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First-principles study of phonon linewidths in noble metals
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Phonon lifetimes in Cu, Ag, and Au at low and high temperatures were calculated along high symmetry
directions using density functional theory combined with second-order perturbation theory. Both harmonic and
third-order anharmonic force constants were computed using a supercell small displacement method, and the
two-phonon densities of states were calculated for all three-phonon processes consistent with the kinematics of
energy and momentum conservation. A nonrigorous Griineisen model with no g-dependence of the anharmonic
coupling constants offers a simple separation of the potential and the kinematics, and proved semiquantitative
for Cu, Ag, and Au. A rule is reported for finding the most anharmonic phonon mode in fcc metals.
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I. INTRODUCTION

Atelevated temperatures, phonon thermodynamics exhibits
phenomena beyond the harmonic model of lattice vibrations.
Heat capacities inconsistent with the Dulong-Petit limit, ther-
mal expansion, and finite thermal conductivity are well known
nonharmonic effects. Sometimes the harmonic model can be
adapted through the “quasiharmonic model” to explain these
effects. A quasiharmonic model assumes harmonic phonons
with infinite lifetimes, but with frequencies lowered (softened)
owing to thermal expansion. To account for finite phonon
lifetimes, other effects such as phonon-phonon interactions
or electron-phonon interactions must be considered.

In our previous study of aluminum,' a simple fcc nearly
free electron metal, we found that phonon-phonon inter-
actions dominate the phonon energy linewidth at elevated
temperatures. The phonon linewidth distribution over the
whole Brillouin zone shows clear locations of the most
anharmonic phonon modes. This trend is mirrored in the
two-phonon density of states that characterizes the total density
of available states for the decay or excitation of phonons
in three-phonon processes. Since the two-phonon density of
states is determined by the phonon dispersions, a systematic
study of similar fcc metals with different phonon dispersions
is helpful for identifying the interesting physics. We selected
three noble metals, Cu, Ag, and Au, that have very low
densities of states near the Fermi level so electron-phonon
interactions are small.”

Phonon-phonon interactions are responsible for the phonon
scattering processes that underlie thermal resistivity, a topic of
current interest for thermoelectric materials and thermal barrier
coatings, for example. Phonon lifetimes are a measure of
these scattering processes, but there have been few systematic
studies of phonon lifetimes besides optical measurements. For
noble metals, work on phonon damping includes only one
experimental study on copper® and one theoretical calculation
using an empirical method that relates the anharmonic force
constants to experimental third-order elastic moduli.* The
mathematical form of the interatomic potential in the latter
study contains numerous fitting parameters, and its final formis
somewhat uncertain. Furthermore, anharmonic elastic moduli
are not always available experimentally. A parameter-free
first-principles approach is therefore valuable for exploring
the microscopic physics of phonon-phonon scattering.
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There are two general approaches for calculating phonon
linewidth or lifetime from first principles. The first is based
on anharmonic perturbation theory,>® where the anharmonic
energy is treated as a perturbation to the harmonic energy.
The coupling constants between the harmonic phonons are
obtained through lattice dynamics calculations. The other ap-
proach is to analyze the normal mode correlation functions ob-
tained by molecular dynamics (MD) simulations (e.g., Ref. 7).
The MD approach has the advantage that it includes all
the anharmonicity, but it is usually restricted to high
temperatures where the atomic motion is treated classically.
In the perturbation theory approach, the main challenge is
to calculate the phonon coupling constants. Usually only
the dominant third-order anharmonicity and three-phonon
scattering processes are considered for phonon linewidths, but
this has proved successful.! The anharmonic force constants
can be obtained either by the direct supercell method or by
the reciprocal response method. The latter applies the “2n +
1” theorem to determine the cubic coupling coefficients in
the framework of density-functional perturbation theory.®’
Although only one unit cell is necessary in the response
method, it must be hard coded at the level of the wave function.
On the other hand, calculating directly the anharmonic force
constants with a supercell technique can be done with any
computational package that calculates forces from either
ab initio or empirical potentials.

Here we report results from a systematic study on phonon
energy broadening from phonon-phonon interactions in the
noble metals Cu, Ag, and Au using the direct supercell
method combined with density functional theory (DFT) for
lattice dynamics calculations. We first overview the theory
and computational methodology, then show calculated phonon
linewidths of the three metals and their temperature depen-
dence. We also present the leading anharmonic force constants,
the kinematic scattering mechanisms, and compare these three
metal systems. Finally, the results of a simplified model of
phonon linewidths are discussed.

II. COMPUTATIONAL METHODOLOGY

The essential inputs for phonon linewidth calculations
with the direct supercell method are the harmonic and third-
order anharmonic force constants that appear in the Taylor
expansion of the total energy E with respect to atomic
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Here Ej is the total energy of the crystal when all the atoms
are fixed at their equilibrium positions. The second term is
zero when the system is in equilibrium. The third term is
the harmonic contribution to the total energy and the fourth
terms and beyond are the anharmonic contributions to the total
energy. The coefficients in the expansion (from left to right) are
forces F;, harmonic force constants ¢;;, and cubic and quartic
anharmonic force constants ¢; ;,, and ¢; j,,. The index i denotes
a set (I,k,a), where [ is the unit cell index, k is the atom index
in the unit cell, and « is the index for cartesian coordinates.
Within the harmonic approximation, which considers up to
the quadratic terms in the total energy expansion of Eq. (1),
phonons are independent, noninteracting quasiparticles with
infinite lifetimes. To account for finite lifetimes, higher order
terms are needed. In the lowest order of perturbation theory,
the cubic term dominates. Considering the cubic anharmonic
energy as a perturbation to the harmonic system, the inverse of
phonon lifetime, 2T, derived from second-order perturbation
theory>® within the single-mode relaxation approximation is

wh
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where N is the number of unit cells, 7 is the Planck constant,

and n is the Planck distribution function. & is the Fourier

transform of the third-order lattice anharmonic tensor:
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and w(q,j) is the phonon frequency with wave vector q
and branch index j, obtained by diagonalizing the dynamical
matrix D:

@’(q,j)e(q,j) = D(ge(q, ), )

where

D(q) = ; Z ¢a/3(()k’[k’)eiQ-(R(lk’)fR(Ok)) (5)
mijnty 7

and e(q,7) is the eigenvector of mode (q,i), and m is the mass
the k™ atom in the unit cell. R(/,k) is the position of the k™
atom in the /™ unit cell.
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With Egs. (1)-(5), calculations of phonon linewidths
require second-order harmonic and third-order anharmonic
force constants, which can be obtained ab initio. In the
supercell method, the force constants are obtained from
small displacements of atoms A, and the Hellmann-Feynman
theorem. Accurate calculations of forces, however, require
the computational cells to be large enough so the interaction
between the displaced atom and its image outside the supercell
is negligible. In addition, the strategy of both positive and
negative displacements is often used, which not only reduces
numerical risks from small displacements, but also eliminates
the effect from higher order anharmonicity. This construction
allows the calculation of harmonic force constants:

1
$ij = oA -8Filu; = &) +8F ;= —A)
+Fi(uj =20) = Filu; = =2A)], ©)
the semidiagonal cubic force constants:
1
bijj = @[Fi(uj =A)+ Fi(u; = —A)
— Fi(u; =2A) — Fi(u; = =2A)], M

and nondiagonal cubic force constants:

1
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+Fuj = =AM = A) = Fuj = —Aug = —A)].
)

The practical implementation starts with determining the
independent harmonic and anharmonic force constants for the
supercell, followed by ab initio calculations of atomic forces
from the displacements of a single atom or a pair of atoms
in the supercell. The force constants are then constructed
using Eqgs. (6)—(8). Equations (3)—(5) are used to compute
the harmonic phonon characteristics and anharmonic phonon
coupling constants, from which the phonon linewidths are
evaluated using Eq. (2). Numerical issues include the choice
of small displacements and the enforcement of sum rules for
the force constant matrix. The symmetry of force constant
elements has been taken care of automatically in the symmetry
analysis for the independent tensor elements.

The present study of phonon linewidths of noble metals
used the VASP package'®'? and Blochl’s projector aug-
mented wave (PAW) potentials'>'* for all energy and force
calculations with DFT. Both the local density approximation
(LDA) and the generalized gradient approximation (GGA)
for the exchange-correlation functional were used. The func-
tional that gave better phonon dispersions was used for the
linewidth calculations. The electronic structure was calculated
self-consistently using a 24 x 24 x 24 k-grid for one-atom
unit cells. The choice of 0.1eV for the Methfessel-Paxton
smearing and the default plane wave energy cutoff in the
pseudopotentials consistently gave converged energies for
all three metals. The ground state structure found by fitting
the energy-volume relationship to the third-order Birch-
Murnaghan equation of state was used in the subsequent
calculations. Convergence with respect to the supercell size
and k-point sampling was tested thoroughly in the previous
study of lattice dynamics of fcc metals by Grabowski et al.'> To
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calculate forces accurately, we used the same large 256-atom
supercells (4 x 4 x 4 conventional fcc unit cell) and a k-point
sampling grid of 3 x 3 x 3. The augmentation grid was exactly
twice as large as the coarse grid for representation of the
pseudowave functions. An additional grid was switched on
to help reduce the noise in the forces. By symmetry, there
are in total 55 independent harmonic force constants and
6205 independent third-order anharmonic force constants in
a 256-atom fcc Bravias supercell lattice, leading to 1 or 272
irreducible distorted supercells with one atom or a pair of
atoms displaced from their equilibrium positions. Both positive
and negative displacements of 0.02 A were used to cancel
effects from higher order anharmonicities. Phonon linewidths
were calculated with Eq. (2) using a 24 x 24 x 24 g-point grid
with an additional 32 x 32 x 32 interpolation within the prism
around each g-point, giving well-converged results.

Although large supercells and fine k-grids were needed
to obtain accurate forces, anharmonic force constants were
found to decay rapidly with interatomic distance. The leading
contributions to the phonon linewidths were from the nearest
neighbor coupling constants. Phonon linewidths from calcu-
lations that include anharmonic constants from more distant
neighbor shells were compared. The differences were small,
so the leading contribution of linewidths from the nearest
neighbor anharmonic interactions are presented in this study.

III. RESULTS

Table I presents the equilibrium lattice constants predicted
from ab initio DFT calculations using the LDA and GGA
density functionals with comparison to experimental results.
It is known that LDA underestimates the lattice constant while
GGA overestimates it. Our results are consistent with this
general trend, but GGA gives lattice constants for copper in a
better agreement with experiment, whereas LDA does better
for gold. Both GGA and LDA give lattice constants for silver
of similar difference from the experimental value.

Figure 1 shows the calculated phonon dispersions of three
noble metals at calculated equilibrium volumes at 0 K. As
for the prediction of lattice constant, GGA gives Cu phonon
dispersions in a much better agreement with experiment than
LDA, while LDA does better for Au. While an excellent
agreement between experiment and calculations is seen for
both Cu and Au, there is a notable difference for Ag using either
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TABLE 1. Lattice constants (A) of noble metals from both LDA
and GGA PAW-potentials and experimental room temperature values.
Deviations from experimental lattice constants are in parenthesis.

Metal system LDA-PAW GGA-PAW Experiment
Cu 3.5246(—2.36%) 3.6452(40.97%) 3.61
Ag 4.0158(—1.81%) 4.1623(+1.77%) 4.09
Au 4.0613(—0.46%) 4.1748(4+2.32%) 4.08

functionals, although LDA is slightly better. This discrepancy
was reported previously.'> Further tests were made with a
larger supercell (500 atoms) and finer k-grid (4 x 4 x 4). The
improvement was minimal. Hence we attribute the discrepancy
for Ag to the exchange-correlation functional rather than
computational issues. Since the phonon dispersions serve
as the basis set for the phonon linewidth calculations, the
potential that gave phonon dispersions with better agreement
with experiment was used for phonon linewidth calculations,
i.e., the GGA PAW-potential was used for Cu, and the LDA
PAW-potential was used for Ag and Au.

As shown in Eq. (2), the phonon linewidth is determined
by both phonon scattering kinematics and phonon coupling
constants. The kinematics originates with the phonon dis-
persions, i.e., the energy-momentum relationships of all the
phonons, whereas the coupling constants are closely related
to the anharmonicity of the interatomic potentials. Table II
lists the dominant third-order anharmonic force constants for
different atom pairs in the first-, second-, and third-neighbor
shells calculated from a 256-atom supercell model. Harmonic
force constants are listed for comparison. While the onsite
force constants are the largest harmonic terms for these fcc
metals, the corresponding third-order onsite force constants
vanish by symmetry. The dominant third-order force constants
are the bond-stretching forces between the reference atom and
its nearest neighbor. The corresponding bond-bending force
constants for nearest-neighbor pairs (not listed) are smaller
by one order of magnitude. For the reference atom and its
second- or higher-nearest neighbors, both bond-stretching
and bond-bending anharmonic force constants are one order
of magnitude smaller than those from the nearest-neighbor
interactions. The differences in the anharmonic forces between
second-, third-, and fourth-neighbor interactions are much less.
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FIG. 1. (Color online) Phonon dispersions of (a) copper, (b) silver, and (c) gold along high-symmetry directions calculated using both LDA
(green) and GGA (red) exchange-correlation functionals, with LDA results consistently higher than GGA. The experimental points are from

Ref. 16.
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TABLE II. Leading harmonic and anharmonic bond-stretching
force constants of neighboring pairs from different shells. The bond
direction is rotated to be along z-axis by covariant transformation.
1 and 2 denote first and second atoms, respectively; 1st, 2nd, 3rd
denote the neighboring shell of the second atom. Harmonic and third-
order anharmonic force constants have units of eV/A? and eV/A3,
respectively.

Onsite P2 @2
ol ol Ist 2nd 3rd Ist 2nd 3rd
Cu 0 6569 —-9.312 0.061 0.028 —1.678 —0.067 —0.048

Ag 0 6213 —-9.40
Au 0 7.127 —-12.50

—0.042 0.018 —1.802 —0.082 —0.037
—0.297 —0.006 —2.397 —0.267 —0.032

The leading anharmonic force constants increase from Cu to
Ag to Au, indicating an increase of anharmonicity.

While the third-order phonon coupling constants affect the
coupling strength between phonons in three-phonon scattering
processes, a prerequisite is that these three phonons satisfy the
kinematic condition of momentum and energy conservation.
As defined previously,' the kinematics can be categorized into
down-conversion processes D and up-conversion processes
Dqﬁ

1
Di@=~ ) AQ-a—g)é@—o —w) )

q1,92,j1, /2

1
D@ =~ ) Ad+a—g)d@ -+ —w). (10)
q1.92, /1.2

Owing to energy and momentum conservation, down-
conversion processes are kinematically forbidden for the
lower energy transverse phonons TA;. A generalization of
this rule has been proved—a phonon cannot decay by any
anharmonic process into a set of phonons of higher phase
velocity.!” As we reported for aluminum,! TA phonons are
scattered mostly by up-conversion processes; LA phonons,
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especially short-wavelength ones, are scattered mostly by
down-conversion processes (Fig. 2). Table III lists the relative
contributions from different scattering processes for both LA
and TA modes near zone boundaries and the zone center. The
dominant decay channels for short-wavelength LA phonons
are LA <> TA + TA and LA < LA + TA. Toward the zone
center, fewer down-conversion channels become available, and
up-conversion channels start to open for LA phonons at g-
vectors where their energies are lower than some TA phonons.
Scattering channels change from LA <> LA — TA dominance
to LA <> TA — TA dominance as the g-vector approaches the
zone center. From the symmetry of the scattering channels,
the dominant scattering channels for TA phonons near the
zone boundary are TA <> LA — TA. Near the zone center,
processes such as TA <> TA — TA and TA <> LA — LA start
to dominate for the TA phonons.

Across Fig. 2, one sees notable differences in the D and
D, processes for Cu, Ag, and Au, indicating differences in
the number of scattering channels for each mode. Figure 3
shows the linewidths of phonon modes at three representative
temperatures along the same high symmetry directions, where
the GGA PAW-potential for Cu and the LDA PAW-potential
for Ag and Au were used in the linewidth calculations. The
room temperature phonon linewidths from the prior neutron
scattering measurements® are about twice as large as our cal-
culated linewidths. (Curiously, the temperature dependences
of the measured linewidths are much smaller,” and sometimes
almost negligible.) Despite the large differences between Cu,
Ag, and Au, their phonon linewidths are comparable, and have
similar trends along crystallographic directions. Nevertheless,
the phonon linewidth does not change monotonically with ¢
vector as does the phonon energy. These three metals have
different locations for their most anharmonic phonons. Along
the I'-X direction, the phonon of broadest linewidth in Cu
is at the X-point (1,0,0), but is at about (5/6,0,0) in Ag
and (2/3,0,0) in Au. These features are also seen in Fig. 2.
Comparing to previous results from an empirical model by
Zoli et al.,* we find peaks in linewidth at similar locations on
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FIG. 2. (Color online) Two-phonon density of states of copper (a), silver (b), and gold (c) along high-symmetry directions. D in red shows
the down-conversion processes and Dy in blue shows the up-conversion processes. The Dy is always larger near I', but D, is larger near K

except for the TA; mode.
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TABLE III. Percentage of different scattering processes for LA and TA modes near X-point of zone boundary and near zone center I".

qg — X
LA TA + TA (%) LA + LA (%) LA + TA (%) TA TA — TA (%) LA — LA (%) LA — TA (%)
Cu 98.2 0.0 1.8 Cu 0.0 7.9 92.1
Ag 95.8 0.0 4.2 Ag 0.0 6.1 93.9
Au 91.0 0.0 9.0 Au 0.0 2.2 97.8
qg—T
LA TA — TA (%) LA — LA (%) LA — TA (%) TA TA — TA (%) LA — LA (%) LA — TA (%)
Cu 90.4 0.0 9.6 Cu 79.4 14.0 6.6
Ag 914 0.5 8.1 Ag 73.0 24.7 2.3
Au 94.2 0.2 5.6 Au 79.2 20.3 0.5

the LA and TA branches, and we find the phonon linewidths
at room temperature are comparable. (The peak in the
broadening on the LA branch of Ag was missed in the previous
study, however, since it lies between the five calculated data
points.)

Figure 3 also shows the effect of temperature on phonon
broadening. Since the scattering rate of a phonon is propor-
tional to the occupation number of the other two phonons,
phonon linewidths increase with temperature. At 0K, the
linewidths of the lowest energy TA modes are zero because
the up-conversion contribution vanishes as T — 0, whereas
LA modes have small linewidths (less than 0.2 meV) because
down conversion processes have a finite value due to the
spontaneous decay of a phonon into two lower energy phonons.
Athigh temperatures, the phonon occupation number increases
linearly with temperature, and so does the phonon linewidth.
These noble metals all have Debye temperatures below room
temperature, so linewidths calculated at 300 and 600K are
approximately in the linear region. The proportionality can be
estimated from the increase of phonon linewidth from 300 to
600 K. For example, the LA mode of Cu at the X-point has
a linewidth about 2 meV at 300K (6.7% of its energy), and

increases to 3.9 meV at 600 K (13% of its energy if neglecting
thermal expansion). This gives a rate of increase of linewidth
of 0.006 meV K, or a rate of decrease of quality factor (%)
of 0.021% K.

Three-phonon processes are categorized as normal pro-
cesses or umklapp processes, depending on whether or not a
reciprocal lattice vector is needed for momentum conservation.
For fcc noble metals, umklapp processes contribute nearly 90%
of the phonon linewidth. If we decompose the contribution
to the linewidth to down-conversion and up-conversion pro-
cesses, we find down-conversion processes contribute about
99% of the phonon linewidth of LA modes, while the
linewidths of TA modes are mostly from the up-conversion
processes.

IV. DISCUSSION

Both the anharmonicity of the potential and the kinematics
of phonon scattering contribute to the overall linewidth, but the
decoupling of these two effects is not straightforward. On the
other hand, we do see common features in the two-phonon
densities of states D, and D; and the phonon linewidth
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FIG. 3. (Color online) Phonon line widths of (a) copper, (b) silver, and (c) gold along high-symmetry directions at 0 K (dotted line), 300 K

(solid line), and 600 K (dashed line).
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FIG. 4. (Color online) Comparison of phonon linewidth for (a) copper, (b) silver, and (c) gold along high-symmetry directions at 600 K
between model predictions (solid-line) based on Eq. (14) and direct calculations (dashed-line) from Fig. 3. LA branch is shown in red (highest
curves), the lowest-energy TA, branch in green, and the TA, branch in blue.

2I", especially in the outer parts of the Brillouin zone. This
correspondence suggests an approximation of ignoring the
g-dependence of ® in Eq. (2), and separating an anharmonic
potential factor from a kinematic factor when calculating
phonon linewidths. Although this is not rigorous, we explore
this approximation in what follows, and we find that it has at
least semiquantitative success for fcc Cu, Ag, and Au.

A comparison of Figs. 2 and 3 shows that the broadening
contribution from the dominant up-conversion processes is
suppressed in the inner part of Brillouin zone near I'. An
explanation can be found in a simplified Griineisen model for
the phonon coupling constants proposed by Klemens:'®

B e e i 2iy . . . 1

(@/;91/1592)2) = NEDT o(qj)o(qij)o(gzj2),  (11)
where y is the Griineisen parameter, v is the sound velocity,
and m is the mass of the atom. Using Eq. (11) in Eq. (2),
and considering the high temperature limit so iw < kpT and
n="%40»1,

kgT j
(4 my 18 —an —ap) = BT Q@) )
L w(qrj)o(qz)2)
and
kgT j
(n1 —n2)d(w + ) — wy) =~ B—%, (13)
o w(qrj)o(qz)2)
so Eq. (2) is reduced to
. 7wkgT y’o(q,j)* . .
(g, j) = 2= VYT (g, )+ 2D4(a, ). (14)

6 muv?

In the low temperature limit as 7 — 0, the phonon occupa-
tion number n — 0, and only down-conversion processes D
contribute to the phonon broadening. Since the final state en-
ergy spectra are symmetric with half of the energy of the decay
phonon, Okubo and Tamura'® made a further approximation
that w(q j1) = o(qoj2) = %, reducing Eq. (2) to
wh y*w(q.))’ .
YR et NG B2

Although Eqgs. (14) and (15) are not rigorous, they directly
connect the phonon linewidth to the two-phonon density of
states, and help explain the main physics. As shown in Fig. 2,
up-conversion processes D, are prominent as g — 0, but
their contribution to the phonon linewidth is small. This is

2I(q,)) = (15)

understood with Eq. (14) in which the two-phonon densities
of states are weighted by w?. Similarly, Eq. (15) suggests that
linewidths for most TA modes are zero as T — 0 because
down-conversion processes are prohibited.

Using experimental Griineisen parameters of 2.0, 2.4, and
3.0,20 and average sound velocities of 3.687, 2.617, and
2.059 km/s for Cu, Ag, and Au, respectively, we calculated
phonon linewidths at 600 K with Eq. (14) and show the results
in Fig. 4. The linewidths predicted with Eq. (14) generally
overestimate the phonon linewidths in comparison to those
from the full calculations shown in Fig. 3. Nevertheless, the
Griineisen model for anharmonic force constants gives ap-
proximately the magnitude and shape of the phonon lineshape
broadening. In further work, the individual mode Griineisen
parameters were obtained from the DFT calculations by
examining the change in phonon frequencies with changes
in the lattice parameter, and Eq. (11) was again used to obtain
phonon coupling constants. The linewidths calculated with this
more detailed model using mode Griineisen parameters were
in no better agreement with the full DFT calculations than the
results shown in Fig. 4.

An interesting difference between the LA phonon
linewidths of Cu, Ag, and Au is the location of the most
anharmonic mode (see Fig. 3), which corresponds to the
highest peak in the two-phonon densities of states (Fig. 2).
By analyzing the energies of the phonons in the final state of
the decay process and comparing them with the one-phonon
densities of states, we find the final state energy spectra of
these most anharmonic modes have the highest density of
states for their decay. The central energy of the final state
phonon spectra is at half of the energy of the initial phonon,
and located where the one-phonon density of states is high.
This can be generalized. The maximum linewidth of the LA
modes is at least at twice the energy of the first Van Hove
singularity in one-phonon density of states.

Finally, the full phonon linewidth comprises contributions
from both phonon-phonon interactions and electron-phonon
interactions. Because of the low electronic density of states
near the Fermi level, the electron-phonon interactions in these
noble metal systems are expected to be small.>! The effects of
electron-phonon coupling on phonon linewidths of Au were
predicted by a previous first-principles study to be less than
0.01 meV,”? which is 2 orders of magnitude smaller than
the effects of phonon-phonon coupling at room temperature.
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Interestingly, these calculations also gave prominent peaks
in linewidth at the K and L points, much as seen in
Fig. 3.

V. CONCLUSIONS

A systematic first-principles study of lattice anharmonicity
and phonon linewidths was performed for the noble metals
Cu, Ag, and Au using density functional theory with phonon-
phonon scattering theory. A direct supercell method was
used to obtain both harmonic and third-order anharmonic
force constants. While large supercells and fine k-grids are
required for accurate forces due to the long-range interactions
in these metal systems, the dominant contribution to the
phonon linewidth is from the anharmonic force constants
between nearest neighbors. The phonon linewidths of Cu,
Ag, and Au are comparable. The LA phonons of maximum
linewidth are at different g-points for these three metal systems
owing to differences in their final state spectra. For Cu, Ag,
and Au, these peak LA linewidths occur at energies at least
twice that of the first TA Van Hove singularity in the one-
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phonon densities of states. A simple Griineisen model for the
anharmonic phonon coupling constants can separate the third-
order anharmonic potential from the scattering kinematics and
connect directly the two-phonon densities of states with the
phonon linewidth. Although not rigorous, this model predicts
phonon linewidths that are in semiquantitative agreement with
full calculations for Cu, Ag, and Au. An energy factor before
the two-phonon densities of states boosts the contribution
from down-conversion processes, depresses the contribution
from the up-conversion processes, and causes the maximum
phonon linewidth to lie away from the center of the Brillouin
zone. With its lower phonon energy and comparable phonon
broadening as copper and silver, gold is the most anharmonic
of these three noble metals.
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