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Gate-dependent spin-torque in a nanoconductor-based spin-valve
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This paper discusses the spin-torque effect in a spin-valve made out of two ferromagnetic leads connected
through a coherent nanoconductor (NC), in the limit where a single channel of the NC lies near the Fermi energy
of the leads. Due to quantum interferences inside the NC, the spin-torque presents clear qualitative differences
with respect to the case of a multichannel disordered spin-valve. In particular, it can be modulated with the NC
gate voltage. In principle, this modulation can be observed experimentally, assuming that the spin-torque affects
a ferromagnetic nanodomain in direct contact with the NC.
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I. INTRODUCTION

The study of spin-dependent transport in ferromagnetic
hybrid structures has raised an intense activity in the context
of the development of spin electronics, or spintronics.1 The
most simple and illustrative spintronics device is the spin-
valve. It consists of two ferromagnetic layers separated by a
nonmagnetic spacer, which can be conducting or insulating.
The charge current through a spin-valve depends on the relative
orientation of the ferromagnets’ magnetizations. This so-called
magnetoresistance effect has allowed the development of
new kinds of field-sensing and magnetic memory devices.2,3

Conversely, the relative orientation of the ferromagnets’
magnetizations can be modified by a spin-torque effect,4

which corresponds to an absorption of spin currents by the
ferromagnets. When the spin-valve spacer is a multichannel
disordered metal, the spin-torque appears only at finite bias.5

In the case of a thin ballistic spacer, a torque due to an
indirect exchange coupling between the ferromagnets can also
appear in equilibrium conditions, due to a Ruderman-Kittel-
Kasuya-Yosida (RKKY) -like interaction.2,6–9 The theoretical
description of transport in spin-valves is now well developed,
in both the multichannel ballistic and multichannel diffusive
regimes (see, e.g., Refs. 10–12 and 5,13–15).

Recently, a gate-controlled magnetoresistance effect has
been observed in spin-valves based on coherent few-channels
nanoconductors, such as carbon nanotubes16–18 or self-
assembled InAs quantum dot,19,20 placed at low temperatures.
The portion of nanoconductor between the two contacts
is subject to a strong electronic confinement, which leads
to the existence of resonant states whose energy can be
shifted by using an electrostatic gate. This allows a strong
gate modulation of the conductance and magnetoresistance
through the device. However, the spin-torque effect in this
kind of device has raised little attention so far.21,22 This
paper discusses the spin-torque effect in the case where the
spin-valve spacer is a coherent nanoconductor (NC) with
a single channel near the Fermi energy of the leads. A
noninteracting scattering formalism is used. The torque felt
by each ferromagnet varies with the NC gate voltage. The
spin activity of the NC/ferromagnet interfaces stems from
the spin dependence of interfacial transmission probabilities
and from the spin dependence of interfacial scattering phase

shifts (SDIPS). I first discuss analytically various limits,
in order to emphasize the role of the different parameters
and the qualitative differences with the case of multichan-
nel disordered spacers. In the latter case, a finite SDIPS
is necessary to obtain an out-of-plane torque component,
due to an SDIPS-induced interfacial effective field.10,14,23–26

However, in the coherent case, this effect can generally not
be disentangled from the indirect exchange coupling between
the two ferromagnets, which also gives an out-of-plane
contribution to the torque. Another striking result is that a
Slonczewski in-plane torque can occur even in the limit of
spin-independent interfacial transmission probabilities, due
to quantum interferences inside the NC, which lead to a
SDIPS-induced spin-filtering effect. In the multichannel case,
the out-of-plane torque is usually expected to be much smaller
than the in-plane torque, because due to fluctuations of
the SDIPS from one channel to another, the out-of-plane
torque almost averages out.10,14 In contrast, in a NC-based
spin-valve, it is sometimes possible to choose whether the
out-of-plane nonequilibrium contribution to the torque is larger
or smaller than the in-plane contribution just by changing
the NC gate voltage. I finally discuss the measurability
of the spin-torque effect in a NC-based spin-valve. It is
necessary to assume that the spin-torque affects a nanodomain
in direct contact with the NC. This domain can belong
to a wider ferromagnetic contact, similar to what is ob-
served for torque experiments realized with quantum point
contacts.27

Note that the noninteracting scattering model used in this
paper can be experimentally relevant in the case where the
contacts between the nanoconductor and the ferromagnets
have a sufficiently high capacitance. This was clearly the case,
for instance, in Ref. 17, which presents magnetoresistance data
for a spin-valve made out of a single-wall carbon nanotube
with PdNi contacts. The conductance of the device versus bias
voltage and gate voltage clearly indicates the absence of inter-
action effects such as Coulomb blockade. Therefore, the gate
variations of the conductance and magnetoresistance through
the device could be well interpreted using a noninteracting
scattering model similar to the one discussed in the present
paper. In the case of contacts with a smaller capacitance, one
should use an interacting description, based for instance on an
Anderson-like Hamiltonian.
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FIG. 1. (Color online) (a) Scheme of the spin-valve device
considered in this paper. A ballistic nanoconductor is connected to
two ferromagnets L and R with magnetizations �ML and �MR , which
form an angle θ . The nanoconductor is capacitively coupled to a
gate biased with a voltage Vg . (b) Scattering model of the device for
channel m. The interface between the ferromagnet Q ∈ {L,R} and
the nanoconductor transmits and reflects electrons with amplitudes
t̂Q,t̂ ′

Q and r̂Q, r̂ ′
Q, which have a 2 × 2 structure in spin space (see

text). The electrons acquire a winding phase δ while they cross the
nanoconductors. The right-going/left-going wave function �i± at spot
i ∈ {0,2,3} is related to the incoming wave functions �3+ and �0− by
�i± = �i±�0− + �i±�3+. In the text, we express the spin-torque on
L in terms of �2± and �2±, and the conductance through the device
in terms of �0+. In Sec. VI, we assume that �MR is fixed, while �ML

can move. The spin referential {x,y,z} is such that �ML = �z, while the
referential {x ′,y ′,z′} is fixed with �MR = �z′.

II. THEORETICAL MODEL

I consider a spin-valve made out of a NC with length �

contacted to two left and right ferromagnetic electrodes L and
R [see Fig. 1(a)]. The magnetizations of L and R are noted−→
ML and

−→
MR . The NC chemical potential can be tuned thanks

to a capacitive gate biased with a voltage Vg . The dynamics

of
−→
ML is affected by a spin-transfer torque �T , which is due

to the spin-dependent scattering of electrons by L and R.
When

−→
ML and

−→
MR are noncollinear, the spin-current incident

on L can have components perpendicular to
−→
ML, which are

not conserved across L. However, the total momentum of the
circuit must be conserved. The torque �T corresponds to an
absorption of the nonconserved spin currents by

−→
ML

4. In real
samples, the electronic transport inside L leads to a relaxation
of spin collinearly to

−→
ML (transverse spin dephasing) because

spin components parallel and antiparallel to
−→
ML quickly lose

their coherence with respect to each other when electrons
propagate into L.10,23,24 This occurs on a scale ξF called
the magnetic-coherence length or transverse spin-dephasing
length, which is typically of the order of a nanometer for a
ferromagnetic material like Ni.28–31 Hence, if the length of L

exceeds a few nanometers along the transport direction,
−→
ML

fully absorbs the perpendicular spin current transmitted into L.
In this case, the torque �T on electrode L corresponds directly
to the transverse component of the spin current �Ispin,2 just at

the right of L, i.e., �T = −�Ispin,2 + ( �Ispin,2 · −→
ML)

−→
ML/ML.32 In

this picture, it is possible to treat the ferromagnet Q ∈ {L,R}
as a fermionic reservoir, i.e., the states with energy E inside
Q are populated according to a Fermi distribution fQ(E) =
1/{1 + exp[(E − EF + eV

Q
b )/kBT ]}, with V

Q
b the bias volt-

age applied to Q and EF the Fermi energy of the leads.33

In this paper, the electronic transport inside the NC is
described with the Landauer-Büttiker scattering formalism.34

The ferromagnetic nature of contact Q is taken into account
through the spin dependence of the electronic scattering matrix
S̃Q between the ferromagnet Q and the NC, and the transverse
spin-dephasing hypothesis inside Q. One important specificity
of NCs is the strong energy separation between transverse
modes. As a result, one can reach a regime where a single
mode m of the NC lies near the Fermi energy of the reservoirs
(i.e., at a distance smaller than kBT or the level width). The
purpose of this work is to study how the contribution of mode
m to the torque �T evolves with the lead’s bias voltages V

L(R)
b

and the NC gate voltage Vg . From Secs. II to V, the different
spin components are given in a referential {x,y,z} attached
to

−→
ML = �z [see Fig. 1(a)]. The matrices S̃L and S̃R can be

expressed as S̃L = SL and S̃R = U (θ )SRU−1(θ ), with, in the
scattering space,34

SQ =
[
r̂Q t̂ ′Q
t̂Q r̂ ′

Q

]
(1)

for Q ∈ {L,R}, and

U (θ )

=
[

cos
(

θ
2

)
σ̂0 − i sin

(
θ
2

)
σ̂y 0

0 cos
(

θ
2

)
σ̂0 − i sin

(
θ
2

)
σ̂y

]
.

(2)

I note σ̂x , σ̂y , and σ̂z as the Pauli matrices in spin space and
σ̂0 as the identity matrix in spin space. The reflection and
transmission matrices between the ferromagnet Q and the NC,
noted r̂Q, r̂ ′

Q, and t̂Q,t̂ ′Q, respectively, are defined in Fig. 1(b).
These matrices have a structure in spin space, i.e.,

r̂Q =
⎡
⎣

√
1 − T u

Qeiϕu
Q 0

0
√

1 − T d
Qeiϕd

Q

⎤
⎦ , (3)

r̂ ′
Q =

⎡
⎣

√
1 − T u

Qeiϕ̄u
Q 0

0
√

1 − T d
Qeiϕ̄u

Q

⎤
⎦ , (4)
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and

t̂Q = t̂ ′Q =

⎡
⎢⎣i

√
T u

Qei
ϕu
Q

+ϕ̄u
Q

2 0

0 i

√
T d

Qei
ϕd
Q

+ϕ̄d
Q

2

⎤
⎥⎦ . (5)

The number of parameters occurring in SQ has been minimized

by assuming flux conservation and spin conservation along
−→
MQ

by the Q/NC interface. The u and d indices refer to majority
and minority spin species for each ferromagnet considered.
I note T

u(d)
Q = 1 − R

u(d)
Q as the transmission probability for a

majority(minority) spin across contact Q, while ϕ
u(d)
Q and ϕ̄

u(d)
Q

are the reflection phases for majority(minority) spins on the left
and right side of the Q/NC interface, respectively. The values
of the interfacial transmission phases are imposed by those of
the reflection phases, which explains the shape of the phase
factors in Eq. (5) (see Ref. 35 for details). Note that the values
of the interface parameters T

u(d)
Q , ϕu(d)

Q , and ϕ̄
u(d)
Q are difficult to

predict since they can depend on the microscopic details of the
ferromagnet/NC contacts. However, they can be considered as
fitting parameters that have to be determined for each sample.
Such an approach was already used successfully to interpret
quantitatively spin-dependent transport experiments in spin-
valves and multiterminal circuits based on single-wall carbon
nanotubes.16,17,36 Electrons acquire a winding phase δ while
crossing the NC. This phase can be tuned with the NC gate
voltage Vg . It also depends on the electronic energy E (see
Sec. VI).

The conductance and magnetoresistance corresponding to
the above model have already been studied theoretically in
Ref. 37. Due to quantum interferences inside the NC, these
signals depend on δ and thus on Vg . Reference 21 has discussed
the torque in a one-dimensional spin-valve model based on a
single channel Blonder-Tinkham-Klapwijk approach.38 This
case is very different from the one discussed in the present
paper, since in Ref. 21 the whole ferromagnetic contacts are
modeled as delta-function potential barriers that produce no
transverse spin dephasing. Reference 22 has used an Anderson-
Hamiltonian approach. However, these authors have studied
only the in-plane out-of-equilibrium torque and they did not
take into account the SDIPS. In the present approach, the
ferromagnet/NC interfaces could be alternatively modeled as
delta-function potential barriers. However, this would impose
a given relation between the interfacial transmissions and
scattering phases. Equations (3)–(5) are more general since
they can account for any type of interface potential profile.
They also allow one to study separately the effects of the spin
dependence of the interface transmission probabilities and of
the SDIPS. It has been shown that these two properties affect
the device conductance G in qualitatively different ways.37

Qualitative differences are also expected for the spin-torque.

III. GENERAL EXPRESSION OF THE SPIN-TORQUE

For simplicity, one can assume that, at any energy, mode m

is not coupled to the other modes of the NC upon scattering
by the NC/ferromagnet contacts. In this case, the torque
acting on the left magnetization writes �T = �Tm + �C, with
a separate contribution �Tm from mode m. The contribution
�C accounts for other modes, which are far from the Fermi

energy of the reservoirs. It is convenient to decompose �Tm as
�T eq
m + �T tr

m , with a finite bias contribution �T tr
m and an equilibrium

term �T eq
m , which exists in the absence of a bias voltage,

i.e., when f0(3)(E) = feq(E) = 1/{1 + exp[(E − EF )/kBT ]}.
The parametrization introduced in Sec. II leads to39

�T eq
m =

∫
dE

[
A

y

23(E) + A
y

20(E)
]
feq(E)�y (6)

and

�T tr
m =

∫
dE Ax

20(E)[f0(E) − f3(E)]�x

+
∑

i∈{0,3}

∫
dE A

y

2i(E)[fi(E) − feq(E)]�y, (7)

with A
μ

20(E) = Trσ [σμ(�2−�
†
2− − �2+�

†
2+)]/4π and

A
μ

23(E) = Trσ [σμ(�2−�
†
2− − �2+�

†
2+)]/4π for μ ∈ {x,y}.

The in-plane and out-of-plane torques correspond to �x
and �y components, respectively. Here, �2∓ [�2∓] are the
coefficients obtained when decomposing the left[right]-going
wave function associated with m just on the right of L in
terms of the modes incoming from L and R [see Fig. 1(b)].
These coefficients can be expressed in terms of the parameters
introduced in Sec. II. The trace in the above expressions runs
over the spin index σ . We will see in Sec. IV that mode m can
contribute to the equilibrium value of the torque ( �T eq

m �= 0)
because one has in the general case A

y

23(E) �= −A
y

20(E).
Since feq(E) appears in the integrand of Eq. (6), in principle,
�T eq
m depends on the properties of channel m on a wide range

of energies for which T
u(d)
Q , ϕ

u(d)
Q , and ϕ̄

u(d)
Q should be energy

dependent. By analogy, �C can also be finite, although it
accounts for the contribution of modes that are far from
the Fermi energy of the reservoirs. The full values of �T eq

m

and �C depend on the whole band structure of the NC and
ferromagnets. However, if V

L(R)
b and Vg are too small to

bring other modes than m close to EF , �C can be considered
as independent from the gate and bias voltages. The main
purpose of this work is to study the gate and bias dependences
of the torque, which are contained in �Tm = �T eq

m + �T tr
m . Note

that when a finite bias voltage Vb is applied to the left reservoir
(V L

b = Vb and V R
b = 0), one obtains, in the low-temperature

linear regime eVb � kBT � T
u(d)
L[R]h̄vF /2�,

�T tr
m = eVbA

x
20 �x − eVbA

y

23 �y∣∣
E=EF

. (8)

This is not equivalent to applying the bias voltage to the right
reservoir (V L

b = 0 and V R
b = −Vb), since one finds in this

second case

�T tr
m = eVbA

x
20 �x + eVbA

y

20 �y∣∣
E=EF

. (9)

One can check that the expressions of Ax
20, Ay

20, and A
y

23 involve
a denominator

D(θ ) = |βuuβdd cos2(θ ) + βudβdu sin2(θ )|2,
with βss ′ = 1 − eiφs,s′

√
Rs

LRs ′
R , φs,s ′ = 2δ + ϕ̄s

L + ϕs ′
R , and spin

indices (s,s ′) ∈ {u,d}2 defined in Sec. II. This denominator ex-
presses the fact that electrons are subject to multiple reflections
between the two ferromagnets. This leads to resonances that
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appear as peaks in the conductance G = (e2/h̄)Trσ [�†
0+�0+]

of the spin-valve versus δ (see, for instance, Fig. 3). Similarly,
the torque can strongly depend on δ, as shown below.

IV. ANALYTICAL EXPRESSIONS OF THE TORQUE IN
VARIOUS LIMITS

This section discusses analytically various limiting cases,
which are not necessarily obvious to reach in practice, but
allow one to understand the role of the different parameters.

A. Case of a spin-independent L/NC contact

I first assume that the scattering matrix S̃L describing the
contact between the ferromagnet L and the NC is not spin
dependent, i.e., T u(d)

L = TL = 1 − RL, ϕu(d)
L = ϕL, and ϕ̄

u(d)
L =

ϕ̄L. One finds A
y

20 = A
y

23 = 0; thus there is no equilibrium
torque and no out-of-plane torque in this case. In contrast,
one finds a finite out-of-equilibrium in-plane torque ( �T tr

m �= 0),
since

Ax
20 = TL

sin(θ )

4πD(θ )

[
(TL − 2)

(
T d

R − T u
R

) + 2
√

RL

×
(√

Rd
RT u

R cos[φd ] − √
Ru

RT d
R cos[φu]

)]
, (10)

with φu(d) = 2δ + ϕ̄L + ϕ
u(d)
R . This effect is similar to the spin-

filtering torque discussed by Slonczewski.4 In the present case,
the spin filtering is not due to the interface matrix S̃L, which
is spin conserving, but to L itself, since a transverse spin
dephasing occurs inside L. Interestingly, the torque can be
controlled with the NC gate voltage, since δ occurs in Eq. (10).
From the above equation, if T u

R = T d
R = TR , the coefficient Ax

20
remains finite, i.e.,

Ax
20 =

√
RLRRTLTR(cos[φu] − cos[φd ])

sin(θ )

2πD(θ )
.

The existence of a finite torque may seem surprising in
this case. Indeed, if the right NC/ferromagnet contact was
considered alone (semi-infinite geometry), the current in the
NC would not be spin polarized, since T u

R = T d
R . However,

one should keep in mind that quantum interferences occur
inside the NC. In the presence of a SDIPS at contact R, the
whole F/NC/F device behaves as a spin polarizer along

−→
MR ,

because spins parallel and antiparallel to
−→
MR are resonant

inside the NC for different energies.37 To confirm the crucial
role of quantum interferences in this effect, one can check that
Ax

20 vanishes for TL = 1.

B. Case with no SDIPS

I now consider a case where S̃L and S̃R are both spin
dependent, but there is no SDIPS, i.e., ϕ

u(d)
L[R] = ϕL[R] and

ϕ̄
u(d)
L[R] = ϕ̄L[R]. In this limit, one can check

A
y

20 = sin[θ ] sin[2(δ + ϕ̄L + ϕR)]

× [√
Ru

L

(
T d

L − 2
) −

√
Rd

L

(
T u

L − 2
) ]

× (
T u

R

√
Rd

R − T d
R

√
Ru

R

)
/4π, (11)

A
y

23 = sin[θ ] sin[2(δ + ϕ̄L + ϕR)]

× [√
Ru

R

(
T d

R − 2
) −

√
Rd

R

(
T u

R − 2
)]

× (
T u

L

√
Rd

L − T d
L

√
Ru

L

)
/4π, (12)

and, using T
u[d]
L(R) = Tu[d], ϕ

u(d)
L[R] = ϕ, and ϕ̄

u(d)
L[R] = ϕ̄,

Ax
20 = (Tu − Td )(Tu + Td − TuTd ) sin[θ ] sin2[φ/2]/2π, (13)

with φ = 2δ + ϕ̄ + ϕ. Interestingly, Eqs. (11) and (12) give
A

y

20 = A
y

23 for T
u(d)
L = T

u(d)
R . Therefore, one can obtain an

out-of-plane contribution to the equilibrium torque without
a SDIPS ( �T eq

m �= 0), even if the NC/ferromagnet contacts
are symmetric. This effect is a corollary of the non-local-
exchange coupling mediated by itinerant electrons, which
has been observed between two ferromagnets connected
through a very thin normal metal spacer.2,6,7 The nonlocal
exchange can be explained in terms of a spin-dependent RKKY
interaction, which is naturally taken into account by scattering
descriptions.5,9,40 Interestingly, this effect does not occur when
the central conductor of the spin-valve is a diffusive metallic
electrode,10 because it vanishes in the limit of a large number of
channels in the presence of disorder.5,14 From Eqs. (11)–(13),
the out-of-equilibrium torque has both an in-plane component
(Slonczewski-like) and out-of-plane component (related to
the interlayer exchange coupling). In contrast, in the case
where the conductor placed between the two ferromagnets
is a multichannel diffusive conductor, there is no out-of-plane
nonequilibrium torque when the SDIPS vanishes.

C. Case of two non-spin-filtering contacts

I now assume that both contacts have spin-independent
transmission probabilities, but a finite SDIPS, i.e., T

u(d)
L[R] =

TL[R] = 1 − RL[R]. In this case, one finds

Ax
20 = TLTR cos

[
ϕ̄u

L − ϕ̄d
L

2

]
�,

A
y

20 = (2 − TL)TR sin

[
ϕ̄u

L − ϕ̄d
L

2

]
�, (14)

A
y

20 − A
y

23 = 2(TR − TL) sin

[
ϕ̄u

L − ϕ̄d
L

2

]
�,

and

� =
√

RLRR sin

[
ϕd

R − ϕu
R

2

]
sin

[
φu,u + φd,d

2

]
sin(θ )

πD(θ )
.

(15)

Thus there exists out-of-plane contributions to both �T eq
m and

�T tr
m . In the multichannel incoherent case, it has already been

found that the SDIPS can cause an out-of-plane torque,
proportionally to the imaginary part of the so-called “mixing
conductance.” To understand this effect, one must note that
an electron scattered by contact L with a spin noncollinear
to

−→
ML precesses around

−→
ML due to ϕ̄u

L �= ϕ̄d
L. In other words,

the SDIPS causes an effective Zeeman interfacial field along−→
ML. Due to momentum conservation, the electronic precession
around this field leads to an out-of-plane torque on L. However,
this picture is more delicate to use in the present case
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where the existence of an out-of-plane torque �T tr
m cannot be

disentangled from interference effects, because it requires
TL < 1. Therefore, the Slonczewski in-plane torque and the
out-of-plane indirect exchange effect discussed above also
occur.

D. Case of a left perfectly transmitting contact

To suppress quantum interferences inside the NC, one can
consider the case T

u(d)
L = 1. This gives quite generally A

y

20 =
A

y

23 = 0 and

Ax
20 = (

T u
R − T d

R

)
sin(θ )/4π.

Due to the absence of quantum interferences, interfacial
reflection phases are not relevant anymore. The contribution
of mode m to the torque is purely in-plane. The absence of an
out-of-plane torque contribution may seem surprising since the
transmission phases from the NC to L can depend on spin [see
Eq. (5)]. However, this property has no physical consequence
in the present model, because of the transverse spin dephasing
occurring in L.

E. Case of a left perfectly reflecting contact

In contrast, the present model gives a purely out-of-plane
torque contribution in the limit T

u(d)
L = 0, which leads quite

generally to Ax
20 = A

y

23 = 0 and

A
y

20 = sin(θ )

πD(θ )

((
T u

R − T d
R

)
cos

[
ϕ̄u

L − ϕ̄d
L

2

]

−
√

Rd
RT u

R cos

[
φu,d + φd,d

2

]

+√
Ru

RT d
R cos

[
φu,u + φd,u

2

])
sin

[
ϕ̄u

L − ϕ̄d
L

2

]
.

There is no in-plane torque contribution in this case because
electrons cannot cross the L/NC interface, and therefore, the
spin-filtering effect considered by Slonczewski is not relevant
anymore. One finds A

y

23 = 0 because electrons can enter the
device through the right contact only. The torque depends on
V R

b although there is no charge transport. This counterintuitive
result can be understood by noting that since T

u(d)
L = 0,

electrons inside the NC remain in equilibrium with the right
ferromagnet. In this case, changing V R

b instead of Vg just gives
another way to observe the variations of an equilibrium torque.
The SDIPS-induced interface exchange field at the left contact
plays a crucial role in the establishment of this torque since
A

y

20 = 0 for ϕ̄u
L = ϕ̄d

L.

V. ANGULAR AND GATE DEPENDENCE OF THE
OUT-OF-EQUILIBRIUM PART OF THE TORQUE

As already explained in Sec. III, the absolute value of the
torque felt by L depends on the whole band structure of the
NC and ferromagnets. The purpose of this article is not to
calculate this value, but the gate and bias dependences of the
torque, for small applied voltages. If V

L(R)
b and Vg are too small

to bring other modes than m close to EF , they can modify
significantly the torque contribution �Tm from mode m only.

FIG. 2. (Color online) Function A(θ ) giving the angular depen-
dence of �T tr

m in the low-temperature and linear-bias limit. The left
panel shows the effect of a variation in the spin-polarization PL[R]

of the interface tunnel probabilities, in the absence of a SDIPS
(ϕu = ϕd ). The right panel shows the effect of a variation in the
spin-averaged reflection phase (ϕu + ϕd )/2, for a finite and constant
SDIPS ϕu − ϕd = π/2. For comparison, the function sin[θ ] is shown
with dotted lines in both panels.

Using constant values for T
u(d)
Q , ϕu(d)

Q , and ϕ̄
u(d)
Q is a reasonable

assumption in this context. In practice, one can check, using
realistic parameters, that the variations of �T eq

m with Vg are likely
to be small (see Sec. VI). Therefore, I have chosen to focus on
the angular and gate dependence of �T tr

m . In this section and the
following, I use T

u(d)
L[R] = TL[R](1 ± PL[R]). From the previous

section, one can check that the only physically relevant phases
are the reflection phases inside the NC, i.e., ϕ̄

u(d)
L and ϕ

u(d)
R . I

use below ϕ
u(d)
L(R) = ϕ̄

u(d)
L(R) = ϕu(d).

For simplicity, I discuss the angular dependence of �T tr
m in

the low-temperature linear regime [see Eqs. (8) and (9)]. This
dependence can be characterized with the function A(θ ) =
[sin(θ )/D(θ )]/ maxθ [sin(θ )/D(θ )]. Indeed, in the different
cases considered analytically in Sec. IV, the coefficients Ax

20,
A

y

20, and A
y

23 are proportional to sin(θ )/D(θ ). I have checked
analytically that this property remains true even if no particular
hypotheses are made on S̃L and S̃R . The spin-torque is often
nonsinusoidal in the multichannel disordered case (see, e.g.,
Ref. 5). In the present case, when T

u(d)
L and T

u(d)
R are close

to 1, one finds D(θ ) → 1, so that A(θ ) = sin(θ ) to a good
approximation. In the absence of a SDIPS and for T

u(d)
L and

T
u(d)
R close to zero, one finds D(θ ) → (1 − eiφ)2 with φs,s ′ =

φ, so that A(θ ) = sin(θ ) again. In order to have a nonsinusoidal
A(θ ) for small values of T

u(d)
L[R], a finite SDIPS must be used.

However, it is also possible to have a nonsinusoidal A(θ ) for a
vanishing SDIPS by using intermediate values for T

u(d)
L[R]. The

left panel of Fig. 2 shows A(θ ) in the absence of a SDIPS.
An increase in PL[R] can help to increase the anharmonicity of
A(θ ). From the right panel of Fig. 2, it nevertheless seems that
a strong SDIPS more easily leads to a strongly nonsinusoidal
A(θ ). The anharmonicity of A(θ ) can also be changed with δ

(not shown) and with the value of the spin-averaged reflection
phases (ϕu

L(R) + ϕd
L(R))/2 (see right panel of Fig. 2).

I now discuss the δ dependence of �T tr
m in the low-

temperature linear regime. This dependence is given by the
coefficients Ax

20, A
y

20, and A
y

23, which are shown in Fig. 3, for
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FIG. 3. (Color online) Conductance G (top panel) and coeffi-
cients Ax

20, A
y

20, and A
y

23 determining the low-temperature linear-bias
limit of �T tr

m (bottom panel), as a function of the winding phase δ

through the NC.

a particular set of interface parameters. These coefficients are
π periodic with δ. Remarkably, they can change sign with δ.
In the multichannel case, the out-of-plane torque is usually
expected to be much smaller than the in-plane torque, because
due to fluctuations of the SDIPS from one channel to another,
the out-of-plane torque almost averages out.10,14,26 However,
in the present case, |Ay

20| and |Ay

23| can be smaller or larger
than |Ax

20| depending on the value of δ considered (see bottom
panel of Fig. 3). To illustrate the effects of the SDIPS and of
the polarization PL(R) of the interfacial tunnel probabilities,
Fig. 4 shows the coefficients Ax

20, A
y

20, and A
y

23 for the same
parameters as in Fig. 3, but with ϕu = ϕd (no SDIPS) in the
left panel and PL(R) = 0 in the right panel. In the right panel,
one has exactly A

y

20 = A
y

23 due to TL = TR (see Sec.IV C). In
the left panel, A

y

20 and A
y

23 are not exactly equal, but the
difference is too small to be visible on the scale of the
figure, because the spin-dependent transmission probabilities
TL(1 ± PL) are relatively close to TR(1 ± PR) (see Sec. IV B).
In general, using a finite SDIPS allows one to increase strongly
the amplitude of the torque variations, because the SDIPS tends
to induce a spin splitting of electronics resonances inside the
NC, which strongly spin polarizes the current through the
NC [compare Fig. 4 (left) with Fig. 3]. Of course, increasing

PL(R) also allows one to increase the magnitude of the torque
[compare Fig. 4 (right) with Fig. 3]. However, a comparison
between the left and right panels of Fig. 4 illustrates that the
effects of a finite PL(R) and a finite SDIPS on the torque are
qualitatively different, since the variations of Ax

20, A
y

20, and
A

y

23 with δ are different in these two panels. Remarkably, in
the left panel, Ax

20 remains positive for any value of δ, whereas
it changes sign with δ in the right panel.

VI. MEASURABILITY OF THE TORQUE IN A
COLLINEAR GEOMETRY

This section discusses the measurability of the spin-torque
felt by L in a simple collinear configuration. I assume that−→
MR = MR�z′ is fixed along a direction �z′, which corresponds
to the anisotropy axis of contact L. When one starts from an
initial state

−→
ML = ±ML

−→
z ′, i.e., θ = 0/π or −→

z = ±�z′, the
spin-torque vanishes. However, Slonczewski has shown that
it is possible to observe the spin-torque effect by studying
the hysteretic switching of

−→
ML between θ = 0 and θ = π ,

when a ramping magnetic field
−→
H is applied collinearly to−→

z ′. Indeed, since θ must pass continuously between 0 and
π during the switching process, the torques can modify the
critical switching fields. For simplicity, I consider a range of
parameters where the torque is approximately sinusoidal, i.e.,
T

x(y)
m ∝ sin[θ ]. In the framework of a Landau-Gilbert equation

(see the Appendix), the torque produces an asymmetry
�Hsw = (Hsw+ + Hsw−)/2 of the switching fields Hsw+ and
Hsw− obtained for increasing and decreasing fields, which can
be expressed as

�Hsw = (
α−1 T x

m

∣∣
θ=π/2 − T y

m

∣∣
θ=π/2

)
/μ0ML. (16)

Equation (16) involves a Gilbert damping dimensionless
constant α, which characterizes the damping of the left
magnetization. I will use below the value α = 0.045, which
has been measured for nickel.41 The constant α increases the
effect of the in-plane torque T x

m with respect to that of the
out-of-plane torque T

y
m .

To motivate experiments, it is interesting to discuss whether
the variations of T

x(y)
m with the bias or gate voltages are

observable through �Hsw. Since �Hsw scales with the inverse
of the magnetization ML, the magnitude of ML must not be
too large. I will assume that the ferromagnet L corresponds
to a small magnetic domain in direct contact with the NC.
This domain itself can belong to a larger ferromagnetic
contact, as observed, for instance, in spin-torque experiments

FIG. 4. (Color online) Conductance G and
coefficients Ax

20, A
y

20, and A
y

23, as a function of
δ. The parameters used here are the same as in
Fig. 3, except ϕu = ϕd (no SDIPS) in the left
panels, and PL(R) = 0 in the right panels.
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FIG. 5. (Color online) Spin-torque-induced asymmetry �H tr
sw of

the switching fields, in the case where a finite bias voltage Vb is
applied to the left reservoir of the spin-valve. The left and right panel
show the variations of �H tr

sw with Vb and the gate-controlled phase
δg , respectively. The curves are shown for various temperatures. It is
assumed that the role of L is played by a nickel cubic domain with a
side of 2.2 nm, which corresponds to ML 
 600μB .

realized with quantum point contacts.27 Here, I consider
a nickel cubic domain with a side of 2.2 nm. In spite
of this small size, I disregard Coulomb blockade effects
or size-quantization effects inside the domain,42 since it is
assumed to belong to a larger ferromagnetic contact. The
Ni domain encloses about 1000 atoms43 and has thus a
magnetization ML = 600μB , with μB the Bohr magneton.
The transverse spin-dephasing length in Ni is of the order of
a nanometer, as revealed by the superconducting proximity
effect observed in this material.28–31 Therefore, the transverse
spin-dephasing hypothesis used in this paper seems relevant.
Besides, since the NC is in the few-channels transport regime,
I assume that conduction through the device is limited by the
NC/nanodomain contact. In these conditions, it is reasonable to
treat the nanodomain as an electronic reservoir in equilibrium
with V L

b .
I use a quadratic band model for the NC, which yields,

after a linearization around the Fermi energy, δ = δg + (E −
EF )π/� with δg = kF � + (eηVgπ/�) the phase acquired by
an electron with energy EF along the NC. The phase δg

can be tuned with Vg , through a transduction coefficient η.
The parameter � = hvF /2� corresponds to the orbital level
spacing inside the NC. Both thermal regimes � > kBT and
� < kBT can be reached in practice. I assume that the finite
bias voltage Vb is applied to the left reservoir (V L

b = Vb and
V R

b = 0). I first discuss the contribution �H tr
sw of �T tr

m to �Hsw.
In practice, this quantity can be determined by measuring
the difference between the switching fields for Vb = 0 and
Vb finite. Figure 5 shows �H tr

sw for a given set of interface
parameters and a realistic value for �.44 Due to the value
of α used, �H tr

sw is dominated by the T x
m term (T x

m and T
y
m

have comparable amplitudes for the parameters of Fig. 5).
The left panel of Fig. 5 shows the dependence of �H tr

sw
on Vb. At low temperatures (i.e., temperatures smaller than
the scales of variation of Ax

20, A
y

20, and A
y

23 with energy),
this dependence is nonlinear, due to resonances occurring
inside the NC. Besides, the right panel of Fig. 5 shows that
�H tr

sw oscillates with δg . The amplitude of these oscillations
is about 15 mT for the parameters used. In practice, this effect

should be measurable if the switchings of the left magnetic
domain are sufficiently sharp, like observed with single-
wall carbon nanotubes contacted with ferromagnets.36,45,46

Note that, being conservative, I have used a relatively small
SDIPS and small polarizations PL(R) for estimating �H tr

sw. In
principle, �H tr

sw can be increased significantly by breaking
these restrictions. At larger temperatures, �H tr

sw increases
linearly with Vb and �H tr

sw does not oscillate anymore
with δg .

I now discuss briefly the contribution �H
eq
sw of �T eq

m to �Hsw.
With the parameters of Fig. 5 (right) at low temperatures,
the oscillations of �H

eq
sw with δg have an amplitude of about

0.2 mT (not shown); thus �Hsw 
 �H tr
sw. Therefore, the gate-

induced variations of the equilibrium torque component in
a NC-based spin-valve are probably difficult to measure in
practice.

Note that in Fig. 5 (right) one has Vb 
 2.6 mV. In these
conditions, the coherent scattering approach of this paper is
relevant. In order to obtain a current-induced reversal of

−→
ML

with no external magnetic field, stronger bias voltages are
necessary. In the latter case, one may have to take into account
heating and decoherence effects inside the NC.

VII. CONCLUSION

In this paper, I have discussed the spin-torque effect in a
spin-valve made out of two ferromagnetic leads connected
through a coherent NC. I have assumed that the NC has a
single channel near the Fermi energy of the leads. In this case,
the spin-torque effect presents many qualitative differences
with respect to the case of a multichannel disordered spin-
valve. I have discussed the SDIPS-induced interface exchange
field, the RKKY-like interlayer exchange coupling, and the
Slonczewski spin filtering that occur in this device. The
contributions of these three effects to the spin-torque can
generally not be disentangled, due to interference effects
occurring inside the NC. One interesting specificity of a
NC-based spin-valve is that the spin-torque can be modulated
with the NC gate voltage. In principle, this modulation can be
observed experimentally by studying the hysteretic behavior
of the spin-valve with a magnetic field, for instance. This
requires one to assume that the torque affects a ferromagnetic
nanodomain in direct contact with the NC and belonging, for
instance, to a wider lithographically defined ferromagnetic
contact.

In relation to this work, it is interesting to point out that
there also exists great qualitative differences between the few-
channels coherent case and the multichannel disordered case in
the context of nonlocal spin transport in a conductor connected
to four contacts with colinear magnetizations.36,47
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APPENDIX

This appendix discusses the dynamics of
−→
ML in the

collinear configuration defined in Sec. VI. The modulus ML

of the magnetization
−→
ML = ML

−→
mL is assumed to be constant

(|−→mL| = 1). To model the dynamics of −→
mL, one can use a

Landau-Lifshitz-Gilbert equation,4

d
−→
mL

dt
= −γ0

−→
mL ∧ H

−→
z ′ − γ0Hu(−→z · −→

mL)−→mL ∧ −→
z ′

+ τ‖−→mL ∧ (−→mR ∧ −→
mL) + τ⊥−→

mR ∧ −→
mL

+α
−→
mL ∧ d

−→
mL

dt
, (A1)

with γ0 = −μ0γ > 0, γ 
 −e/me the gyromagnetic ra-
tio of electrons, and μ0 the vacuum permeability. The
uniaxial anisotropy field of the left ferromagnet is
noted Hu

−→
z ′. The torque components T x

m and T
y
m occur

through τ‖ = T x
mγ /ML sin(θ ) and τ⊥ = −T

y
mγ /ML sin(θ ).

The Gilbert damping term is proportional to the dimen-

sionless constant α, and usually fulfills α � 1. One can
look for solutions of Eq. (A1) with the form −→

mL =
[sin(θ ) cos(ωt), sin(θ ) sin(ωt), cos(θ )] in the fixed referential
{x ′,y ′,z′}. Following Ref. 4, one can assume ω � dθ/dt , i.e.,
the precession of

−→
ML around the −→

z ′ axis is much faster
than its relaxation toward ±−→

z . This gives ω = Hγ0 + τ⊥ +
Huγ0 cos(θ ) and

dθ

dt
= − [

τ‖ + ατ⊥ + αγ0H + Huαγ0 cos(θ )
]

sin(θ )

= F (θ ). (A2)

Equation (A2) corresponds to the dynamics of a fictitious
massless damped particle in an effective potential U (θ ), such
that F (θ ) = −∂U (θ )/∂θ . From Eq. (A2), the shape of the
barrier separating the positions θ = 0 and θ = π depends on
the torques. Here, I assume that T x

m and T
y
m are approximately

sinusoidal, so that τ⊥ and τ‖ can be treated as constants. In this
case, −→mL can switch from ±−→

z to ∓−→
z if H decreases/increases

until it reaches the value Hsw± = ∓Hu − [(τ‖/α) + τ⊥]/γ0.
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