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A quantum many-body system that is prepared in the ground state of an integrable Hamiltonian does not
directly thermalize after a sudden small parameter quench away from integrability. Rather, it will be trapped
in a prethermalized state and can thermalize only at a later stage. We discuss several examples for which this
prethermalized state shares some properties with the nonthermal steady state that emerges in the corresponding
integrable system. These examples support the notion that nonthermal steady states in integrable systems may be
viewed as prethermalized states that never decay further. Furthermore, we show that prethermalization plateaus
are under certain conditions correctly predicted by generalized Gibbs ensembles, which are the appropriate
extension of standard statistical mechanics in the presence of many constants of motion. This establishes that the
relaxation behaviors of integrable and nearly integrable systems are continuously connected and described by

the same statistical theory.
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I. INTRODUCTION

Quantum statistical mechanics can successfully predict the
equilibrium properties of a system with many degrees of
freedom, based only on a few macroscopic parameters such
as energy, volume, and particle number. These predictions are
obtained as averages over an ensemble of identical systems in
which, according to the fundamental postulate of statistical
mechanics, each accessible microstate is equally probable.
The ensemble is described by a statistical operator p (with
Tr[p] = 1) that maximizes the entropy S = —Tr[p In p]. In
the microcanonical ensemble p projects onto states with the
correct macroscopic energy, but energy or other constants of
motion can also be fixed only on average, as in the canonical or
grand-canonical Gibbs ensemble.'?> For macroscopic systems,
the difference between the predictions of these standard en-
sembles is usually negligible, and they all describe the thermal
state of the system in equilibrium. The statistical prediction
for the equilibrium expectation value of an observable A is
then Tr[pA].

An ensemble describes a superposition of quantum states
with classical probabilities and hence is a mixed state for which
Tr[6%] < 1. Microscopically, however, a quantum system
with Hamiltonian H () evolves according to the Schrodinger
equation, ih%hﬁ(t)) :I:I(t)W(t)). It is described by the
density matrix p(t) = | (¢)){(¥(?)|, i.e., a pure state with
Tr[p(t)?] = 1. This leads to the question of how a disrupted
quantum system can ever thermalize, i.e., relax to a new
equilibrium state, which is described by a thermal ensemble
with Tr[?] < 1, although this quantity is constant during
the unitary time evolution. There are two principal physical
resolutions to this apparent mathematical paradox: (i) If the
system is in contact with a (typically much larger) environment
and only observables of the system are of interest, then the
environment degrees of freedom can be traced out from p(¢),
leading to an effective statistical operator of the system that
describes a mixed state. (ii) If the system is isolated (as
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we assume here), then due to many-body interactions in the
Hamiltonian the time evolution of | (¢)) can be sufficiently
“ergodic” that for certain observables A the long-time limit of
(A), =(1/f(t)|A|1/f(t)) indeed tends to the statistical prediction
Tr[pA]. Several possibly related concepts were developed to
understand this behavior: Inspired by von Neumann’s quantum
ergodic theorem, the theory of typicality*~!? puts bounds on
the contributions to (A), that are far from the thermal value.
The eigenstate thermalization hypothesis,!'~'* on the other
hand, has relations to quantum chaos and posits that each
eigenstate of H contributes to (A), the microcanonical value
at its eigenenergy. Another useful point of view is that even in
an isolated system a large part of it can act as an environment
for the smaller remainder.'>2* Moreover, thermalization has
been related to the many-body localization transition.?!'~23
Recent progress in the manipulation of cold atomic gases
has made it possible to prepare quantum many-body systems
in excellent isolation from the environment and to study
their relaxation for a time-dependent Hamiltonian,>* thus
providing a laboratory realization of situation (ii) above. In
particular, oscillations between Bose-condensed and Mott-
insulating states after a steep sudden increase of the optical
lattice depth® were observed. In one-dimensional bosonic
gases the dynamics leading to thermalization was measured
for two coherently split gases®® and for a patterned initial
state.2’” On the other hand, a nonthermal steady state was
reached for a one-dimensional trap in which the system
is close to an integrable point.”® These developments have
led to many theoretical studies regarding the relaxation of
isolated quantum many-body systems (for recent reviews,
see Refs. 29-32). In the simplest setup, a quantum many-
body system is studied after a sudden parameter change
(“quench”). In this situation the time evolution for + > 0
is governed by a time-independent Hamiltonian H, but the
initial state at = 0 is not an eigenstate of H. Rather the
system is typically prepared in the ground state or a thermal
state of some other initial Hamiltonian Hy. Regarding the
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behavior of isolated interacting quantum systems after a global
quench, three main cases can be distinguished: (a) Integrable
systems, which relax to a nonthermal steady state?$2%-3143
and often can be described by generalized Gibbs ensembles
(GGEs) that take their large number of constants of motion
into account;">3 (b) nearly integrable systems that do not
thermalize directly, but instead are trapped in a prethermalized
state on intermediate time scales, which can be predicted from
perturbation theory;**>! and (c) nonintegrable systems, which
thermalize directly.!>?”375052 We review these three cases in
Sec. 11

Figure 1 shows two examples for cases (a) and (b) for
which the transient behavior is qualitatively rather similar.
In particular, both the integrable and the nearly integrable
system enter a long-lived nonthermal state. This leads us to
the question of whether and how the two cases are related and
which properties they share. Our main claim in this paper
is that (a) nonthermal steady states in integrable systems
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FIG. 1. (Color online) Relaxation of the momentum occupation
ny, after an interaction quench from U = 0 to U = 0.5 in
(a) the Falicov-Kimball model (Ref. 42) and (b) Hubbard model
in iterated perturbation theory (Ref. 51), obtained in dynamical
mean-field theory (DMFT) for a momentum k, which is outside the
Fermi surface (¢, = 0.5, half filled band with semielliptic density of
states, band edges at —2 and 2). In the integrable Falicov-Kimball
model a nonthermal long-time limit is observed, whereas in the
nearly integrable weak-coupling Hubbard model a prethermalization
plateau occurs [which is predicted to good accuracy by second-
order perturbation theory (Ref. 48), cf. Sec. II B], with subsequent
relaxation toward the thermal value. For technical reasons the time
evolution in (a) starts from a low-temperature thermal state. Further
results for Falicov-Kimball and Hubbard models are discussed in
Sec. [II A.
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and (b) prethermalized states in nearly integrable systems
are in precise correspondence, in the sense that both of
these nonthermal states are due to the existence of exact [in
case (a)] or approximate [in case (b)] constants of motion
(see Table I). We support this claim by two types of evi-
dence. On the one hand (Sec. III A) we discuss several
examples for which the predicted prethermalization plateau
of an observable, when evaluated for an integrable system,
yields precisely its nonthermal stationary value. In other
words, nonthermal steady states in integrable systems can
be understood as prethermalized states that never decay. On
the other hand (Sec. III B) we obtain perturbed constants of
motion that are approximately conserved in a nearly integrable
system, use them to construct the corresponding GGE, and
show that it describes the prethermalization plateau for a
certain class of observables.>® It follows that integrable and
nearly integrable systems are connected in the sense that their
relaxation dynamics involves long-lived nonthermal states that
are described by the same statistical theory.

II. INTEGRABILITY VS THERMALIZATION

A. Integrable systems: Nonthermal steady states

If A is integrable it has a large number of constants of
motion, and the system then usually relaxes to a nonthermal
steady state.?®2%3145 This behavior is due to the fact that
expectation values of all the constants of motion do not
change with time. Therefore not all microstates in the relevant
energy shell are in fact accessible, so that the above-mentioned
fundamental postulate of statistical mechanics cannot be
expected to give a reliable description of the steady state. In
contrast to the classical case it is not obvious whether a given
Hamiltonian is integrable, because any quantum Hamiltonian
always has as many constants of motion as the dimension
of the Hilbert space, e.g., its powers, or the projectors onto
its eigenstates.'>%34-56 Many solvable Hamiltonians A, how-
ever, are integrable in a stronger sense, namely they can be
mapped onto an effective Hamiltonian of the form

L
A= eals, (1)
a=1

with [fa,j'ﬁ] =0 for all @ and $ and thus [Fl,j’a] =0, where L
is proportional to the system size rather than the dimension of
the Hilbert space of H.g. Typically the constants of motion Z,
have integer eigenvalues that can be represented by fermionic
or bosonic number operators, Z,= ala,. In these cases Heg
describes dressed degrees of freedom that are noninteracting
and have a simple time dependence. On the other hand,
after transforming back the resulting time dependence of the
original degrees of freedom is usually nontrivial.

Examples for models that can be solved on the Hamiltonian
level as in Eq. (1) include hard-core bosons in one dimension
or XY spin chains, which can be mapped to noninteracting
fermions by a Jordan-Wigner transformation,?*=3>>7-> the
Tomonaga-Luttinger model, which corresponds to an effec-
tive free-boson Hamiltonian,>®%° a one-dimensional electron-
phonon model,” and the 1/r Hubbard chain.*>¢1:%2 The
Falicov-Kimball model*'#3% is also integrable in the sense
that for a fixed equilibrium configuration of immobile particles
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TABLE 1. Nonthermal (quasi)stationary states after a quench to an integrable or nearly integrable Hamiltonian A.

Hamiltonian H after quench

(Quasi)stationary state

(a) Integrable case

(b) Nearly integrable case

H integrable with exact constants of motion

H = Hy+ gH, |g| < 1, Hy integrable,
H not integrable with approx. constants of motion

nonthermal steady state in the
long-time limit, t — oo
prethermalized state for intermediate
times # with |g|~' « const -t « g2

the Hamiltonian is quadratic and can be diagonalized into
form (1).

For effectively free Hamiltonians such as Eq. (1), a
statistical prediction for the nonthermal steady state can be

made with an appropriate GGE,"**
= Lo reda .
ﬁG = e—, ZG = Tr[37 Zn{ )‘aIa]’ (2)
Zg

which maximizes the entropy with the constants of motion
set to the correct average, (fa)G = (Zy) 10, by means of the
Lagrange multipliers A,.> The purpose of these constraints
is to take into account (on average) that many microstates
are inaccessible during the time evolution because they are
incompatible with the values of the conserved quantities in
the initial state. GGEs correctly predict many (but not all)
properties of nonthermal steady states in various integrable
models.?3%:39:4042:4445 A microcanonical analog of Eq. (2),
the so-called generalized microcanonical ensemble, was also
studied.®*

B. Nearly integrable systems: Prethermalization

Now consider the case that the Hamiltonian H after the
quench is not exactly integrable, but close to an integrable
point with Hamiltonian Hy, i.e.,

H = Hy+ gH,, (3a)
L
I:IO = Z Eaj-as (3b)

with |g| < 1, i.e., now the full Hamiltonian H is almost
but not exactly of the form (1). In this case the relaxation
dynamics is, nevertheless, strongly influenced by the near
integrability, i.e., due to the presence of approximate constants
of motion, as discussed in more detail below. In such cases the
system prethermalizes, i.e., (A) ; relaxes first to a nonthermal
quasistationary value Ay state that is increasingly long lived
as H approaches the integrable point at g = 0. One of
the characteristic features of prethermalization, known from
field theory,*® is that integrated quantities such as kinetic
and potential energy attain their thermal values much earlier
than individual occupation numbers. This phenomenon was
recently studied in detail for Fermi liquids by Moeckel and
Kehrein,*’ namely for interaction quenches from U = 0 to
small values of U > 0 in the fermionic Hubbard model with
Hamiltonian

H Ztlj 10 ja+UanTnli’ (4)

ijo

which for U = 0 reduces to an integrable Hamiltonian (3b)
in which the momentum occupation numbers iy, = é;fm Cro
play the role of the conserved quantities Z,.

It was stressed in Ref. 47 that in analogy to classical
mechanics naive perturbation theory leads to secular terms
that grow polynomially in time; instead one should use
unitary perturbation theory, i.e., absorb the perturbation by
a unitary transformation, perform the time evolution, and
transform back. In Appendix A we derive a simple form
of unitary perturbation theory (already used in Ref. 47) for
a nondegenerate Hamiltonian Hy. If the time evolution is
governed by the nearly integrable Hamiltonian A [Eq. (3)],
we obtain the expectation value of an observable A as [see
Appendix B, Eq. (B1)]

51n2(wt /2)

(A) = (A)o + 4¢> / do J@)+ 0", )

—00

where the function J(w) depends on the observable A and
the initial state |1/f(0)) provided that (i) A commutes with all
constants of motion Z, and (ii) the initial state [¥(0)) is an
eigenstate of Hy. Here

(A)o)8(Hy — (Ho) — ) Hy)o.  (6)

These two assumptions (i) and (ii) are merely made to obtain
the compact result (5)—(6); it is straightforward to extend the
analysis to any observable and any initial state. We note that an
evaluation [see Appendix B, Eq. (B2)] of (4, ), according to
Egs. (5) and (6) for quenches from 0 to small U in the fermionic
Hubbard model [Eq. (4)] recovers the result obtained with
flow equations for continuous unitary transformations.*’ The
prethermalization plateau, denoted by Ay, can be obtained
as the long-time average of Eq. (5), lim,_, fot dt'/t (A)y,
assuming that |g| is so small that the scales 1/|g| and 1/g? are
well separated and the limit # — oo is taken in the sense that
1/]g| < const -t «1/g**

J(w) = (H; (A —

A~

rd
Aga = (A)g +2¢° / w—‘;’ J(w) + 0(g?). 7

If A commutes with all Z, and |1(0)) is an eigenstate of Ho,
this expression simplifies to

Aga = 20A)5 — (A)o + O(g), ®

where (A ) (W(O)|A|I/I(O)) denotes the expectation value in
the perturbative eigenstate |1ﬂ(0)) of H corresponding to the
initial state |1 (0)).*’

In general Ay, differs from the thermal expectation
value of A obtained with a microcanonical or canonical
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ensemble with the same average energy E as the quenched
system, i.e., E = (Y (0)|H|y(0)) =(y(t)|H |y (r)). Hence if
subsequent thermalization occurs it is expected to be due to
processes of order g> and higher and to happen at later times,
t >1/g* 47495185 The prethermalization plateau (8) and also
the predicted transient behavior (5) (Ref. 47) were confirmed
for fiy, after interaction quenches in the Hubbard model in
dynamical mean-field theory (DMFT);>? later-stage relaxation
toward the thermal values was also observed [see also Fig.

1(b)].

C. Nonintegrable systems: Thermalization

For nonintegrable systems thermalization is expected for
sufficiently long times because only few relevant constants of
motion exist, and was observed in several systems. '327:37-0.52
Due to limitations in simulation time and/or system size
it is sometimes difficult to determine whether the required
distance from an integrable point for which thermaliza-
tion occurs is finite (as suggested, e.g., by the results of
Refs. 37, 38 and 66) or infinitesimal in the thermodynamic
limit (as suggested by a general analysis in Ref. 65). It
is known from the Kolmogorov-Arnold-Moser theorem that
for classical systems thermalization is inhibited even for a
sufficiently small finite integrability-breaking perturbation.®’
For quantum systems this issue, as well as the mechanism
for thermalization, is still being developed and debated.-2368
Interestingly, signatures of thermalization were also found for
certain variables in integrable systems.®’

III. INTEGRABLE VS NEARLY INTEGRABLE SYSTEMS

Our main claim in this paper is the close correspondence be-
tween (a) nonthermal stationary values in integrable systems,
ie., (A)s = lim,_ o (A),, and (b) prethermalization plateaus
Agat in nearly integrable systems. In Sec. III A we discuss
several examples for which the predicted prethermalization
plateau of an observable (7), when evaluated for an integrable
system of type (1), yields precisely its nonthermal stationary
value. We then obtain in Sec. III B that prethermalized states
are described by an appropriate GGE built from approximate
constants of motion, analogous to nonthermal steady states
in integrable systems that are described by a GGE built from
exact constants of motion.

A. Nonthermal steady states in integrable systems are
prethermalized states that never decay

We now compare the two values Agy, [Eq. (7)] and (AA)oo
analytically or to high numerical accuracy for interaction
quenches to weak and strong coupling in two Hubbard-type
models, namely in the 1/ Hubbard chain*? and the Falicov-
Kimball model in DMFT (i.e., in the limit of infinite spatial
dimensions),*"** which are integrable in the sense of Eq. (1).
For both models the Hamiltonian is of the form (4) (however,
for the Falicov-Kimball model the hopping amplitude is zero
for one of the two spin species). As observable we consider the
double occupation d =(3_; Ai;+7;,)/L (L: number of lattice
sites). We obtain dy,¢ from Eq. (7) for these two integrable
systems, and show that it agrees with the nonthermal stationary
value (d)oo.

PHYSICAL REVIEW B 84, 054304 (2011)

1. Weak coupling

We first consider an interaction quench from O to small
values of U. Then the prethermalization plateau of 71y, is given
by Eq. (8), and dy, can be obtained using energy conservation
after the quench. For the integrable 1/r Hubbard chain (with
bandwidth W and particle density n < 1) we use known
properties of the perturbed ground state |i(0)) and obtain
(see Appendix C)

n?>  n?(G3-2n)U

dstal = -0 -

4 6w
When comparing this predicted prethermalization plateau with

the exact long-time limit (c? Yoo (Ref. 42) we see that both values
agree to order U for all densities n < 1. For this integrable
system Eq. (8) thus predicts the nonthermal stationary value

instead of a prethermalization plateau.

+ o). 9)

2. Strong coupling

For interaction quenches from 0 to large values of U the
final Hamiltonian is also close to an integrable point, namely

the atomic limit with conserved occupation numbers é_¢é, on
each lattice site. However, we consider an initial Hamiltonian
other than the atomic limit, so that Eqs. (6) and (8) do not apply.
Instead, d, is given by unitary strong-coupling perturbation

theory %70 as

lijo | 1 . N _
dya = (d)o + Y | e, €10 o = o) o + OWU),
ijo

(10)

valid for an arbitrary initial state |y(0)). We note that for
a nonintegrable system dg, was observed as the center of
collapse-and-revival oscillations that occur after interaction
quenches to large U in the Hubbard model in DMFT.>

For quenches from U = 0 to large U in the integrable 1/r
Hubbard model Eq. (10) predicts>”

n? 23 -2nmW
4 3U

Comparing this prediction with the exact long-time limit (d)
(Ref. 42) we find again that they are in agreement to order
U~! for all densities n < 1.

Finally, for the Falicov-Kimball model in DMFT with
a semielliptic density of states, the value dy, predicted by
Eq. (10) is

+oWU™). (11)

dstat =

2
PR Chul Ol
4 2U
Figure 2 shows the exact double occupation (d), for the
Falicov-Kimball model in DMFT for quenches from 0 to large
U. In the long-time limit (d), tends precisely to the predicted
value (12) for large U.

(Ho)o + O(U™). (12)

3. Summary

For these three examples of integrable Hubbard-type
systems we showed that prethermalized states, obtained with
unitary perturbation theory for nearly integrable systems, also
describe the nonthermal steady state in integrable systems.
This suggests the viewpoint that nonthermal steady states in
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FIG. 2. (Color online) Upper panel: Difference between the
double occupation (d), and its initial value (d), = 1/4 for quenches
from the ground state (U = 0) to U = 10 and 80 in the Falicov-Kimball
model in DMFT at half filling, obtained from the exact solution for
a semielliptic density of states with bandwidth 4 (Refs. 42, 44). For
large U the oscillations take place inside a common envelope function
(Ref. 51). The horizontal line corresponds to the stationary value dg,
to which (d), is predicted to relax according to the strong-coupling
expansion (10). Lower panel: The exact long-time limit (d), (triangle
symbols) compared to the stationary value dy,, of the strong-coupling
expansion (10).

integrable systems are simply prethermalized states that never
decay. In other words, the system appears to be trapped in
essentially the same state both at and very close to an integrable
point. This suggests that the prethermalized state approaches
the nonthermal steady state as one quenches closer and closer
to the integrable point. We cannot show this continuity in
general, but provide a continuous statistical description of
integrable and nonintegrable systems in the next subsection.

B. Construction of approximate constants of motion
for nearly integrable systems and the corresponding
generalized Gibbs ensemble

We now turn to the question of whether for a small quench
from an integrable point Hyto H = Hy + gH; (with |g| < 1)
the prethermalization plateau (8) is described by an appropriate
Gibbs ensemble involving approximate constants of motion.
We use the eigenbasis |n) of the constants of motion, i.e., n =
(ny,na, . ..,n1), Ly |n) =ny|n), and assume that the energies €,
are incommensurate, so that the eigenenergies E, = Za €Ny
of Hy are nondegenerate. This is not a strong restriction, as
the boundaries of the system can always be imagined to be so
irregular as to lift all degeneracies.

PHYSICAL REVIEW B 84, 054304 (2011)

As described in Appendix A a unitary transformation e®

can be constructed which yields
H=Y el +) [W)(ES + g EP) I+ 0.

(13a)

é\\b
Il
[N

&
sg\b

[0}

o
Il

Zo — 18,2 + 18,18, Z.11 + 0(g%),
(13b)

where H|it) = E,|7), |71) = e’§|n), and ES"? are the standard
energy corrections in first- and second-order perturbation
theory, recovering the perturbed Rayleigh-Schrodinger energy
eigenvalues,

E,=E,+gEV +¢%EP + 0(¢g%). (14)

The structure of the transformed Hamiltonian is plausible:
the first term on the right-hand side in Eq. (13a) retains the
additive “noninteracting” structure of the integrable Hamil-
tonian Hy with the same “one-particle” energies €,, whereas
the perturbative energy corrections are not additive in this
way but rather depend explicitly on the configuration of the
state e~%|n). Other perturbed Hamiltonians with a different
structure were proposed in the literature, e.g., with modified
energies €,,’! or perturbed energy eigenvalues E, that remain
additive in the quantum numbers n,,.">

Since [Z4.Z5] = [Za.25] = 0 we have [A.Z,] = 0(g?).

~
so that the Z,, are the desired approximate constants of motion
that indeed commute with A to order g2. An explicit example

of the form of the %a is given in Appendix B, Eq. (B3), for
a quenched two-body interaction H;. Note that in principle
our canonical transformation can be continued to arbitrary
high order in g, but an accurate description can, nevertheless,
only be expected in a perturbative regime of sufficiently small
g. Next we construct the corresponding GGE with these
perturbed constants of motion,

. 1 5
P = 7 exp (— Xa:xaza) (15)
where the X, are fixed by the initial state according to
(Zo)g = TrlpgLal = (Zao- (16)

Here we choose only the conserved quantities %,1 that appear
linearly and additively in the Hamiltonian (13a) to construct
the GGE. Note that the Hamiltonian (13a) is not precisely
of form (1) but rather contains additional diagonal terms that
involve the projeftors |72) (71|. These projectors are in general

nonlinear in the 7, and are therefore not used in the GGE; the
use of products of conserved quantities in the GGE is discussed
in Refs. 13, 39, 43, and 42 but not pursued here.

‘We now come to the central point of this paper: we compare
the prethermalization plateau Agye [Eq. (8)] of an observable
A (assumed to have the initial state as an eigenvector and to
commute with all Z,) with the statistical prediction (A)a. We
assume that the constants of motion 7, can be represented by
fermionic or bosonic number operators, fa =ala , and that

aa’

the integrability-breaking term H, can be expressed as a linear
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combination of products of these creation and annihilation
operators. (Otherwise H; would involve operators that act on
other spaces than Hy, so that H, would have degeneracies
contrary to our assumption.)

For simplicity let us first consider an observable A = 7,
i.e., one of the conserved quantities of H, (e.g., a momentum
occupation number 7y, in a Hubbard-type model). Then we
find (see Appendix D) that indeed

Tusat = (Za)g + O(8). (17

This shows that the prethermalization plateau of the conserved
quantities of Hy (which are no longer conserved during the
time evolution with H = Hy + gH)) is predicted correctly in
order g2 by the appropriate statistical theory [Eq. (15)]. Hence
on time scales 1/|g| < const - t < 1/g* the pure state |1/(¢))
gives the same expectation values as a mixed state described
by pg. For a more complicated observable,

A= l‘[z (18)
i=1

we also find
Agat = (A)g + 0(g), (19

provided the condition

(iﬁj‘x%:

is fulfilled. This is due to the fact that the GGE g is diagonal

in the %a and therefore cannot describe arbitrary correlations
that are built up between two or more lA'm, which is a well-
known limitation.”>*** At the integrable point [¢ = 0 and
[ (0)) =|¥(0))] the factorization condition (20) reduces to
the condition derived in Ref. 42 for the validity of a GGE (2)
for an integrable Hamiltonian (1).

The above assumption about the structure of H; ensures
that it does not contain operators that are absent in Ag.
Information about such operators would be missing from the
GGE ensemble (15), making their correct description unlikely.
However, this is not a strong restriction, as several coupled
spaces can also be considered in a GGE (see, e.g., Ref. 45).

We conclude that the phenomenon of prethermalization not
only means that a long-lived nonthermal state is attained prior
to possible thermalization at a later stage, but also that the
properties of the prethermalized state are predicted correctly
by an ensemble that is constructed according to the principles
of statistical mechanics.

[ )5+ 0 (20)

i=I

IV. CONCLUSION

We argued that integrable and nearly integrable systems are
continuously connected in the following sense: (a) integrable
systems relax to nonthermal, but GGE-described stationary
states; (b) near-integrable systems are trapped in quasistation-
ary states due to the perturbed constants of motion of the
nearby integrable system, and can also be described by an
appropriate perturbed GGE. Hence if one studies the relaxation
of a nonintegrable system closer and closer to an integrable
point, the prethermalization plateau will survive longer and
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longer and will approach the nonthermal long-time limit at
the integrable point, with the appropriate GGE describing this
steady state throughout.

Previously GGEs were only used to describe integrable sys-
tems. Here we showed that GGEs can make valid predictions
also away from integrable points, at least perturbatively. In
our opinion this illustrates the power of statistical mechanics,
which makes correct predictions provided that the observables
are not too complicated and only the accessible phase space is
included in the statistical operator.
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APPENDIX A: UNITARY PERTURBATION THEORY

We use a canonical transformation e°, similar to

Ref. 47, which reproduces second-order Rayleigh-Schrodinger
perturbation theory at the operator level and thus enables us to
construct the approximate constants of motion of H = Hy +
gH;. We expand the anti-Hermitian operator $ in powers of g,

o _ 3 1 28 3
S=g85 + ¢ 8%+ 0(@)

5 (AD)

and apply the canonical transformation to H,
¢ 8 N N PN | BN
e*He™ = Hy + g(H + [$1.Ho)) + gz(i[sz,Ho]
A A I A A &
+[S1. Hil + 5[51,[51,[‘10]]) +0(g%). (A2

The transformed Hamiltonian shall still have all Z,, as constants
of motion, i.e., we demand [¢° He ™%, 7,] = 0 for all , order by
order. We use the basis fa |n) = ny|n) and assume that the en-
ergies €, are incommensurate, so that the eigenenergies E, =
>y €ally Of I:IO are nondegenerate. To second order in g
we obtain for the transformed Hamiltonian and the unitary
transformation

Hgog = *He™ = Hy + gHy), + 2 Hyp) + 0(g),

(n|H\|m)
A ifn#m
(n|8i|m) =  BrEm ' ,
0 ifn=m
(nI[S1. By +Ao,llm)
A —_— 1fn m
(n|Sylmy = | EoEn zm
0 ifn=m

A, =Y ImEY(n],
n

|(m|H, |n)|*

B = (nlAiln) Y = 3 SE
n m

m(n)

s

from whjch the eigenvalues E,, [Eq. (14)] of the eigenstates
|7} =e~%|n) can be read off.
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APPENDIX B: TRANSIENTS IN NEARLY INTEGRABLE
SYSTEMS

A. Derivation of Egs. (5), (6), (8)

Here we obtain the transient behavior in second-order
unitary perturbation theory, in close analogy to the derivation
in Ref. 47. We assume that the initial state is an eigenstate of
Hy,

1V (0) = |p), (BI)

7, |p) = pol|p), and that the observable A commutes with all
constants of motion Z,. For now we set (A)y = 0 and reinstate
a possibly nonzero initial value at the end. Inserting the unitary
transformation for the Hamiltonian we obtain

(A), = <p|e"H’Ae"'H’|p>

(p|€ lHd,,,Ut SA€7S lHdiugteS|p)
= (ple S5V Ae=50S5 | p), (B2)
with the abbreviation S(f) = eiHune! Se=iHas’; in the last

line ﬂdiag has been commuted past A. Expanding the inner
transformation as

SOAe™SO = A 4+ [S4),A] + %[S(r),[S(r),A]] +0(g%
(B3)

and then similarly expanding the outer back transformation,
we have

§.A41— L1528 — 8,411

~ A

(A), = (plA+18(t) —

\S)

1 . N n
+5 8@, 1), Alllp) + 0(g%

—(pIS@) — HAS) — 5| p) + 0(g?)
—2(p|SAS|p) +2Re(p|SAS(1)| p) + O(g>).
(B4)

Here and below we frequently use that A annihilates | p), A
commutes with Hgise, and | p) is an eigenstate of Hgiag. In the
second term of the last equation we can rewrite

(pISAS(t)| p)

=— Y KplSIm)P

n(#p)

p|ng|n N —i(E,—
= 2 gy AR o)
nzp (Er~ En

n|A|n> —i(Ep—En)t

o]

) dow it 3
=—g / — J(@)e'” + 0(g). (BS)
w

—00
Here we have defined

J@)= Y [(plH|n)
n(#p)

(p|HiA8[w — (Ho — (Ho))] Hi|p), (B6)

(n|Aln)3[w — (E, — E)p)]
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as in Eq. (6). By setting r = 0 in Eq. (B5) we obtain a similar
expression for the first term in Eq. (B4), which leads to Eq. (8).
Equation (BS5) then also yields

o0

<A>t=g2/dw1( )

—00

4 51n2(a)t /2)

+ 0@, (BT

as in Eq. (5).

B. Evaluation for a small two-body interaction quench in a
Fermi gas

Here we evaluate the function J(w) for a two-body
interaction quench, i.e.,

=2 celllu:

{6,.¢5} = 8up and (&,.85)= 0; hence Vigys =—Vpays =

—Vapsy= Vﬂa(sy and Vygys = (Vsypa)*. The occupation
numbers 7, = c ¢, (with eigenvalues 0, 1) play the role of
constants of motion 7, of the unperturbed system (a Fermi
gas) before the quench. As observable we choose the change
in the occupation number of a state w,

=Y Vapys Chehe, 65, (BS)

afys

A=1,— T.)o=Au— pu (B9)
where | (0)) = | p) is the initial state with 7. P) = Palp), sO
that
J@)= D" Vapys Vapys (PlELChe,

afys
o' pBy's
X (i — pu) Sl — (Ao — Ep1&lehe, & p), (B10)

where Hy — E,, inside the § function evaluates to €, + €5 —
€, —es. In the initial state the single-particle level 1 may be
occupied (p,, = 1) or unoccupied (p,, = 0), and inside the sum
the operator (7, — p,,) must yield a nonzero contribution. We
consider first p, = 1, in which case this requirement leads to
a factor

[(Syu(l - 88//,) + SS/L(I - ayu))(l - 8(1/1)(1 - aﬁu)

X (1 - 3)/’;/.)(1 - 58/;1)(80//1_(1 - 8,3’;/.) + aﬁ/u(l - Sa’u.)]~
Using the symmetries of V,g,s we obtain the following
contribution to J(w):

Y gy Vappudlea +e5 — € — €, — )

apyp'y's’
(Fw

x (plefe, eyelehe, | p). (B11)
Next for p,, = 0 we find the factor
[aau(l - ‘Sﬂp,) + 8ﬁu(1 - 8au)](l - 8yu)(1 - 86/4)
X(l - 60///_)(1 - ‘Sﬂ’u,)[sy’u(l - 56’/1,) + 86’/1(1 - 8)/’/1,)]’
so that the contribution to J(w) is
(1= pu) Z 4ViupysVapyud(ey +€p — €, — €5 — )

apyp'y's
(Fw

(plelele, ehe e p). (B12)
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Evaluating the expectation values in Egs. (B11) and (B12) in
the product state | p) by contractions we finally obtain

J(w)
=- pu[m D (0 = pa) [ Wapl* 8 — €4 — )

+8)  [Vapyul* (1 — pa)(1 — pp)pySlea + €5
afy

—€ — € — w)} + (1- pu)[m > P | Wa* 8(ep

—€—®) + 8 |Vapyul (1 = pa)(1 = pp)py

afy
Oeq +€g—€, — €4 —w)i|, (B13)
with the abbreviation
Wap =Y Vappy Pp- (B14)

B
For completeness we now evaluate Eq. (B13) for the observ-
able iy, in the Hubbard model (4) by setting g = U and o =
(ky,01) etc.,

U
V. = —A(k ky —k; — k
8Vapys = 77 (ki +ky — k3 — ky)

X Z 8010802&(803&8040 - 803080457)a (BIS)
o
so that the terms containing W,,, drop out from Eq. (B13).
Here A(k) = + " ge'*® =3 . 8¢ g is the von Laue function
involving lattice vectors R or reciprocal-lattice vectors G.
Equation (B13) then takes the form
1
(@) = =7 D Aki+ ko — ks — k)
k1k2k3

X 8(ek, + €x, — €k, — €k — @)
x [ = pryo)(I = Piys) Piso Po
_Pklapkzd'(l _pk35')(1 _pka)]a (B16)
where py, are the momentum occupation numbers in the
initial state. When inserted into Eq. (5) this leads to the
same expression for the transient behavior that Moeckel and
Kehrein*’ obtained using continuous unitary transformations,
but here we used only a single unitary transformation.

C. Approximate constants of motion for a two-body interaction
quench

For completeness we note here the explicit
form of the approximate constants of motion Z,
[Eq. (13b)] in first order in g for a two-body interaction
quench to Hy + gH; [Eq. (B8)] with Ia —cT , for bosons or

fermions. The unitary transformation of Appendlx A yields

[8,¢,1=18,¢1

8Vapys € Cﬁqu;
-1

+ 0(gY),
a+€ﬁ—6y €s (g)

(B17)
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and hence
Ty =T, +e ¢, e’ —éle,
=7, —18.¢l1e, — el[S.e,1+ 0(g?
. Vig,s ctéte & + He.
— 7, o 8 e Calply +0(g), (BI)
7o €+ € — €, — €5

with the prime indicating that terms with €, + €g =€, + €5
are to be omitted from the sum.

APPENDIX C: Properties of the weak-coupling ground state of
the 1/r Hubbard chain

For the 1/r Hubbard chain the kinetic energy per lattice
site €, (U) can be obtained from the fact that the ground-state
energy is given by the variational Gutzwiller energy up to
0(U?),? which yields (W: bandwidth, L = number of lattice
sites)

€in(U) =

1 .
I > elins )
ko

n2—nW  n2Q2n=3)U? U3
4 12w +0<W2)' €h
For a quench from O to U the prethermalization plateau of each
momentum occupation number 7, is given by Eq. (8). Using
the fact that the total energy is conserved after the quench, the
prethermalization plateau of the double occupation d is then
given by

2
dsiat = (d)o — E[ekin(U) —aan(0)]+ 0U?), (C2)

which, together with Eq. (C1), yields Eq. (9).

APPENDIX D: GGE prediction for prethermalization plateaus
[Derivation of Eqs. (17) and (20)]

In the following derivation of Eqs. (17) and (20) we
repeatedly use Eq. (16), which fixes the Lagrange multipliers.
Several transformations between the eigenbases of the Z,, and

the %0, are performed. We have
o Te[Aem Todi]

(A)g = =
° Tr[e™ Xateta]
Tr[eS Ae=S e~ Lol ¢ A
Trle™ Xa*ela]
N A A | N
= (A+18,A1+ J1818,Al)g + 0", (D1)
where (-)4 denotes the GGE expectation value (2) but with

the A, still fixed by Eq. (16). We proceed to evaluate the three
terms in (A)g for an observable of the form (18). The first
term can be rewritten as

(D2)
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the second term vanishes, and the third term becomes

| A
<5[S,[S,A]]>)G

_y gl 5181181 ANlIn) + 0@ -,
n ZG

= @F({(Z)e) + 0(g)

= ng({(%a)O}) +0(g%)

= ¢ F({(Z)o) + 0(8Y)

_ s 5 ;
=8 2[51,[51,A]] + 0(g")
0

PHYSICAL REVIEW B 84, 054304 (2011)

| A
:<§[S,[S,A]]> +0(g%
0
(A — (A)o+ 0(g”)

<HI> ~ (), + 0.
i=1 )

i=1

(D3)

In the second step we have used that H, involves only the
creation and annihilation operators that occur in Hy so that
Wick’s theorem can be applied, yielding some function F of
the occupation numbers, which are then related to initial-state
expectation values in leading order in g. Then F is eliminated
by applying Wick’s theorem backward. Finally, equating
Egs. (8) and (D1) yields the condition (20).
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