation corresponds directly to Eq. (5). To get an equation
similar to Eq. (3), one has to interchange ĤDz

n with Ŝn in the
first term on the right-hand side of Eq. (9); therefore, we need
the commutator [Ŝn,Ĥ

Dz
n ].

The interchange between ĤDz
n and Ŝn will be realized

directly by the commutation of Ŝx
n respectively Ŝ

y
n with Ŝz

n:

[Ŝn,ĤDz
] = ih̄

Dz

h̄2

⎧⎪⎨
⎪⎩2

⎛
⎜⎝

Ŝ
y
n Ŝz

n

−Ŝx
n Ŝz

n

0

⎞
⎟⎠ + ih̄

⎛
⎝ Ŝx

n

Ŝ
y
n

0

⎞
⎠
⎫⎪⎬
⎪⎭

= ih̄

⎧⎨
⎩Ŝn × ĤDz

n + i
Dz

h̄

⎛
⎝ Ŝx

n

Ŝ
y
n

0

⎞
⎠
⎫⎬
⎭ . (10)

Connecting Eqs. (8), (10), and (7), we end up with a Heisenberg
equation similar to Eq. (4):

∂Ŝn

∂t
= Ŝn × (

ĤJ
n + ĤDz

n

) + i
Dz

h̄

⎛
⎝ Ŝx

n

Ŝ
y
n

0

⎞
⎠ (11)

with correction term O(h̄) = iDz/h̄ (Ŝx
n x + Ŝ

y
n y).

The corresponding classical Landau-Lifshitz equation is
given by

∂Sn

∂t
= γ

μS

Sn × (
HJ

n + HDz

n

)
(12)

with the effective fields Hα
n = −gradSn

Hα , α ∈ {J,Dz}, and
the gyromagnetic ratio γ = gμB/h̄. It should be noticed that,
in the classical description, the spins Sn = μn/μS , as well as
the effective fields, are ordinary numbers (vectors) and not
operators. Furthermore, the classical Hamilton functions Hα

look similar to the Hamilton operators Ĥα [Eqs. (2) and (6)].
To discuss the difference between classical and the quantum

mechanical spin dynamics, we have to solve both equations
(the classical Landau-Lifshitz and the quantum mechanical
Heisenberg equation). Due to the minor differences between
these two equations, we solve both at the same time. Therefore,
we need some abbreviations. In the following, the Sα

n are either
the x or y component (α ∈ {x,y}) of the classical spin Sn or the
corresponding quantum mechanical expectation values

〈
Ŝα

n

〉
.

Further, S is either the z component Sz
n = Sz of the classical

spin or the expectation value 〈Sz
n〉 ≈ S, with spin quantum

number S of the single spin. Additionally, the variables η and
ξ are given by η = γ /μS and ξ = 0 in the classical description
(Landau-Lifshitz equation) and in the quantum mechanical
picture (Heisenberg equation) η and ξ are given by η = 1/h̄

and ξ = 1.
Using these abbreviations, the Sx

n and Sy
n contributions of

the remaining differential equation can be written as

∂Sx
n

∂t
≈ η

[∑
m

JnmS
(
Sy

m − Sy
n

) + 2DzSSy
n + iξDzSx

n

]
,

(13a)
∂Sy

n

∂t
≈ −η

[∑
m

JnmS
(
Sx

m − Sx
n

) + 2DzSSx
n − iξDzSy

n

]
.

(13b)

Then, we get (with S±
n = Sx

n ± iSy
n)

∂S±
n

∂t

= ∓iη

[∑
m

JnmS
(
S±

m − S±
n

) + 2DzSS±
n − ξDzS±

n

]
.

(14)

And finally, with the Fourier transformations

S±
n =

∑
k

S±(k)e−ik·rn ,

J (k) = J (−k) =
∑
m

Jnmeik·(rn−rm),

the equation of motion becomes

∂S±(k)

∂t
= ±iη

[
S[(J (0) − J (k)] + 2Dz

(
S − 1

2
ξ

)]
S±(k).

(15)

If we further assume an exchange interaction between nearest
neighbors only, we get

∂S±(k)

∂t
= ±iωS±(k) (16)

with

ω = 2ηSJ [1 − cos (ka)] + 2Dz

(
S − 1

2
ξ

)
. (17)
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While the first term in Eq. (17) corresponds to the energy
contribution coming from the exchange interaction, the second
term describes the influence of the single-ion anisotropy
and determines the resulting spin-wave gap. The S − 1

2
in the quantum mechanical description (ξ = 1 and S = S)
underlines the well-known fact that systems with spin quantum
number S = 1

2 are not influenced by single-ion anisotropies.
The solutions of Eq. (16) are plane waves with wave vector

k and energy dispersion E(k) = h̄ω(k):

S±(k) = e± i
h̄
Et = e±iωt . (18)

Then, the inverse Fourier transformation leads to

S±
n = Sx

n ± iSy
n = e±i(k·rn−ωt)

= cos (k · rn − ωt) ± i sin (k · rn − ωt)

and, finally, to

Sx
n ≈ S⊥ cos (k · rn − ωt) ,

Sy
n ≈ S⊥ sin (k · rn − ωt) , (19)

Sz
n ≈ S.

The prefactor S⊥ appears due to the normalization.

III. NUMERICAL CONSIDERATION

Due to the complexity of the underlying differential equa-
tions, the previous analytical calculations have been restricted
to linear excitations (spin waves). To prove the validity also in
case of complex nonlinear excitations, we have to perform
additional numerical calculations. To get a larger distance
to the classical description, we switch from the Heisenberg
to the Schrödinger picture. Therewith, we have to solve
the time-dependent Schrödinger instead of the Heisenberg
equation. This enables us to get an additional proof. Further,
due to this change, we reduce the complexity of the numerical
procedure. In the following, we give a detailed description of
the numerical methods used.

In general, any spin state can be written as as a linear
combination

|ψ〉 =
∑

l

ψl |ψ l〉 (20)

of the eigenstates |ψ l〉 of an orthonormal basis. Here, we use
the Zeeman basis18

|ψ l〉 = ∣∣j l
1j

l
2 . . . j l

N

〉
(21)

with the nth spin (n ∈ {1,2, . . . ,N}) in the lth configuration:
j l
n ∈ {−S, − S + 1, . . . ,S − 1,S}; S is the spin quantum

number of the nth spin. Then, the time dependence is given
by the time-dependent Schrödinger equation. Due to the fact
that the eigenstates |ψ l〉 are time independent, we get a matrix
for the expansion coefficients ψl :

ih̄
∂ψn

∂t
= Ĥψn (22)

with the matrix elements

Ĥlm = 〈ψ l|Ĥ|ψm〉 (23)

of the Hamilton operator matrix Ĥ. The expansion coefficients
ψl themselves are complex numbers:

ψn = ψRe
n + iψ Im

n . (24)

Therefore, we can split the matrix equation (22) in two coupled
matrix equations for ψRe

n and ψ Im
n :

∂ψRe
n

∂t
= 1

h̄
Ĥψ Im

n , (25a)

∂ψ Im
n

∂t
= −1

h̄
ĤψRe

n , (25b)

which have been solved numerically. We are interested in the
time dependence of all spins separately. Therefore, we have
calculated the expectation values〈

Ŝα
n

〉 = 〈
ψ
∣∣Ŝα

n

∣∣ψ 〉
(26)

for each spin n.
For comparison, we have also solved the Landau-Lifshitz

equation

∂Sn

∂t
= γ

μS

Sn × Hn (27)

with the effective fields Hn = −gradSn
H and calculated the

time dependence of Sα
n (α ∈ {x,y,z}). The prefactor γ /μS

comes from the relation of the magnetic moment of the electron
to the related spin moment.19 Due to this prefactor, different
time scales in quantum mechanical and classical descriptions
occur. Here, we are interested in the relation between the
expectation values of the quantum mechanical spin and the
classical spin. Therefore, we set h̄ = γ = μS = 1.

A. Single atom

In the following, we describe a simple single-spin model.
Such a model can be seen as a prototype for a single
atom on a nonmagnetic surface20,21 or as a model for a
simple magnetic molecule. The corresponding Hamiltonian
H (Hamilton operator Ĥ / Hamilton function H) is given by

H = −Dz (Sz)
2 − μSBzSz − μSBx(t)Sx. (28)

Here, we use a slightly different notation as before. Hence,
Sn = (Sx

n,S
y
n,Sz

n) is either the classical spin Sn or the spin
operator Ŝn.

The first term of the Hamiltonian describes a uniaxial
anisotropy with the z axis as the easy axis. The second
term represents a static external magnetic field in the +z

direction. The last term represents a time-dependent field

pulse Bx(t) = Bx
0 e

− 1
2 ( t−t0

TW
)2

with Gaussian shape to excite the
spin. In an experimental setup using single atoms, such an
excitation can be realized, e.g., by a current pulse coming from
a scanning tunneling microscope (STM) tip. In the following,
we investigate the two situations that either (i) Dz = 0 and
Bz �= 0 or, vice versa, (ii) Dz �= 0 and Bz = 0. In the case (i),
all terms of the Hamiltonian are linear in S, which corresponds
to a Heisenberg equation in the form of Eq. (3). In the second
case (ii), the Hamiltonian contains a quadratic term and hence
the corresponding Heisenberg equation contains a correction
term of the order of h̄ [see discussion around Eq. (4)].
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FIG. 1. (Color online) Projection of the spin-space trajectories
and Sz versus time t of a single spin described by quantum mechanics
(qm) and classical physics (cl.). The assumed parameters are
(a) Dz = 0, μSBz = 2.1 and (b) Dz = 0.1, μSBz = 0. In the quantum
mechanical description, we have assumed S = 1.

Figure 1 shows the projection of the spin-space trajectory
into the Sx-Sy plane. In the initial configuration, the spin
was oriented in the +z direction. At t = t0 = 10, the pulse
field is switched on with a field strength of μSB

x
0 = 3.27

and a pulse width TW = 0.3. After the field pulse is gone,
the spin precesses on a stable orbit around the effective
field. Figure 1(a) shows the situation with the external field
oriented in the +z direction (μSBz = 2.1). In this case, we
find a perfect match of classical and quantum mechanical
trajectories. In both descriptions (classical and quantum), the
expected circular orbit and the precession frequency given by
the Larmor frequency ω = μSBz can be seen. The situation
changes drastically if Dz �= 0 (in the following, Dz = 0.1). As
expected with respect to the discussion in the Sec. I, we do not
see an agreement between classical and quantum mechanical
trajectories. The classical calculation shows the expected
circular orbit. However, the quantum mechanical calculation
shows an elliptical orbit for the expectation value 〈Ŝ〉. The
ellipticity increases with decreasing 〈Ŝz〉. For 〈Ŝz〉 = 0, one
finds a periodic oscillation of 〈Ŝy〉 between −1 and +1, while
〈Ŝx〉 is zero for all times. The further decrease of 〈Ŝz〉 from 0
to −1 leads to a decrease of the ellipticity down to zero again.

Concerning the precession frequency, the frequency is
given in the classical as well as in the quantum mechanical
case by Eq. (18) just by setting J = 0. Therefore, in the
classical description, the frequency is given by ω = 2DzSz,
which means that there is a strong dependence on Sz: Sz = 0
means no precession. Physically, this can be explained due
to the degeneracy of the orientation of the effective field. In
the quantum mechanical description, the frequency is given
by ω = 2Dz(S − 1

2 ). In this description, the frequency only
depends on the anisotropy constant Dz and on the spin quantum
number S and not on 〈Ŝz

n〉. This also means that, in the case
〈Ŝz

n〉 = 0, the frequency is still ω = 2Dz(S − 1
2 ). Figure 2

shows Sx as function of time. In all cases, the curves can
be fitted by a sine or cosine with the expected frequencies
discussed before.

B. Trimer

In the preceding section, we have described the investi-
gations of a single spin. To investigate the influence of an
exchange interaction, we now look for three coupled spins in a
row. In reality, such a configuration corresponds with a trimer

0 10 20 30 40 50
-1.5

-1

-0.5

0

0.5

1

1.5

qm
cl.

time t (arb. units)

Sx

(a)

0 50 100 150 200
-1

-0.5

0

0.5

1

qm
cl.

time t (arb. units)

Sx

(b)

FIG. 2. (Color online) Time evolution of the quantum mechanical
(qm) expectation value Sx = 〈Ŝx〉 for S = 1 and the x component
of a classical (cl.) spin Sx = Sx . The curves correspond with the
trajectories of Fig. 1: (a) Dz = 0, μSBz = 2.1 and (b) Dz = 0.1,
μSBz = 0.

(three atoms in a row).22,23 The Hamiltonian H (Hamilton
operator Ĥ / Hamilton function H),

H = −J
∑
〈l,m〉

Sl · Sm − Dz

∑
l

(
Sz

l

)2 − μSBz

∑
l

Sz
l

−μSB
x
0 e

− 1
2

(
t−t0
TW

)2

Sx
1, (29)

has slightly changed by adding the sum term describing the
ferromagnetic exchange interaction between nearest neighbors
(spin 1 with spin 2 and spin 2 with spin 3; we assumed no
coupling between the spins 1 and 3). Further, the field pulse
is only acting on the first atom. Apart from that, we have used
the same notation as in the preceding section.

For the trimer, we have performed similar calculations as
before: Bz = 0.1,Dz = 0 and Bz = 0,DZ = 0.1. In both cases,
we have assumed J = 1. The upper row of Fig. 3 shows the
projection of the trajectories 〈Ŝn〉 of all three spins n ∈ {1,2,3}
for the latter case Bz = 0 and Dz = 0.1. The lower row shows
the corresponding trajectories in the classical spin space. As
expected, there is a deviation between the classical and the
quantum mechanical trajectories. Furthermore, the difference
between frequencies in the quantum mechanical ω = 2Dz(S −
1
2 ) and the classical ω = 2DzSz descriptions can be clearly seen
by the bisection of the number of lines in the lower figures. To
clarify the role of the exchange interaction, we also calculated
the trajectories for Bz = 0.1 and Dz = 0. Figure 4 shows Sx

n
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FIG. 3. Projected trajectories of the three atoms of a trimer
(from left to right). Upper row: trajectories from the quantum
mechanical expectation value 〈Ŝn〉; lower row: the trajectories from
the corresponding classical spins Sn (n ∈ {1,2,3}). The assumed
parameters are Dz = 0.1, μSBz = 0, and S = 1 in the quantum
mechanical description.

and 〈Ŝx
n 〉 as a function of time. We see a perfect match between

the classical Sx
n and the quantum mechanical expectation value

〈Ŝx
n 〉. We could expect this behavior due to the linearity of the

exchange interaction concerning Ŝn (see discussion in Sec. I).

IV. ADDITIONAL CONSIDERATIONS

The previous results can be brought in broader context.
In literature, one can find similar results or hints. However,
in most of these cases, the results are by-products and no
detailed discussion can be found. Furthermore, in some cases,
the publications are describing wrong physics. A prominent
case can be found in the description of the second quantization
(Holstein-Primakoff or Dyson-Maleev). Most of the papers
dealing with single-ion anisotropy are using a classical instead
of the correct quantum mechanical description. Carelessness
during the calculation directly leads to the classical result
2DzSh̄2a+a.

The starting point is the Hamiltonian of the single-ion
anisotropy

ĤDz
= −Dz

∑
l

Ŝz
l Ŝ

z
l . (30)

With the transformation

Ŝz = h̄(S − a+a), (31)

we get directly

ĤDz
= −Dzh̄

2
∑

l

[S2 − 2Sa+
l al + a+

l ala
+
l al]. (32)

The first term of the sum on the right-hand side gives the
constant ground-state energy. The second-order term a+

l al

describes the excitation of linear spin waves, while the fourth-
order term describes the interaction between two spin waves.
In the following, we are not interested in such interactions,
which means that we skip in the following all fourth-order

0 10 20 30 40 50 60 70
-0.2

-0.1

0

0.1

0.2
qm
cl.

Sx
1

0 10 20 30 40 50 60 70
-0.2

-0.1
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2
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0.2
qm
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time t (arb. units)

time t (arb. units)

time t (arb. units)

Sx
3

FIG. 4. (Color online) Time evolution of the quantum mechanical
(qm) expectation values Sx

n = 〈Ŝx
n 〉 (n ∈ {1,2,3}) and the classical

x components Sx
n = Sx

n of a trimer. The assumed parameters are
Dz = 0, μSBz = 0.1, and S = 1 in the quantum mechanical
description.

terms. However, if we skip a+
l ala

+
l al at this point, we end up

with the wrong classical solution

Ĥ cl.
Dz

= 2DzSh̄2
∑

l

a+
l al (33)

because a+
l ala

+
l al is a mixture of the second-order term a+

l al

and the truly fourth-order term a+
l a+

l alal :

[al,a
+
l ] = ala

+
l − a+

l al = 1
(34)

⇒ a+
l ala

+
l al = a+

l al + a+
l a+

l alal .
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After skipping the correct fourth-order term, we end up with

ĤDz
= h̄2

∑
l

[
−DzS

2 + 2Dz

(
S − 1

2

)
a+

l al

]
. (35)

The extension of the Vaks-Larkin-Pikin (VLP) diagram-
matic technique to the case of single-ion anisotropies is a fur-
ther example where carelessness leads to serious difficulties.24

Another method where one can find the correct energy
contribution of the single-ion anisotropy EDz

= 2Dz(S − 1
2 )

is the Green’s function formalism of the quantum Heisenberg
model. In contrast to the exchange interaction, the contribution
of single-ion anisotropy to the Green’s function can not
be decoupled by the RPA (random phase approximation)
decoupling. In these cases, the Callen-Anderson decoupling
leads to the correct results25:

Dz

〈〈
Ŝ+

l Ŝz
l + Ŝz

l Ŝ
+
l ;

(
Ŝz

m

)n
Ŝ−

m

〉〉 → Dz	
+G+

lm (36)

with the decoupled Green’s function

G+
lm = 〈〈

Ŝ+
l ;

(
Ŝz

m

)n
Ŝ−

m

〉〉
(37)

and

	+ = 2
〈
Ŝz

l

〉 (
1 − 1

2S2

[
S(S + 1) − 〈(

Ŝz
l

)2〉])
. (38)

This decoupling holds for all temperatures T . However, for
comparison, we are interested in the limit T → 0. In this
limit, the expectation value 〈Ŝz

l 〉 becomes S and the correlation
〈(Ŝz

l )2〉 → S2. Therewith, we get again

EDz
= Dz	

+ = 2Dz

(
S − 1

2

)
. (39)

This result was first derived in the context of double-time
Green’s functions by Kazakov in 1977.26

The last example we discuss is the description using
coherent states as a wave-function basis set. In this description,
the corresponding Heisenberg equation looks like the classical
Landau-Lifshitz equation in spherical coordinates (see Bal-
akrishnan et al.27) with just one difference: the prefactor of
the anisotropy term is Dz (2S − 1) instead of 2DzS as in the
Landau-Lifshitz equation. For a thorough discussion between
the classical and the quantum descriptions in the context of
coherent states, see also Balakrishnan and Bishop.28

In all the cases mentioned before (except the VLP dia-
grammatic technique), the same contribution of the single-ion
anisotropy 2Dz(S − 1

2 ) can be found. Unfortunately, in the
literature, different descriptions can be found, mostly the
wrong classical 2DzS one.

V. SUMMARY

In summary, we have shown that the textbook description
of the derivation of the Landau-Lifshitz equation starting
with the quantum mechanical Heisenberg equation is correct
but incomplete. As textbooks confirm, terms linear in Ŝn in
the Heisenberg model indeed lead to an equation similar to
the Landau-Lifshitz equation. However, if there are terms
quadratic in Ŝn as the single-ion anisotropy, the situation
changes. In this case, an additional term of the order of h̄

occurs. Alternatively, the occurring equation can be written

as two but mirrored Landau-Lifshitz equations [see Eq. (5)]
due to the noncommutativity of Ŝn with the effective field
Ĥn in this case. In the end, this means that the dynamics
of a system that can be described with a Heisenberg model
containing only linear terms in Ŝn (such as soft-magnetic
materials, e.g., permalloy) obey classical laws. Therefore, the
classical description leads to correct physical results. However,
quantum mechanical systems described by a Heisenberg model
with quadratic terms such as the single-ion anisotropy can
not be described classically. Here, we need the full quantum
mechanical description.

In a wider context, this behavior is nothing other than the
known failure of the Ehrenfest theorem in the case of nonlinear
potentials U(r̂). Here, we have the analogies between the force
F̂ and the effective field Ĥ as well as between the potential
U(r̂) and Hamiltonian Ĥ(Ŝ):

F̂ = −gradr̂U(r̂) ↔ Ĥ = −gradŜĤ(Ŝ).

The description given within this publication is not re-
stricted to ferromagnets. Antiferromagnets as well as ferrimag-
nets show the same behavior as long as there is no relaxation
process. It is known that the quantum mechanical ground state
of an antiferromagnet is unequal to the classical Néel state.
Therefore, the relaxation to the ground state shows different
trajectories depending on the description being classical or
quantum mechanical. The same is true for ferrimagnets. In
the case of a ferromagnet, the relaxation does not change the
situation caused by the fact that the classical and quantum
mechanical ground states are equal.

In the second part of this paper, we have proved our state-
ment analytically and with numerical methods. The systems
we investigated were described by Heisenberg Hamiltonians
with exchange, external field, and single-ion anisotropies. If
we skip the anisotropy term, a perfect match between classical
description and quantum mechanics occur. However, if the
anisotropy is taken into account, we only find similarities
between both descriptions, but no agreement. The essence
of these calculations is the change from the Sz-dependent
classical frequency ω = 2DzSz to the quantum mechanical
frequency ω = 2Dz(S − 1

2 ), which only depends on the spin
quantum number S and the anisotropy constant Dz. This
frequency can be found for several physical descriptions and
models, unfortunately with less paid attention in literature.
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APPENDIX: FERROMAGNETIC SPIN WAVES (SOLVING
THE SCHRÖDINGER EQUATION)

The Schrödinger equation

ih̄
∂ |ψ〉
∂t

= Ĥ |ψ〉 (A1)
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with Hamiltonian

Ĥ = − 1

2h̄2

∑
l,m

Jlm

[
Ŝz

l Ŝ
z
m + 1

2
(Ŝ+

l Ŝ−
m + Ŝ−

l Ŝ+
m )

]

−Dz

h̄2

∑
l

(
Ŝz

l

)2
(A2)

can be solved by the following wave ansatz, which describes
the excitation of one magnon:

|ψ〉 = 1

h̄
√

2NS

∑
n

ei(k·rn− ωt)Ŝ−
n |ψ0〉 , (A3)

where |ψ0〉 is the ground-state configuration where all spins
are oriented in the +z direction.

With this ansatz, the left-hand side of the Schrödinger
equation (A1) becomes

ih̄
∂ |ψ〉
∂t

= h̄ω |ψ〉 . (A4)

In order to get the energy 〈Ĥ〉 = 〈ψ | Ĥ |ψ〉 = h̄ω on the right-
hand side of Eq. (A1), we have to evaluate

Ĥ(Ŝ−
n |ψ0〉) = Ŝ−

n Ĥ |ψ0〉 + [H,Ŝ−
n ] |ψ0〉

= E0Ŝ
−
n |ψ0〉 + [Ĥ,Ŝ−

n ] |ψ0〉 . (A5)

E0 is the ground state energy: Ĥ |ψ0〉 = E0 |ψ0〉. Further, the
commutator [Ĥ,Ŝ−

n ] is given by

[Ĥ,Ŝ−
n ] =

∑
l

Jln

h̄

(
Ŝ−

l Ŝz
n − Ŝ−

n Ŝz
l

) + 2
Dz

h̄

(
Ŝz

l − h̄

2

)
Ŝ−

n .

Therewith, the right-hand side of Eq. (A1) becomes, with
Ŝz

l |ψ0〉 = Sh̄ |ψ0〉,
Ĥ |ψ〉 = E0 |ψ〉

+ 1

h̄
√

2NS

{∑
l,n

JlnSei(k·rn −ωt)(Ŝ−
n − Ŝ−

l )

+ 2Dz

(
S − 1

2

)∑
n

ei(k·rn −ωt)Ŝ−
n

}
|ψ0〉 .

Next, one has to exchange the two summation indices in
such a way that Ŝ−

l is labeled as Ŝ−
n and exploit the symmetry

Jnl = Jln: ∑
l,n

JlnSei(k·rn −ωt)(Ŝ−
n − Ŝ−

l )

=
∑

n

∑
l

JlnSei(k·rl −ωt)Ŝ−
l

−
∑

l

∑
n

JnlSei(k·rn −ωt)Ŝ−
l

=
∑
l,n

Jln(1 − eik·(rl−rn))ei(k·rn −ωt)Ŝ−
n .

With this transformation, we get

Ĥ |ψ〉 = E0 |ψ〉 + 1

h̄
√

2NS

∑
n

{∑
l

JlnS(1 − eik·(rl−rn))

+ 2Dz

(
S − 1

2

)}
ei(k·rn −ωt)Ŝ−

n |ψ0〉 . (A6)

By putting Eqs. (A6) and (A4) (left- and right-hand sides of the

Schrödinger equation) together, we get the spin-wave energy
by setting E0 = 0:

h̄ω = S[J (0) − J (k)] + 2Dz

(
S − 1

2

)
. (A7)

Here, we have used the abbreviation (Fourier transformation

of the exchange constant)

J (k) =
∑

l

Jlne
ik·(rl−rn). (A8)

Assuming only nearest-neighbor exchange interaction, J (0) −
J (k) becomes 2J [1 − cos (ka)] and the spin-wave energy

h̄ω = 2SJ [1 − cos (ka)] + 2Dz

(
S − 1

2

)
. (A9)

1A. Thiaville and Y. Nakatani, in Spin Dynamics in Confined
Magnetic Structures III, edited by B. Hillebrands and A. Thiaville
(Springer, Berlin, 2006).
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