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Correlation function analysis of fiber networks: Implications for thermal conductivity
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Transport properties of highly porous fiber structures are investigated. The fibers are assumed to be thin, but
long, so that the number of interfiber connections along each fiber is large. We show that the effective conductivity
of such structures can be found from the correlation length of the two-point correlation function of the local
conductivities. The correlation function in the most interesting cases can be estimated from two-dimensional
(2D) images of the structures. This means that the three-dimensional conductivity problem can be considered
using 2D digital images of the structure. We apply this approach to analyze the parameters that determine the
thermal conductivity of fiber structures.
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I. INTRODUCTION

Composite materials consisting of long fibers with high
thermal conductivity (TC) embedded in an amorphous matrix
with low thermal conductivity are becoming very common in
modern applications. Such materials can be used as thermal
barrier coatings. Long fibers are necessary to ensure the
mechanical strength of the coating. Long high-TC fibers
are also useful to give anisotropic properties to the coating.
Ablative thermal protective systems (ATPS) are an example of
such materials that are used to protect space vehicles from the
extreme environment of atmospheric entry. These materials
typically consist of a low density, but rigid, carbon fiber
material infiltrated with a phenolic resin.

PICA (phenolic impregnated carbon ablator), a material
developed by NASA, is an example of currently used ATPS.3,4

PICA is made from a carbon fiber insulation (Fiber Materials,
Inc. under the trade name Fiberform R©) impregnated with
a phenolic resin. The typical diameter of the fibers in
PICA is 14–16 μm and their length exceeds ∼1600 μm.
The resin creates a highly porous thermoset structure after
polymerization with a low bulk density ranging from 0.22
to 0.27 g/cm3. The processing method used for PICA gives
a parallel orientation to the fibers, which promotes a low
through-the-thickness thermal conductivity, which is an impor-
tant property for these insulating materials. Characterization of
the effective properties of this novel material is a challenging
task. Typically, such materials are used at high temperatures
when thermal transport occurs through a combination of
conduction, radiation, and convection mechanisms. In this
paper, however, we concentrate only on the conduction
part; the other components will be addressed in future
work.

Despite many detailed studies, the full potential of highly
porous fibrous materials has not been realized. Further
progress will depend on the ability to estimate and model
accurately their properties. Sophisticated approaches have
been developed to model the thermal response of ATPS.
For example, FIAT (Fully Implicit Ablation and Thermal
response code) was developed by NASA for one-dimensional
(1D) simulation of kinetically controlled pyrolysis, in-depth
conduction, blowing due to pyrolysis gases, and surface

recession as a function of time using 1D models of ablation
for porous materials.2,5–9 The program TITAN, also developed
by NASA, extends FIAT to 2D.7 However, these programs
assume that the materials are homogeneous and therefore
do not describe the relationship between microstructure and
thermal response.

Direct numerical calculation of transport properties in 3D
fiber composites is very difficult (see, e.g., Ref. 10). Indeed,
it is often necessary to consider a 3D-transport equation on
a fine-structure mesh. The mesh spacing should be much
smaller than the fiber thickness, while the total size of the
mesh network should exceed the fiber length. Moreover,
the composite structure can be very complicated and its
microscopic description may require many parameters.11 The
question arises whether all of these parameters are important
for TC estimation or whether this estimation can be achieved
from knowledge of a smaller set of parameters. We showed
previously that knowledge of the two-point correlation func-
tion (CF) is sufficient for TC estimation in nonhomogeneous
materials of low porosity.12,13 It is not clear, however, whether
the CF is sufficient for modeling the thermal conductivity of
highly porous fiber materials (porosity ∼80–90%) or whether
higher-order correlation functions will be required.

An important property of fiber structures is their anisotropy.
Anisotropy can be created explicitly, however, a typical fiber
structure will always be anisotropic due to nematic ordering.
The effect of anisotropy on the electrical conductivity in such
structures has been studied14 and exact scaling laws have
been obtained.15 The dependence of TC on fiber orientation
was observed, e.g., in oriented fibrous carbon insulation.2

Room-temperature in-plane thermal conductivity of carbon
insulation at 1575 K was reported to be 0.05 W/mK normal
to the fibers plane and 0.14 W/mK in the fibers plane.
Thermal conductivity of fibrous materials with a phenolic
resin matrix was reported to be ∼2.4 higher in the direction
of fiber alignment compared to that through-the-thickness.16

Filled honeycombs, multilayers, and tile-like structures can
also be manufactured to yield anisotropic properties of the
corresponding structure.17

Qualitative estimates of conductivity for fiber structures
have been done in Ref. 18. It was shown that the conductivity
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can be expressed in terms of the porosity of the structure, the
thickness of the fibers, and the mean distance between fiber
connections. It is not clear, however, how to estimate these
parameters from the two-point correlation function, which
is not simple since the CF cannot be approximated with a
single exponent or a Gaussian function. This problem will be
considered in this paper. We show that the total porosity and
the correlation lengths along each (x, y, and z) direction are the
only parameters needed to estimate the conductivity of fiber
structures.

We start with a simple model of TC, which is a general-
ization of that proposed in Ref. 18 for anisotropic media. We
assume the fibers are long enough, so that each of them has
many crossing points along their length. This means also that
the number of fibers per unit volume exceeds the percolation
threshold. This is the main point that distinguishes our model
from the previous studies where only the conductivity near the
percolation threshold was investigated.14 We found that TC
can be expressed in terms of the porosity of the structure and
the mean distance between the fibers in each direction. In the
following two sections, we show that all these parameters can
be estimated from the CF.

In Sec. III, we consider 2D models of the structures that
consist of straight square fibers with equal thickness and
length. For models with different fiber lengths, we can directly
measure all parameters of the structure and then compare them
to results obtained from the CF calculated from the image of
the structure. We relate the parameters of the structure to the
correlation lengths of the CF. In Sec. IV, we generalize these
results to the 3D case.

II. THERMAL CONDUCTIVITY OF FIBER STRUCTURES

A. Thermal conductivity of the Fiberform

Fiberform is the starting material for PICA, which is
composed exclusively of fibers before infiltration with the
resin. At low temperatures, heat conduction through the fiber
network is the primary mechanism of thermal transport in such
structures. We assume Fiberform to be an array of cylindrically
shaped fibers, each fiber being geometrically characterized by
its length l and diameter d. If n is the fiber concentration,
i.e., the number of fibers in the unit cube, then these three
parameters: l, d, and n, will characterize Fiberform. We
introduce also the fiber density as Vf = πnd2l/4 (Vf = ndl

in the 2D case). All fibers will intersect in a 2D model, if they
are long enough and close. This is not the case in 3D models,
since noncoplanar fibers can be skewed.

We assume that the fibers are thin (d � l) and long, so that
the mean distance between neighboring connecting points λ is
small compared to the fiber length (λ � l). This also means
that the concentration of fibers is large enough, so that we are
well above the percolation threshold.

Suppose an external thermal gradient is applied along the
z axis, and assume cylindrical symmetry for the fiber network
with respect to this axis, i.e., we consider heat flow along
the z direction (see Fig. 1). We consider two points on the
fibers in the plane z = const. The temperature T at these

FIG. 1. Schematic of heat transport in a fiber structure. Axis z is
the direction of heat flux.

points can be different but their average values are equal.
Indeed, the condition λ � l means the existence of percolation
between the points, while 〈T (r i)〉 �= 〈T (rk)〉 ensures a heat
flux between them. The latter is forbidden by cylindrical
symmetry, therefore 〈T (r i)〉 = 〈T (rk)〉.

Let us find the heat flux Iij through a fiber connecting
two points r i and rj at two close planes z = 0 and z = h,
respectively (see Fig. 1):

Iij = πκf d2

4lij
[T (r i) − T (rj )].

Here, κf is the fiber thermal conductivity, lij = |r i − rj | =
h/| cos θij |, and θij is the angle between the fiber and the
z axis. The total flux through the plane z = 0 is equal to the
sum of all the fluxes over all fibers crossing the plane:

� =
∑

Iij = κeffS

h
[〈T (r i)〉 − 〈T (rj )〉].

This allows us to determine the effective thermal conductivity
κeff as

κeff = πκf d2N

4S[〈T (r i)〉 − 〈T (rj )〉] 〈cos θij [T (r i) − T (rj )]〉.

Here, N = 4S/πD2
⊥ is the total number of fibers crossing the

plane z = 0, S is the side area of the specimen in this plane,
and D⊥ is an average distance between the fibers crossing
the plane z = 0. Assuming that 〈cos θij [T (r i) − T (rj )]〉 =
〈cos θij 〉〈[T (r i) − T (rj )]〉, one finds

κeff = d2

D2
⊥

κf or κeff = D‖
D‖ + 2D⊥

Vf κf , (1)

where D‖ is an average distance between the fibers along the
z direction, so that Vf = d2(D‖ + 2D⊥)/(D2

⊥D‖).
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In a similar way, we can consider TC across the z axis. The
results are

κ‖ = d2

D2
⊥

κf , κ⊥ = d2

D‖D⊥
κf ,

or equivalently,

κ‖ = D‖
D‖ + 2D⊥

Vf κf , κ⊥ = D⊥
D‖ + 2D⊥

Vf κf , (2)

where κ‖ and κ⊥ are the components of the effective TC along
and across the z axis, respectively. Thus

2κ⊥ + κ‖ = Vf κf ,
(3)

κ⊥/κ‖ = D⊥/D‖.

The former equality represents the trace of the conductivity
tensor, which is invariant with respect to the axis used. The
latter equality is in agreement with Ref. 15. In particular,
for an isotropic structure D‖ = D⊥ = D, the effective TC
becomes

κeff = d2

D2
κf = 1

3
Vf κf .

The factor 1/3 appearing in the last equation indicates
that the rule of mixtures cannot be applied to the fiber
structures. To understand the reason, let us consider TC
along the side of a simple cubic fiber network. We assume
thin fibers, so that heat propagation exists only along the
fibers, but not across them. Therefore, only fibers oriented
along the applied temperature gradient participate in TC.
The effect of the other 2/3 fibers can be estimated, if we
replace the cube side D by D − d. Then κeff = d2/(D − d)2 ≈
(1 + 2d/D)d2/D2. The factor 1/3 disappears when
d 
 D.

B. Thermal conductivity of ATPS

In this section, we consider a material consisting of fibers
embedded in a matrix with small TC, κM � κf . The effect of
the matrix is twofold. First, there can be a direct heat flux across
the matrix. Second, there can be heat transport through the
fibers and across narrow bridges between two skewed fibers.
The second effect can be important, if the thermal resistivity
of such bridges is on the order of the resistivity of the fibers
between two connection points. Let us first consider the second
effect.

Let δ be the length of such a bridge. The bridge is important
if its resistivity is less than or comparable to the resistivity of
the appropriate fiber part, i.e., δ/κM � λ∗/κf . Here, λ∗ is the
distance between two bridges whose size is less than δ. It can
be estimated similarly to Eq. (9):

λ∗ = 3

2n(d + δ/2)l
.

Considering the cube, λ∗ × λ∗ × λ∗, we can write its resistivity
as

R =
(

λ∗

κf d2
+ δ

κMd2

)
D2

λ∗2 = 1

λ∗κeff
,

from which one finds

κeff = λ∗d2/D2

λ∗/κf + δ/κM

= d2/D2

1/κf + δ/λ∗κM

. (4)

The above relation coincides with a similar estimation for
κeff in Ref. 18, if we assume, δ/λ∗ = d2/λ2 or δ 
 Vf d.
Equation (4) turns into Eq. (1), if the last term in its
denominator is omitted. This is possible when δ/λ∗ � κM/κf

or Vf δ2/d2 � κM/κf .
Another way to take the bridges into account consists of

assuming each fiber is surrounded by some layer, so that the
thickness of each fiber is δ0 > d and its effective TC is κ̃ =
[κf d2 + κM (δ2

0 − d2)]/δ2
0. Substituting the latter into Eq. (1)

with d → δ0 yields

κeff = κf d2 + κM

(
δ2

0 − d2
)

D2
.

This means that the fiber network and the matrix can be
considered as two resistors connected in parallel. Therefore,
the TC of the structure can be estimated as19

κeff = 1

3
Vf κf +

(
1 − 4

3
Vf

)
κM. (5)

III. CORRELATION FUNCTION OF THE 2D FIBER
STRUCTURES

In order to estimate the parameters D‖ and D⊥ required
for TC modeling, we consider the CF of fiber structures. We
introduce the CF as

W (r,r ′) = 〈[η(r) − 〈η(r)〉][η(r ′) − 〈η(r ′)〉]〉
4Vf (1 − Vf )

, (6)

where 〈· · ·〉 denotes an ensemble average and the characteristic
function η(r) is given by

η(r) =
{

1, if r is inside a fiber,
−1, otherwise.

For statistically homogeneous media, Eq. (6) depends only
on the difference between two arbitrary points r and r ′,
[W (r,r ′) = W (r − r ′)]; it is equal to unity at the coordinates
origin, W (0) = 1 and vanishes at infinity. If the media is
isotropic, then W (r,r ′) = W (|r − r ′|). The aim of this section
is to calculate the CF using the structure image and to estimate
the parameters of the structure from the appropriate correlation
lengths. We will see that the CF is determined by the fiber
thickness d and the distance between the intercrossing points of
the fibers, if their density is large enough. Otherwise, the fiber
length becomes the second correlation length. To evaluate the
CF from digital images, we employed the procedure outlined
in Ref. 20.

Figure 2 displays the 2D fiber models and the corre-
sponding CF. All the structures are composed of similar
fibers; they have the same positions and orientations, and are
distinguished by the fiber length only. Fibers in Fig. 2 (a)
are short, so that they do not intersect. The corresponding
CF have two correlation lengths: one of them is related to
the fiber thickness (r/d = 1) and the other one to the fiber
length. The CF of different structures of this figure are well
distinguished.
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FIG. 2. (Color online) Two-dimensional models of fiber struc-
tures and corresponding correlation functions W taken along the hor-
izontal axis x. (a) Short-fiber models with aspect ratio, (l/d) = 2,6,
and 10 and Vf = 0.01, 0.04, and 0.07, respectively. (b) Long-fiber
models with aspect ratio, (l/d) = 28, 36, and 46 and Vf = 0.17, 0.21,
and 0.26, respectively. All fibers have the same positions, orientations,
and thickness in each model. A thickness value of d = 0.5 unit was
used in the computations.

On the contrary, the CF in Fig. 2(b) are very similar. This
is because the second correlation length for long fibers is
the mean distance between the intercrossing points, but not
the fiber length. Direct calculation of this distance (from the
image using, e.g., Photoshop software) yields about 9d for all
of the structures in Fig. 2(b).

FIG. 3. Long fibers. Small circle intersects the fiber two times
(bold line). Large circle has many points of intersection (dashed
line).

In order to understand the difference between the CF
behavior in Figs. 2(a) and. 2(b), let us consider the two-point
probability function21,22

S = 〈η0(r)η0(r ′)〉, (7)

where

η0(r) =
{

1, if r is inside a fiber,
0, otherwise.

Then S = Vf , if |r − r ′| � d, i.e., if both r and r ′ are either
inside or outside the fiber. In order to estimate S for a longer
distance, |r − r ′| � d, we have to multiply the probability
that the point r belongs to the fiber [P (r ∈ fiber) = Vf ]
by the probability that the point r ′ belongs to the fiber
[P (r ′ ∈ fiber)] provided that the first point r is on the fiber.
The latter probability can be easily estimated, if we assume
an isotropic fiber structure and draw a circle around r , as
shown in Fig. 3. Then P (r ′ ∈ fiber) can be estimated as the
ratio of the fiber thickness inside the circle to the circle length.
For short fibers [see Fig. 2(a)], P (r ′ ∈ fiber) = d/π |r − r ′|,
if d � |r − r ′| � l, and P (r ′ ∈ fiber) = Vf , if |r − r ′| � l;
in the latter case, both probabilities are independent. For
long fibers [see Fig. 2(b)], P (r ′ ∈ fiber) = d/π |r − r ′|, if
d � |r − r ′| � lc, where lc is the mean distance between
the crossing points. Note that P (r ′ ∈ fiber) increases, when
|r − r ′| > lc. Such an increase can be found in the CF
of Fig. 2(b) at |r − r ′| ≈ 10d. For |r − r ′| � lc, S = V 2

f

since P (r ∈ fiber) and P (r ′ ∈ fiber) are independent at the
large distances. From the above, Eq. (7) can be rewritten
as

S =

⎧⎪⎪⎨
⎪⎪⎩

Vf , |r − r ′| � d,

d

π |r − r ′| , d � |r − r ′| � lc,

V 2
f , |r − r ′| � lc.

Since η(r) = 2η0(r) − 1, it follows from Eqs. (6) and (7) that

W (r − r ′) = S(r − r ′) − V 2
f

Vf (1 − Vf )
,
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thus

W (r − r ′) =

⎧⎪⎪⎨
⎪⎪⎩

1,
∣∣r − r ′∣∣ � d,

d

π |r − r ′| (1 − Vf )
− Vf

1 − Vf

, d � ∣∣r − r ′∣∣ � lc,

0,
∣∣r − r ′∣∣ � lc.

(8)

A similar behavior of CF was found in Fig. 2(b). Note that
d/

∣∣r − r ′∣∣ � Vf if
∣∣r − r ′∣∣ � lc.

Apparently, it is the connectivity (λ), i.e., the mean distance
between crossing points, not the mean length of the fibers
that determines the transport properties in the fiber structure.
We have shown that the connectivity coincides with the
correlation length of the CF in the 2D case, λ 
 lc. Therefore,
it can be estimated from Eq. (6). It is the connectivity, which
determines the conduction pathways. They are roughly the
same in the Fig. 2(b), thus all these structures have the same
TC. Lengthening of the fibers in this case means an increase of
dead ends, but it does not change the conductivity. An increase
in TC can be expected when fibers becomes so long that the
number of crossing points increases. Thus the connectivity
value decreases and therefore the conductivity increases.

IV. CORRELATION FUNCTION OF THE 3D
FIBER STRUCTURES

The main difference between 2D and 3D models concerns
the intersection of the fibers. Indeed, the fibers in the 2D model
intersect, if they are long enough and close. In general, fibers
in the 3D structure can be skewed; this happens with fibers
that are not coplanar. If so, the mean distance between crossing
points will exceed the distance between the fibers. The question
arises what is the second correlation length discussed in the
previous section? Is it related to the connectivity or to the mean
distance between the fibers?

Let us first estimate the connectivity λ. Consider a large
parallelepiped, L × L × λ (L → ∞). The number of fibers
inside the parallelepiped is N = nL2λ, and their total projec-
tion on the L × L plane is (2/3dl)N . This projection should

cover the entire plane, if λ is the distance between crossing
points. Thus

λ = 3

2ndl
. (9)

The mean distance between the fibers D, can be estimated as
D2nl = 1 or

D = 1√
nl

.

Then for the ratio λ/D, we obtain

λ

D
= 3

4

√
π

Vf

≈ 1√
Vf

,

where Vf = πnd2l/4 is the density of the 3D fiber structure.
This value is not so large for Vf 
 0.1.

It is interesting to compare λ with the fiber length l:

λ

l
= 3

2ndl2
.

From this relation, it is evident that λ ∼ l, if ndl2 ∼
1, i.e., the fiber concentration nc = (dl2)−1 determines the
percolation threshold. Indeed, at n = nc, we have only one
fiber in the l × l × d box. The fibers are not connected if
n � nc, but connected in the opposite limit. The mean number
of connections per fiber is l/D ∼ l

√
ln. In this paper, we

assume this value to be large.
For a rough estimation of the correlation function in 3D

we have to replace the circle in Fig. 3 with a sphere, so that
the conditional probability P (r ′ ∈ fiber) provided by the first
point r is in the fiber is now P (r ′ ∈ fiber) = d2/8

∣∣r − r ′∣∣2
.

Therefore, Eq. (8) becomes

W (r − r ′) =

⎧⎪⎪⎨
⎪⎪⎩

1,
∣∣r − r ′∣∣ � d,

d2

8 |r − r ′|2 (1 − Vf )
− Vf

1 − Vf

, d � ∣∣r − r ′∣∣ � D,

0,
∣∣r − r ′∣∣ � D.

(10)

For the correlation length we obtain thus lc 
 D.
For the purpose of illustrating how the 3D case can be

treated, we have simulated 3D fiber structures and extracted
cross-section images from them (see Fig. 4). The algorithm
employed to produce such structures allows free intercrossing
of the fibers, so that nematic ordering does not occur. It relies
on the basic ideas discussed by Berryman,20 but it has been

modified for cylindrical geometry in this work. Figures 4(b)
and 4(c) display one such cross section (z = 15) and the
corresponding W (x,0) and W (0,y) of a fully random fiber
structure. As it can be appreciated, these functions are very
close because both the x and the y directions are equal. The
CF allows estimation of the mean distance among fibers as
D = 2d. This does not occur when the fibers have a preferred
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FIG. 4. (Color online) Cross section images and corresponding correlation functions of 3D models of fiber structures. (a) Fibers randomly
positioned and oriented in space. (b) Cross-section image of (a) at z = 15. (c) Correlation functions W (x,0) and W (0,y) of (b) taken along
the x and y axes, respectively. (d) Fibers randomly positioned with preferred orientation along the z axis. (e) Cross-section image of (d) at
x = 10. (f) Correlation functions of (e) taken along the y and z axes. A total number of N = 2000 cylindrically shaped fibers with aspect ratio
(l/d) = 40 and Vf = 0.21 were considered in the simulations.

orientation [see Fig. 4(d)] and we consider a cross section
containing the preferred axis [see Fig. 4(e)]. The CF measured
along the preferred axis and along the direction perpen-
dicular to it display different correlation lengths as shown
in Fig. 4(f).

It is interesting to consider the Fourier transform of the
correlation function. For the simple CF given in Eq. (10) and
d � D, it has the form

W̃ (k) = 4πVf

(1 − Vf )k3
[sin(kD) − kD cos(kD)]. (11)

In Eq. (11), we omit small values, which oscillate as cos(kd).
Thus we can estimate the value of D by analyzing the
oscillations of the Fourier transform of the CF. This is
important for correlation functions measured from structure
images.

Figure 5 shows the cross section of the 3D Fiberform
scanned with a novel high contrast microtomography system,
Model MicroXCT (Xradia Inc, Pleasanton), its correlated
function, and the Fourier transform. It is not easy to es-
timate the correlation length directly from the CF because
of noise [see Fig. 5(b)]. However, it can be estimated
from the Fourier transform since the period of the shortest

oscillations is equal to 2π/D. For an anisotropic struc-
ture, such as that shown in Fig. 5(a), this criterion allows
the estimation of the ratio D⊥/D‖, which determines the
anisotropy of the thermal conductivity along and across the
structure axes.

Let us estimate the thermal conductivity of the Fiberform
presented in Fig. 5. The volume fraction of the fibers can be
calculated directly from the digital image of Fig. 5(a); we found
it equal to Vf = 0.1. The diameter of the fibers corresponds
to the first correlation length of CF; we found d ≈ 15 μm
from Fig. 5(b). If we assume a fiber length of l = 1600 μm,
then for the fiber concentration n = 4Vf /πd2l, we find n ≈
3.5 × 105cm−3. This value exceeds the percolation threshold
nc = 1/dl2 ≈ 2.6 × 104 cm−3. Rough estimation of the mean
distance between the fiber connections gives λ = 3/2ndl ≈
180 μm; so that there are about l/λ ≈ 10 connections for each
fiber. Thus all assumptions previously made to estimate the
heat transport are satisfied. The distances between two adjacent
peaks in both, bold and dashed, curves in Fig. 5(c) are equal
to 0.045 μm−1. This means that D‖ = D⊥ ≈ 140 μm. This
estimate can be observed in Fig. 5(b) as well. Then Eq. (3)
yields κ‖ = κ⊥ ≈ 0.03κf .
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FIG. 5. (Color online) (a) MicroXCT scanned at 0.5 micron
voxelCross section of 3D Fiberform from, (b) its correlation function
W and (c) Fourier transform of W in x and y directions. [Image (a)
provided to NASA courtesy of Xradia, Inc.]

V. DISCUSSION

We found that the inequality n � nc holds well for the
structure in Fig. 5. The same estimation can be done also for

the ablative thermal protection structure1 mentioned in the
introduction. Note also that the percolation threshold Vf c =
πd2lnc/4, which was estimated in Ref. 14 for l/d = 80, yields
Vf c = 0.03, while a typical volume concentration for the fibers
in such structures is Vf = 0.1–0.2. This means that Eq. (3) can
be used for TC estimation, and the result is in agreement with
experiments.2,16

More interesting is the effect of anisotropy. In Sec. II,
we found the simple estimation (2), which depends on the
correlation lengths D‖ and D⊥, but is independent of the
connectivity λ. This result seems surprising, but it can be
understood from the following example. Let us consider the
thermal conductivity of a cubic mesh of fibers. It can be
estimated as the thermal conductivity of the λ × λ × λ cube.
The number of disconnected fibers within the cube is (λ/D)2

and the resistivity of each fiber is 4λ/πd2κf . The resistivity
of the cube can then be written as (4λ/πd2κf )(πD2/4λ2) or
1/λκeff . Thus

κeff =
(

d

D

)2

κf .

This result will not change if we had disconnected some of
the contacts in the cubic mesh. The result changes only if we
disconnect all the contacts along the fibers. Therefore, the error
of the estimation (3) cannot be better than λ/l ∼ nc/n. This
is the effect of dead ends, which is not important far from the
percolation threshold nc. For the same reason, small bridges
of matrix material do not affect the thermal conductivity in the
case of a fiber-matrix composite.

Another reason for the error in Eq. (3) comes from
the dispersion of the resistivity of fiber segments be-
tween two contacts. This effect can be estimated with the
factor23

� =
(

1 + 2σ 2

N

)−1

,

where σ is the relative dispersion of the resistivity (i.e., relative
dispersion of the length between adjacent contacts in our case)
and N � 6 in the 3D resistor net. Assuming σ � 0.5, we
estimate the relative error as 0.1.

Typically, the matrix material (phenolic resin) can be porous
itself. The size of these pores is very small, and their effect
can be estimated if we make the substitution19 κM → κM (1 −
4
3pM ), where pM is the intrinsic matrix porosity. This makes
the effect of the matrix negligible.

Estimation of the conductivity of anisotropic structures
can be performed using Eq. (3). Indeed, the fiber density
Vf can be obtained from the structure porosity, while
the ratio of the correlation lengths, D⊥/D‖, can be esti-
mated by analyzing the oscillations of the Fourier trans-
forms of the CF across and along the structure [see
Fig. 5(b)].

We calculated the correlation function of model structures.
The same calculation can be made also using SEM or optical
images of cross sections. Similar images can also be obtained
from X-ray tomography [see Fig. 5(a)]. Basically one slice is
enough for the CF calculation; however, its accuracy can be
significantly increased if we use several slices and average the
results.
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In conclusion, we have analyzed expressions (2) for the
thermal conductivity of fiber structures and have investigated
the estimation of its parameters from information provided by
the CF analysis.
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