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Nonlinearity exponents in lightly doped conducting polymers
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The I-V characteristics of four conducting polymer systems such as doped polypyrrole, poly(3,4-
ethylenedioxythiophene), polydiacetylene, and polyaniline in as many physical forms have been investigated
at different temperatures, quenched disorder, and magnetic fields. Transport data clearly show the existence of
a single electric-field scale in each system. Based upon this observation, a phenomenological scaling analysis is
performed, leading to the extraction of a numerical value for a nonlinearity exponent called xM which serves to
characterize a set of I-V curves. The conductivity starts deviating from an Ohmic value σ0 above an onset electric
field Fo which scales according to Fo ∼ σ

xM

0 . The electric-field-dependent data are shown to be described by
the multistep tunneling model of Glazman-Matveev [JETP 67, 1276 (1988)] in a near-perfect manner over nine
orders of magnitude in conductivity and five orders of magnitude in electric field. Furthermore, xM is found to
possess both positive and negative values lying between −1/2 and 3/4. There is no theory at present for this
exponent. Some issues concerning applicability of the Glatzman-Matveev model are discussed.
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I. INTRODUCTION

Conducting polymers (CPs) such as doped polyacetylene
(PA), polypyrrole (PPy), poly(3,4-ethylenedioxythiophene)
(PEDOT), and polyaniline (PANI) show a great variety of
transport properties. In general, the electronic structure of
π -conjugated pristine (undoped) CPs originates from the
sp2pz-hybridized wave functions of the carbon atoms in
the repeat unit. Despite strong electron-phonon coupling in
pristine CPs, an extraordinarily large range of conductivities
has been covered by doping. Conductivity σ ranges from
the highly insulating values 10−6 S/cm to highly metallic
ones 105 S/cm depending on the doping concentration.1

Such a wide range of conductivities has made CPs useful in
many applications such as wires, electromagnetic interference
shields, antistatic coatings, conducting layers in active devices
including organic- and polymer-based light-emitting devices,
photovoltaic devices, and field-effect transistors.2–4

The electronic transport properties of CPs are furthermore
strongly influenced by the synthesis procedure and intrinsic
disorder.5,6 The conductivity of CPs originates from mobile
charge carriers into the π -conjugated electronic orbitals which
get filled by doping. At low doping densities, these charges
self-localize to form solitons, polarons, and bipolarons.7 At
higher doping levels, a transition to a metallic state is typically
observed.8 Quite often, disorder dominates the macroscopic
properties, thereby hiding or even eliminating the intrinsic
delocalization along the chains.9 However, no matter how
well the chains are ordered, the electrons finally have to
hop between chains, and the related local resistances strongly
influence or even dominate the macroscopic conduction. This
leads to an increase in conductivity as the temperature is
increased, that is, an insulating behavior. Metallic behavior is
observed only at larger temperatures and only in some polymer
systems.10 Thermoelectric power (TEP) measurements as a
function of temperature, as well as anomalous differences
between optical and dc conductivity data, provide evidence11

that CPs can be treated as being structurally heterogeneous,

consisting of thin, metal-like fibrils, separated by amorphous
regions of width ∼5 nm.12,13 This structural disorder is
responsible for low electrical conductivities owing to low
mobilities for most CPs, even though in fully doped polymers,
charge carrier concentrations can be as large as 1023/cm3,
which is about four orders of magnitude higher than in highly
doped inorganic semiconductors.

Polypyrrole has been particularly extensively investigated
due to its many prospects for applications, such as relatively
high environmental stability, high conductivity, or the simplic-
ity of preparation either by chemical or by electrochemical
polymerization.14,15 Polypyrrole is an amorphous conjugated
polymer based on an aromatic ring and has a nondegenerate
ground state.16 The polymer chains are intertwined and the
fibrils are randomly oriented. Consequently, PPy systems
must be regarded as three-dimensional disordered systems
with respect to their structure and morphology. Over the last
few years, PEDOT has attracted a lot of interest because of
high conductivity, optical transparency, easy processability,
and high stability.17 Inganas and co-workers18 have shown
that PEDOT has a band gap of approximately 1.6 eV and
can be cycled between the reduced and the oxidized state. It
has been suggested that PEDOT has a lamellar-type structure
built from ellipsoidal, conductive particles.19 Even in highly
conducting samples, one observes a mixture of insulating and
metallic transport behavior. This has been explained in terms
of a heterogeneous morphology.11

CPs are known to undergo a metal-insulator transition as
a function of doping.20 Samples at the insulating side of
the transition are of interest here. Conduction data21–25 in
CPs at low fields in this regime are usually discussed within
the framework of the standard Mott variable-range hopping
(M-VRH) model26 and its modification (ES-VRH) by Efros
and Shklovskii27 in presence of Coulomb interactions at low
temperatures. The conductivity in any VRH model is given by

σ (T ) = σmexp

[
−

(
T0

T

)m]
. (1)
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Here σm is the conductivity prefactor and T the temperature. In
the M-VRH model, the exponent m is given by m = 1/(d + 1),
where d is the dimensionality. Thus, m is 1/4, 1/3, and 1/2 in
three, two, and one dimension, respectively. The characteristic
temperature To is given by To = 4π/3N (EF )kBa3, where
N (EF ) is the density of states at the Fermi level, kB the
Boltzman constant, and a the localization length. In the
ES-VRH model, interactions among electrons were shown to
open up a Coulomb gap in the density of states at the Fermi
level. This leads to m = 1/2 independent of the dimension and

To = 2.8e2

4πε0εkBa
, (2)

where ε is the dielectric constant. The standard VRH model
seems to describe well three-dimensional systems such as pow-
dered FeCl3-doped PPy21 and PEDOT at higher temperature,22

yielding m = 1/4. PTS-doped PPy films23 are reported to
yield m = 1/3, suggesting a two-dimensional nature. The
exponent in single crystals of PTS-doped polydiacetylene
(PDA)24 is found to be ∼0.65–0.70, apparently demonstrating
the quasi-one-dimensional nature of the system. On the other
hand, some samples such as PEDOT at low temperature22

and PPy films25 tend to follow ES-VRH, particularly at low
temperature with m = 1/2.

Non-Ohmic or nonlinear conduction is a very common
feature of disordered systems in general and CPs in particular.
Onset of nonlinearity in these systems often takes place upon
application of only few volts of bias across samples in laborato-
ries. In bulk systems, this is rendered possible by the presence
of microscopic inhomogeneties, which lead to very large local
fields. Now, with the advent of low-dimensional materials
such as nanotubes, nanofibers, nanowires, and quantum dots,
the generation of large fields with moderate bias applied
across small lengths are quite common. This provides added
incentive to study and understand the phenomena of nonlinear
conduction in CPs. Nonlinear transport data in CPs15,24,25,28–33

are either presented in the form of I-V curves or, equivalently, in
the form of �-V curves, measured as a function of temperature.
However, there are hardly any systematic analyses of the data,
mainly because theoretical understanding28,34–39 is far from
complete. For example, the models of variable range hopping
under field34–37 have expressions for the field-dependent
conductivity in two field limits—low or moderate and high—as
a function of temperature. Glazman and Matveev (GM)39 have
evaluated a model involving multistep tunneling across thin
disordered regions in two limits, eV � kBT and eV � kBT .
In the first limit, one has at any temperature a full expression for
�(V ) containing parameters without having any temperature
dependence. In rest of the paper, we use the symbol σ for
conductivity and � for conductance which here is taken as the
chordal conductance, I/V, unless otherwise mentioned.

In this paper, we present electrical transport measurements
covering both linear and nonlinear regimes in moderately
doped PPy in forms of pellets as well as films and in a
pellet of doped PEDOT over a wide range of temperatures. In
addition, some published data from literature have been also
processed for comparison. For analysis of our data, we depart
from methods used in existing literatures and adopt a newly
suggested methodology40 based upon observation of existence
of a field scale in many disordered samples. This method of

scaling analysis of a set of I-V curves yields an exponent xT ,
called nonlinearity exponent, that characterizes the nonlinear
data and is believed to reflect the underlying field-dependent
conduction mechanism. We apply this scaling approach to
various CP systems, examine its validity, and extract the
nonlinearity exponents. In the next section (Sec. II), the method
of scaling analysis is described in detail. Furthermore, various
results of VRH under field are also reviewed along with
corresponding experimental results reported in the literature.
The GM model39 was originally developed for mesoscopic
thin amorphous films whose dimensions along the hopping
direction (i.e., thickness) lie between the localization lengths
and hopping lengths and is applied here to explain nonlinear
data in CPs. These models are critically discussed in particular
context of the general requirements of scaling. Since the GM
expression is found rather surprisingly to be very successful in
explaining the I-V characteristics in CPs, this section includes
details of phenomenological adaption leading to the scaling
version of the model for macroscopic samples. Experimental
details are given in Sec. III. Data are presented and analyzed
mainly by adapting the GM expression as a scaling function
in Sec. IV. Results so obtained are then discussed in Sec. V,
which also contains a subsection taking a critical look at the
applicability of GM model to macroscopic systems such as
considered in this work. Finally, conclusions are given in
Sec. VI.

II. SURVEY OF MODELS OF NONLINEAR CONDUCTION:
THEORETICAL AND PHENOMENOLOGICAL

A study of field-dependent conduction is generally expected
to bring out subtleties or additional processes that are either
not present or insignificant in the linear conduction. Consider,
for example, composites which are random mixtures of
conductors and insulators above the percolation threshold.
For small bias, conduction takes place only through the
backbone and is Ohmic. As the bias is increased, tunneling
across the thin insulating layer between the ends of the
conductor chains dangling off the backbone are believed to
lead to increased conductance.41 In view of the inadequate
theoretical development, it should be of much utility to know
general properties of nonlinear conduction. One can then check
whether any specific theoretical model prediction is consistent
with general requirements or not. One general property is that
the conductance �(F ) always increases with field F, at least
at small fields. This property is obvious since the application
of a field results in lowering barrier heights, thus decreasing
resistance to conduction. For a proper description, one defines
a characteristic field or a field scale Fo such that �(F ) � �(0)
for F � Fo. This corresponds to the fact that a sample remains
Ohmic at small fields and starts deviating from the Ohmic
behavior as the field is increased beyond Fo. The scale may be
also formally given by the following [�σ (F ) = σ (F ) − σ (0)]:

�σ (Fo) ∼ σ (0). (3)

I-V curves are generally measured as a function of some
physical parameter upon which σ (0) depends. Temperature is
the most commonly used parameter. Others such as magnetic
field and pressure are also valid parameters. An interesting but
less studied situation is when I-V data are gathered simply as
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a function of quenched disorder as in composite samples.41

Naturally, Fo is expected to be a function of the parameter.

A. Scaling analysis: Nonlinearity exponent

Let us consider, for definiteness, cases where measurements
are carried out at different temperatures. Recently, a gener-
alized approach40 based on existence of a single field scale
in a given disordered sample has been adopted, leading to
characterizing a set of I-V curves by a number xT , called
nonlinearity exponent. In this approach, the conductivity
σ (T ,F ) is given by the one-parameter scaling relation:40

σ (T ,F )

σ (T ,0)
= �

(
F

Fo

)
, (4)

where � is a scaling function. The field scale Fo(T ) is assumed
to vary with the linear conductivity as

Fo(T ) = AT σo(T )xT , (5)

where σo(T ) = σ (T ,0) is the linear conductivity at temper-
ature T and AT is a constant whose value depends upon
how the scale Fo is chosen. At small fields, q = F/Fo � 1,
the scaling function �(q) ≈ 1 corresponding to the fact that
the conductance increases very little from the zero field
value σo. At larger fields q > 1, �(q) > 1. Thus, the field Fo

can be called a crossover or onset field such that it separates
the linear regime from the nonlinear regime along the field
axis. Whereas the choice of temperature-dependent linear
conductivity as the relevant variable in Eq. (5) is similar to
the one in the scaling theory of localization,42 the power law
is standard in the theory of critical phenomena.43 Note that
temperature does not enter explicitly in Eq. (5) but does so
through the temperature-dependent σo(T ). Thus, according to
Eq. (5) the field scale for nonlinearity is determined solely
by the linear conductivity σo. This is quite significant in that
the same relation holds good even when σo is changed by
some other variable such as magnetic field or simply quenched
disorder [see Eq. (7)]. Presently, a theoretical foundation of this
result is lacking but diverse disordered systems with localized
states40 including amorphous and doped semiconductors,
composites at low temperatures have been found to obey such
scaling.

Equation (5) leads to a power-law variation of conductivity
at large fields F � Fo, where I-V curves often tend to become
independent of temperature or rather σo. It is seen from Eq. (4)
that the latter is readily ensured if �(q) ∼ q1/xT at large q for
xT > 0. Thus, at large fields the conductivity varies as a power
law with an exponent zT :

σ (T ,F ) ∼ FzT , zT = 1/xT for xT > 0. (6)

This prediction provides a self-consistency check for the
positive exponent xT as it may be determined using two
independent methods: one from a set of I-V curves at low
fields and the other from a single I-V curve at high fields. This
has been also amply verified40 in systems mentioned earlier.
It is also clear that in case of negative xT one cannot expect
temperature-independence of conductivity at large field.

Composite systems at room temperature are presently the
only disordered ones where the nonlinearity exponent has been

explained,44,45 although they are not, strictly speaking, com-
parable to the systems under study in this paper. Nevertheless,
it may be instructive to review non-Ohmic conduction in these
systems. In this case, I-V curves have been measured at a fixed
temperature (i.e., room temperature) in samples with various
degree of disorder characterized by the parameter p, fraction
of conductors in a sample. Just above the percolation threshold
pc (i.e., p � pc), I-V’s turn out to be nonlinear even at room
temperature with conductance increasing with the applied bias.
As mentioned earlier, the increase in conductance is due to
opening up of new channels of conductions, from tunneling
across closely spaced tips of pairs of branches of conductors
dangling off the backbone. The bias scale44 was found to vary
as the inverse of the correlation length ξ ,

Vo(p) � ξ−1 ∼ �o
ν/t , (7)

so that the nonlinearity exponent xp is given by xp � ν/t

where ν and t are the correlation and conductivity expo-
nents, respectively, and �o(p) = �(p,V = 0) ∼ (p − pc)t .
The subscript in the exponent denotes the parameter that is
varied to change �o. ν/t is about 0.45 in three dimensions
and consistent with the values of xp obtained experimentally
in discontinuous gold film44 and carbon wax.45

It is seen from Eqs. (5) and (6) that the nonlinearity in a
system can be characterized by two quantities: the field scale
Fo that determines the onset and the nonlinearity exponent
xM that determines the degree (i.e., steepness of increase of
the conductivity with field). Here M stands for the variable(s)
used to vary σo(M) = σ (M,F = 0). Both the scaling function
� and the nonlinearity exponent xT are obviously determined
by the details of the conduction mechanism under study. Let
us now consider some models and see how they conform to
general scaling formulation.

B. Variable range hopping under field

In disordered systems, an increasing electric field aligns
an increasing number of empty and accessible states to the
occupied states, allowing charge carriers to move via phonon-
assisted tunneling or hopping transitions. With decreasing
temperature the mean hopping length Rh grows as

Rh = a

2
(To/T )m, (8)

where T0 and m are the same as in Eq. (1). With higher electric
fields the energy eFRh gained by an electron may become
comparable to kBT and lead to deviation from Ohmic behavior.
Theories34,36,37 predict two characteristic fields Fl and Fu such
that the non-Ohmic conductivity at intermediate fields F <

kBT/ea is given by

σ (T ,F ) = σ (T ,0) exp

(
eFL

kBT

)
, (9)

where σ (T ,0) is given by Eq. (1) and L is a length related to the
hopping length Rh. Clearly, Fl = kBT /eL could be identified
with the onset field scale Fo discussed above. L is proportional
to R

μ

h , where μ is either 1 (Refs. 34 and 36) or 2 (Ref. 37).
Thus, it follows from Eqs. (9) and (8) that Fo varies with T as
a power law,

Fo ≈ Fl ∼ T α/aTo
α−1, α = 1 + mμ, (10)
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with the same m as in Eq. (1). According to Eq. (10),
the exponent α is always positive and greater than 1. In
the literature, however, authors traditionally focus on the
temperature dependence of L ∼ T −mμ rather than the field
scale. The compliance of this with experimental results46 in
amorphous and doped semiconductors is rather poor. In many
cases the power law (i.e., a straight line in a log-log plot of Fo vs
T) is not observed. When the plot appears like a straight line,
the exponent often turns out to be randomly different from
the expected value in Eq. (10), albeit with few exceptions.
In the limit of large fields F � kBT /ea theories35,36 agree
with “activationless” hopping, at least qualitatively. In such
situation the conductivity becomes independent of temperature
and is given by

σ ∼ exp

[
−

(
Fu

F

)m]
, Fu = a1

kBTo

ea
, (11)

with the same m and To as in Eq. (1). a1 is a numerical constant
equal to unity35 when m = 1/4. Activationless hopping has
been observed by many authors46 irrespective of the value of
m. However, inexplicably, the particular expression of high
field conductivity in Eq. (11) has been found so far only in
systems with m = 1/2. On the contrary, in several systems47

with m = 1/4, the field dependence is well described, albeit
empirically, by a power law σ ∼ Fz reminiscent of Eq. (6). As
mentioned earlier, Eqs. (11) and (2) illustrate the possibility of
having self-consistent relations involving the same parameters
such as a, and To. This has led to quantitative disagreement25,48

in that experimental values of Fu turn out to be always greater
than the calculated ones. More significantly, it is to be noted
that the large field conductivity as given by Eq. (11) is not
compatible with the scaling Eq. (4).

C. Multistep tunneling

Considering the process of multistep indirect tunneling via
n-localized states in a disordered system, GM proposed the
following expression39 for the conductance through an amor-
phous semiconductor thin film (i.e., tunnel barrier) of thickness
w under bias V [eV � kBT and pn = n − 2/(n + 1)]:

� = �d + �1 +
n∑
2

�nV
pn

= �0 + �2V
4/3 + �3V

5/2 + �4V
18/5

+�5V
14/3 + �6V

40/7 + · · · , (12)

where �0 = �d + �1. �d accounts for the direct tunneling
and �1 for the elastic resonant tunneling via one localized
state. Each term (n � 2) in the series arises out of rare events
when a number of localized states happen to be arranged
physically as well as energetically in such a way that an
electron can traverse a sample length via multistep inelastic
tunneling. Each term may be thought to constitute a separate
channel of conduction involving a definite number of localized
states. Thus, the macroscopic nonlinearity in this GM model
results from two contributions: primarily, appearance of a new
channel with increasing bias and, secondarily, nonlinearity
of each such channel. This multistep tunneling model has
been widely invoked to explain relevant data in various

tunnel junctions49,50 and manganites.51,52 Interestingly, the
manganites samples were not necessarily in the form of
junctions. Nevertheless, it was thought fit to apply the GM
model because of possibilities of tunneling across grain
boundaries, or insulating barriers, separating metallic phases
within samples. Considering the similar structure of CPs, that
is, the polymer fibrils consisting of quasimetallic lengths with
intervening insulating regions,12,13 CPs are expected to be
also candidates for application of the GM model. It is shown
below how a couple of assumptions about the coefficients �n

make the GM expression Eq. (12) not only compatible with
the general scaling formulation Eq. (5) but also yield the same
relation between the nonlinearity exponent xT and the large
field exponent zT as in Eq. (6).

1. Scaling

While the I-V data49,51,52 at different temperatures have
been fitted well by Eq. (12) with few nonlinear terms, no
attempt was made to analyze systematically the temperature
variation of the coefficients �n (n � 2). In fact, in the limit
eV � kBT in which Eq. (12) is valid, the coefficients are
supposed to be independent of temperature but functions of
thickness w and other parameters such as localization length
a, etc., related to disorder. The contribution of the nth channel
to the conductance is given by39

�nV
pn ∝ Cn

(
V

V1

)n−1(
V

V2

) n−1
n+1

exp

[
− 2w

a(n + 1)

]
, (13)

where Cn ≈ (n − 1)n−1, V1
−1 = ga2we, g is the density of

localized states near the Fermi level, e is the electronic charge,
V2

−1 = λepe/Wb, λep is a dimensional quantity dependent on
electron-phonon coupling and other material constants, and
Wb is the depth of the localized states. It is clear from the
above equation that the GM expression Eq. (12) derived under
various assumptions does not possess a channel-independent
voltage scale as V1 �= V2. Nevertheless, to make contact
with experiments in macroscopic samples (see Sec. IV), we
postulate that

�n = cn �oVo
−pn, (14)

for n � 2. Equation (14), when put in Eq. (12), makes the latter
immediately compatible with the scaling Eq. (4):

�

�o

= 1 + c2

(
V

Vo

)4/3

+ c3

(
V

Vo

)5/2

+ c4

(
V

Vo

)18/5

+ c5

(
V

Vo

)14/3

+ c6

(
V

Vo

)40/7

+ · · · . (15)

The above expression explicitly implies the existence of a
single bias scale Vo as in Eq. (4) provided that cn’s are
constants independent of �o. cn’s are, by definition, always
positive quantities. The right-hand side of the above equation
is thus really a scaling function � as defined in Eq. (4). The
same should hold if conductivity and field are used in place of
conductance and bias provided that the sample sizes are large
enough to ensure length-independent conductivities. It is seen
from Eq. (14) that the constants cn are determined once the
coefficients �n and the scale Vo are known. The expression
Eq. (15) suggests that experimental �-V curves at different
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T’s may be collapsed into a single curve by suitable choices of
�o and bias scale Vo at each temperature. Note that at V = Vo,
the coefficients cn’s satisfy the following relation:

�(Vo)

�o

= 1 +
n∑
2

cn. (16)

If, for example, �(Vo) = 2�o, we have
∑n

2 cn = 1.

2. Nonlinearity exponent xT

The voltage scale Vo can be defined in a more intuitive way
in the following manner. Let n = no be the lowest channel
with nonzero �no

. From Eqs. (3) and (12), Vo is given by
�no

Vo
pno ∼ �o, which leads to the expression for Vo as

Vo ∼
(

�o

�no

)1/pno

. (17)

This is consistent with the more general assumption Eq. (14).
At this point, we make the second postulate that �n follows a
power-law behavior with �0 as given by

�n ∼ �o
yn, (18)

where yn is an exponent. Interestingly, in the GM model if the
contribution from direct tunneling to the Ohmic conductance,
�d ∼ exp(−2w/a), can be neglected compared to that from
resonant tunneling, �o ∼ exp(−w/a) as in case of thick
barrier (w/a � 1), then we have �o = �d + �1 ≈ �1 ∼
exp(−w/a). Neglecting other slow varying functions of n in
Eq. (13) yields Eq. (18), with

yn = 2

n + 1
, (19)

for n � 2. Thus, yn is always less than 1, being 0.67 for n = 2,
0.5 for n = 3, and so on in mesoscopic systems. As seen
later, these values of yn are incompatible with the results in
macroscopic samples. Incorporating Eq. (18) in Eq. (17) and
comparing with Eq. (5), one has

xT = 1 − yno

pno

= 1 − yn

pn

(20)

for any n � 2. The second equality on the right-hand side
of the above equation follows from Eqs. (14) and (18).
Notice that while the left-hand side of Eq. (20) is a constant,
the right-hand side carries the index n. Thus, if no = 2,
then xT = 3

4 (1 − y2). If no = 3, then xT = 2
5 (1 − y3), and

so on. Incidentally, putting Eq. (19) into Eq. (20) yields
xM = 1/(n + 2), a channel-dependent quantity instead of a
constant value. All three phenomenological relations, Eqs. (5),
(14), and (18), only two of which are independent, underline a
basic assumption that nonlinear scales are determined by the
corresponding linear conductivity. Equation (20) is remarkable
for several conclusions that immediately follow from it.

(i) xT is 0 when yno
= 1. It is positive or negative

depending upon whether yno
is less than or greater than 1.

Furthermore, its maximum possible value is 1/p2 or 0.75 since
the lowest value of pn is 4/3 for n = 2. The lower limit of
−1/2 is obtained from general arguments.40 Thus, we have
−1/2 � xT � 3/4.

(ii) Since the left-hand side of Eq. (20) is independent of
n, and pn increases with n, it follows that for xT > 0, yn must
decrease with n and for xT < 0, yn must increase with n:

1 � y2 � y3 � · · · � yn, xT � 0,
(21)

1 < y2 < y3 < · · · < yn, xT < 0.

Thus, for xT < 0, we have xT = −yn/pn for yn � 1 at large
n. If any �n in the GM expression is zero, the corresponding
yn is obviously excluded from the above. It may be noted that
yn’s given by Eq. (19) do satisfy the inequalities above for
positive xT .

(iii) For xT > 0, the above naturally raises question about
the limit of yn for large n. Considering the fact that the
conductance of a hopping system at large bias may tend to
become independent of T or, in other words, �0, the lower
limit of yn may be taken as zero; that is, as n → ∞, yn → 0.
The limit is in agreement with Eq. (19). Note that yn is always
a positive quantity since the coefficient �n is predicted to be a
decreasing function of n.39

(iv) Since pn increases with n, Eq. (20) requires that for
xT > 0, the series Eq. (12) must terminate at n = nL, where
the highest channel nL is given by pnL−1 < 1/xT � pnL

.

3. Large bias exponent zT

If the field-dependent conductance of a system continues
to be described by Eq. (12) (e.g., there is no appearance of
negative differential conductance), it follows that at large bias
or field the conductance varies with bias as a power law:
� ≈ �nL

V pnL , where nL is the index of the highest allowed
channel [see item (iv) above]. Such a power-law variation
is also predicted by the scaling consideration Eq. (6) for
xT > 0 with zT = pnL

. Now, from Eq. (20), we obtain xT =
(1 − ynL

)/pnL
so that zT = (1 − ynL

)/xT
∼= 1/xT following

item (iii). Thus, we obtain zT
∼= 1/xT as follows from general

scaling consideration [Eq. (6)]. Since |xT | < 1, zT > 1.

III. EXPERIMENTAL

The three systems used in this study were doped PPy in
powder and film forms and doped PEDOT in powder form.
All together five samples (see Table I) have been studied.
All samples were synthesized using chemical polymerization.
To aqueous solution of pyrrole monomer (0.05M), 100 ml of
aqueous FeCl3 (0.1M) solution was added dropwise leading
to almost instant polymerization. Black precipitate of PPy was
separated from the solution and the resulting powder was then
vacuum dried and pressed into disk-shaped pellets, 8 mm in
diameter and 1 mm in thickness (sample 1). Further details
can be found in Ref. 21. A similar procedure was followed
for synthesis of doped PEDOT (sample 2) using monomer
ethylenedioxythiophene (EDOT) dissolved in water with
0.2M dodecylbenzenesulfonic acid. Subsequently, an aqueous
solution of the oxidizing agent FeCl3 was added dropwise on
constant stirring under inert atmosphere. EDOT:FeCl3 molar
ratio was 1.167:1. After overnight reaction, the precipitate
was thoroughly washed with ethanol, vacuum dried, and
pelletized in form of disks of same dimensions as above. PPy
films (samples 3–5) were synthesized from pyrrole vapor in
solutions of HCl:H2O2 = 1:1000, while the solvent was cooled
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TABLE I. Sample growth conditions and parameters Eq. (1).

Sample σo (300 K) To

System No. Oxidant (S/cm) m (K)

PPy (powder) 1 FeCl3 5.7 × 10−4 1/4 1.7 × 106

PEDOT (powder) 2 FeCl3 2.6 × 10−2 1/2 1798
PPy (film) 3 HCl:H2O2 10 1/2 2340
PPy (film) 4 HCl:H2O2 12 1/2 950
PPy (film) 5 HCl:H2O2 8.5 1/2 1600

to 282 K, 283 K, and 300 K, respectively. Further details can
be found in Ref. 25 (sample 3 here is the same as sample A in
the latter). Thicknesses were 70, 77, and 60 nm, respectively.

Table I shows typical room-temperature conductivities of
the samples. For transport measurements, thin copper wires
were attached to both ends of the disks using silver paint,
whereas leads were connected to prepatterned Pt electrodes
on the substrate containing PPy film.25 Two- and four-probe
dc transport measurements gave similar results, indicating
negligible contact resistances in samples. Low-temperature
measurements were done in liquid helium cryostats in the
temperature range 2.1 K–300 K. The PPy and PEDOT samples
were placed on sapphire substrates with Apeizon N-grease
and data were taken under the constant current condition. In
case of PPy films, data were taken under the constant voltage
condition. Temperature was stabilized to better than ±50 mK
for the I-V measurements. Maximum current levels were kept
low to minimize joule heating in the samples. For example,
the maximum current through the PEDOT sample at 26 K was
limited to 0.22 mA as an increased current led to instability
due to joule heating. However, this behavior was completely
reversible and sample resistance returned to the initial value
after removal of current.

IV. RESULTS

Figure 1 shows Ohmic conductivities σo vs T −m for four
samples: one each of PPy (powder) and PEDOT and two of PPy
(film). Similar data for sample 3 have been already presented
in Ref. 25. Excellent linearity in the data shows that all the
samples obey variable range hopping conduction in the range
of temperatures measured. While m is 1/4 in PPy (powder), it is
1/2 in all samples of other two systems. The different values of
m in PPy samples may be due to different measurement ranges
of temperature: 80 K–300 K for the powdered sample and 2.1
K–20 K in films. There is a transition at 30 K in PPy films from
ES-VRH mechanism to activated process. A similar transition
from ES-VRH to M-VRH also takes place in PEDOT at about
38 K. All the samples were in insulating regimes. T0’s obtained
from slopes of the fitted lines are of the order of 103 K and are
given in Table I. The exponent 1/2 has been shown to result
from Coulomb gap at the Fermi level.27 Parameters (i.e., m,
To) in PPy (powder) and PEDOT agree with those reported
earlier.21,22 Values of selected σo(T )’s are given in Table II. It
is seen from Table I that of the first three samples, the sample
1 (PPy powder) has the least conductivity at room temperature
while the sample 3 (PPy film) has the highest. We discuss
the systems in this order as the maximum normalized conduc-
tivity (see below) also follows the same order.

FIG. 1. (Color online) Variation of Ohmic conductivity σ0 vs T −m

with m = 1/4,1/2 for four CP samples as shown. For clarity, the
PEDOT data have been shifted upward by a factor as shown. Solid
lines are linear fits to the data.

A. Polypyrrole (powder)

The field dependence of dc conductivity σ of a PPy
(powder) sample at different temperatures ranging from 80 K
to 300 K are shown in Fig. 2. The nonlinear response of
conductivity to the application of electric field can be clearly
seen from the figure. The sample had a zero-bias linear
conductance �0 of 0.003 S at room temperature. A typical
behavior at a constant temperature is that the conductivity

FIG. 2. (Color online) Variation of conductivity vs electric field in
a doped PPy pellet (sample 1) at different temperatures, as indicated.
The dotted line schematically indicates the movement of the onset
bias with increasing temperature. The solid lines are fits to the GM
expression Eq. (12). See text for details.
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TABLE II. Parameters in GM expression Eq. (12) fitted to conductivity data at various temperature in five samples of three CP systems.
σn (n � 2) is in unit of S/cm Vn−2/(n+1). cn’s are constants defined by Eq. (14).

Sample T (K) σ0 (S/cm) σ2 σ3 σ4 σ5 σ6 c2 c3 c4 c5(c6)

PPy 80 3.96 × 10−6 2.10 × 10−9 1.30 × 10−12 0.61 0.19
(powder) 100 8.96 × 10−6 1.41 × 10−8 6.50 × 10−12 0.66 0.17

120 1.69 × 10−5 1.96 × 10−8 8.62 × 10−11 0.40 0.62
1 150 3.67 × 10−5 1.16 × 10−7 2.88 × 10−10 0.58 0.34

195 1.09 × 10−4 6.90 × 10−7 8.72 × 10−9 0.44 0.49
230 2.66 × 10−4 3.23 × 10−6 1.18 × 10−7 0.48 0.42
300 6.11 × 10−4 1.63 × 10−5 4.89 × 10−7 0.58 0.25

PEDOT 4.9 5.30 × 10−10 9.30 × 10−10 3.06 × 10−11 1.03 0.014
(powder) 6.5 5.60 × 10−9 6.11 × 10−9 8.38 × 10−11 1.06 0.014

10 1.33 × 10−7 6.48 × 10−8 0.94
2 12 3.53 × 10−7 1.38 × 10−7 0.96

16.5 1.89 × 10−6 5.23 × 10−7 4.53 × 10−9 0.94 0.065
26 1.80 × 10−5 2.76 × 10−6 7.57 × 10−7 0.78 3.447

PPy 2.1 8.00 × 10−16 ∼8.8 × 10−13 ∼8.0 × 10−10 5.0 × 10−8 ∼0.36 ∼3.7 × 10−4 (6.87 × 10−8)
(film) 2.4 7.00 × 10−15 ∼1.8 × 10−11 2.3 × 10−8 5.8 × 10−8 ∼1.13 0.0027 (3.26 × 10−8)

3.5 1.75 × 10−12 1.00 × 10−9 8.80 × 10−8 4.5 × 10−8 1.05 0.0020 (4.71 × 10−8)
4.6 6.34 × 10−11 1.40 × 10−8 2.00 × 10−7 4.0 × 10−8 1.06 0.0017 (6.88 × 10−8)
5.15 2.20 × 10−10 3.50 × 10−8 2.67 × 10−7 4.0 × 10−8 1.19 0.0024 (13.1 × 10−8)
7 4.53 × 10−9 2.00 × 10−7 5.20 × 10−7 1.8 × 10−8 0.83 0.0024 (14.7 × 10−8)

3 9 3.29 × 10−8 9.19 × 10−7 7.84 × 10−7 3.0 × 10−9 0.56 0.0045 (4.96 × 10−8)
11 1.50 × 10−7 1.54 × 10−6 1.84 × 10−6 0.56 0.0053
14.3 9.00 × 10−7 5.83 × 10−6 2.59 × 10−6 0.73 0.0079
20.2 7.47 × 10−6 2.48 × 10−5 3.09 × 10−7 0.86 0.0105

4 20.2 1.30 × 10−3 3.01 × 10−2 1.03 × 10−2 0.94 0.0014

5 20 4.70 × 10−7 5.23 × 10−7 1.10

remains constant for small fields and then starts increasing with
increase in field. The value of the field at which conductivity
starts deviating from its linear value σo is the onset field Fo. A
criterion to determine the latter is discussed below. With further
increase in the bias, the conductivity continues to increase
monotonically. As temperature is decreased, σo decreases and
the sample seems to become nonlinear at a field greater than
the one required at a higher temperature; that is, Fo increases
with decreasing temperature. This behavior is opposite to
those found in other two systems (Figs. 4 and 6). Data at
each temperature were fitted to the GM expression Eq. (12)
containing terms up to n = 5. Fits were reasonably good up to
σ/σo ∼ 2.5 and are shown in Fig. 2 (solid lines). However, as
seen particularly at T = 150 and 195 K, conductivity increased
faster than the fitted curves at higher bias and could not be
accounted for even by including a n = 7 term. This may be
related to incipient negative differential conductance regime,
as is evident in similar data in Fig. 2c of Ref. 23. Surprisingly,
nonlinear least-squares fittings at all temperatures led to either
very small or negative values for coefficients of even terms
(i.e., n = 2, 4) so that the final fittings were done using only
three terms: σ (V ) = σo + σ3V

5/2 + σ5V
14/3. Fitted values of

the coefficients are given in Table II.
Figure 3 shows the result of making the data in Fig. 2

collapse into a single curve by suitable scaling. It is convenient
to start with a temperature such that the data at that temperature

are predominantly Ohmic but contain minimum non-Ohmic
regime. In the present case the appropriate starting temperature
is 80 K. The conductivity was scaled by its Ohmic values
σo. For the field, any arbitrary choice (e.g., 1) for Fo would
do as far as data collapse is concerned. For the next higher
temperature, the conductivity was scaled as before but Fo was
adjusted in such a way that this set of data merged with the
earlier one as well as possible. The same procedure was then
repeated for all the other temperatures in increasing order.
Note that in this method Fo is determined only up to a constant
value. Multiplying all Fo’s by a constant only shifts the merged
curve along the field axis without altering the curve anyway.
To facilitate comparison, and for Fo to be interpreted as an
onset field, its scale was fixed by adopting a uniform criterion
that the conductivity at the onset field would be double of
its Ohmic value; that is, σ (Fo) = 2σ (0) = 2σo. The excellent
data collapse up to about σ/σo ≈ 3 seen in Fig. 3 proves the
existence of a field scale at each temperature. Fo thus obtained
following the above criterion is plotted with log-log axes as
a function of both temperature T (solid symbols) and the
corresponding σo (open symbols) in the inset. The solid line
indicates a power law Fo ∼ σxT

o with an exponent xT being
equal to −0.329 ± 0.014, which is negative, as suggested by
the orientation of the dotted line in Fig. 1. However, no such
relation is apparent in the functional dependence on T. Results
thus validate the scaling as given in Eqs. (4) and (5). Since all
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FIG. 3. (Color online) Scaling of the same data as in Fig. 2 to
achieve data collapse as shown. The scale of the onset field Fo is
fixed by adopting a common criterion σ (Fo) = 2σo in this paper.
The solid line is a fit to the scaled version Eq. (15) of GM expression
with only two odd (n = 3, 5) nonlinear terms: σ/σo = 1 + 0.54q5/2 +
0.42q14/3 (q = F/Fo). The dashed line is a plot of the same expression
up to the n = 3 term only. The inset shows two log-log plots of Fo vs
σo (open symbols) and T (solid symbols). The solid line is a linear fit
to the data with a slope xT as shown.

the curves in Fig. 2 that were fitted by the GM expression also
collapse on to a single curve, it is expected that the latter
would also be fitted by the scaled form Eq. (15). This is
indeed confirmed by the solid line in Fig. 3, which is a fit
according to σ/σo = 1 + c3q

5/2 + c5q
14/3 with c3 = 0.54 and

c5 = 0.42. The relative high value of c5 confirms the rapid
increase of the conductivity with field. A plot (dashed line)
of the same fitting expression without the n = 5 term is also
shown to highlight the contribution of the higher nonlinear
term. The divergence of the data from the fitted curves at
higher fields (σ/σo ≈ 3) as seen in the figure is due to the
negative differential conductance as discussed above. cn’s in
the fitting expression are simply averages of cn’s, calculated
at each temperature from Eq. (14) using σn’s and Vo = 0.1Fo

(thickness being 0.1 cm), and given in Table II (for calculation
of c5, data at 80 K and 100 K were ignored as non-Ohmic
regimes were small). The highest nonlinear term in the fitting
expression depends upon the maximum value of the measured
normalized conductivity, (σ/σo)max, which is about 4 in the
present case. Notice that c3 + c5 = 0.96, close to 1 as expected
from Eq. (16) by applying the criterion for Fo. The deviation
of the sum of cn’s from 1 should be an indicator of how well
the criterion for the field scale was implemented during scaling
and quality of overall scaling.

It may be mentioned here that if one is interested only in the
nonlinearity exponent but not the scaling function, it could be

FIG. 4. (Color online) Variation of conductivity vs electric field
in doped PEDOT (sample 2) at different temperatures as indicated.
The dotted line schematically indicates the movement of the onset
bias with increasing temperature. The solid lines are fits to the GM
expression Eq. (12). See text for details.

obtained from experimental data by another method used by
Gefen et al.44 for characterizing the crossover to the nonlinear
regime in a percolating system. In this method, one defines
the crossover field Fo such that the conductance at this field
deviates by an arbitrarily chosen factor ε from its zero-field
value; that is, �(Fo) = �o(1 + ε). Obviously, the value of the
exponent should not depend upon the choice of ε as verified in
discontinuous gold films.44 ε = 1 coincides with the criterion
adopted in this paper. Clearly, this method will work as long
as �o can be obtained from data. However, particularly at
low temperatures, Ohmic conductivities become too small to
be above the noise floor of measurements and measurements
are feasible only in highly nonlinear regimes. Consequently,
�o’s cannot be obtained directly from the data. In such cases,
the method of scaling provides an alternative way to take into
account such nonlinear data as illustrated in the cases discussed
next.

B. PEDOT (powder)

The field dependence of dc conductivity σ of a PEDOT
(powder) system at different temperatures ranging from
4.9 K to 26 K are shown in Fig. 4. The nonlinear response of
conductivity to the application of electric field can be clearly
seen from the figure. The sample had an Ohmic conductance
�0 of 0.026 S at room temperature. It is observed from
the figure that the dotted line points right, in contrast to
the behavior in the previous case; that is, the onset field Fo

increases with increasing temperature or conductivity. In fact,
the overall shape of the curves are somewhat divergent with
bias in PPy (powder) (Fig. 2) but in contrast, appear convergent
in PEDOT (powder) (Fig. 4). The converging feature naturally
indicates eventual temperature independence of conductivity
at large fields. As before, data at each temperature were fitted
to the GM expression Eq. (12) containing terms up to n = 5.
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FIG. 5. (Color online) Scaling of the same data as in Fig. 4 to
achieve data collapse as shown. The solid line is a fit to Eq. (15)
with only even (n = 2, 4) nonlinear terms: σ/σo = 1 + 0.92q4/3 +
0.011q18/5 (q = F/Fo). The dashed line is a plot of the same
expression up to the n = 2 term only. The dash-dotted line is a fit
to an exponential function Eq. (9). The inset shows two log-log plots
of the scaling field, Fo vs σo (open symbols) and T (solid symbols).
The solid line is a linear fit to the data (open symbols) with slope as
shown.

In this case, the least-squares method at all temperatures led
to either very small or negative values for coefficients of odd
terms (i.e., n = 3, 5) so that the final fittings were done using
only three terms: σ (V ) = σo + σ2V

4/3 + σ4V
18/5. The Ohmic

conductivities at 4.9 K and 6.5 K were obtained from the
extrapolated line, ln σo vs T −0.5 in Fig. 1. The bias ranges at
10 K and 12 K were too limited to yield reliable values for
c4’s. Fits (solid lines in Fig. 4) are seen to be excellent. Fitted
values of the coefficients are given in Table II.

All the curves in the figure, starting with the one at 26 K and
using the same criterion for Fo as in the previous case, could
be made to collapse into a single curve as shown in Fig. 5.
Since the data for T < 7 K have no linear region, the method
in Ref. 44 for determining the exponent cannot be applied.
For scaling purpose, extrapolated σo’s were used. However,
when conductivities at these low temperatures are scaled with
these σo’s, the scaled data were all larger than the rest of
data at higher temperatures. Absence of any overlapping data
sets introduce uncertainty in the choice of Fo. The larger the
gap between data sets is, the higher the margin of error is.
However, the margin of error may be considerably reduced
when, as in the present case, the collapsed curve is compared
in a somewhat self-consistent manner to some function it
is expected to follow. The solid line in the figure is an
excellent fit to σ/σo = 1 + c2q

4/3 + c4q
18/5 with c2 = 0.99

and c4 = 0.015 so that c2 + c4 = 1.005 ≈ 1, as expected. c2

is the average of c2’s (with data at T = 26 K ignored), whereas

c4 is consistent with the values of limited number of c4’s. A plot
(dashed line) with only n = 2 term is also shown to highlight
the contribution of the higher nonlinear term, which, as seen,
is quite significant in this case, although c4 is quite small
compared to c2. Note that (σ/σo)max is about 100 compared
to 4 in the previous case. The inset shows log-log plots of
Fo vs temperature T (solid symbols) and the corresponding σo

(open symbols). The solid line through open symbols indicates
a power law with an exponent of 0.158 ± 0.003. The exponent
has a positive value in accordance with the orientation of the
dotted line in Fig. 4. No reasonable straight line could be drawn
through solid symbols.

C. Polypyrrole (film)

Two sets of field-dependent conductivities of PPy films are
presented in Fig. 6. Panel (a) shows data taken in sample 3
at different temperatures as marked and is similar to Figs. 2
and 4, whereas panel (b) shows data at T ≈ 20 K taken
in three different samples as indicated. In the former, the
initial conductance changed due to change in the temperature,
whereas in the latter, the same was achieved by having different
quenched disorder in the samples. As seen in the Figs. 2 and 6,
the basic qualitative response to the electric field is similar in all
the PPy samples irrespective of structure (i.e., powder or film)
or sample condition in that at any temperature the conductivity
increases monotonically with the field, starting from a constant
value at small bias. However, a closer look reveals subtle
differences as illustrated by the orientations of the schematic
lines which indicate the movement of the onset field Fo with
increasing linear conductivity. In Fig. 6(a), the line points
right (i.e., Fo increases with the linear conductivity), as in
Fig. 4, whereas in Fig. 6(b), it points left (i.e., Fo decreases
with the linear conductivity), as in powder (Fig. 2). Note
that although both panels have one common set of data
(sample 3 at T = 20 K) this did not prevent two sets of data
with two different driving variables—namely, temperature and
disorder—from exhibiting opposite behavior in the onset field
Fo. As mentioned in the previous case, the relation of the
overall shape of the curves with the orientation of the dotted
lines is now clearly seen in the two panels—the left one
showing a convergent behavior as in Fig. 4 and the right one
a divergent behavior as in Fig. 2—in the same system. At
the low temperatures (2 K–5 K) conductivity indeed become
nearly independent of temperature at large biases as seen in
panel (a), a feature that was strongly hinted at in the data of
PEDOT. As before, data at each temperature or disorder were
fitted to the GM expression Eq. (12) containing terms up to
n = 6. In this case, the least-squares method at all temperatures
led to either very small or negative values for coefficients of
odd terms (i.e., n = 3, 5) so that final fittings were done using
only four terms: σ (V ) = σo + σ2V

4/3 + σ4V
18/5 + σ6V

40/7.
Fittings to data at T � 7 K used the Ohmic conductivities
obtained from extrapolation of ln σo vs T −0.5 line. Note that the
temperature independence at low temperatures is also apparent
from roughly the same values of σ6 (see Table II).

Figure 7 shows scaling of the data in the two panels of Fig. 6.
There are two curves showing data collapse: one (labeled
b) belongs to different samples in panel (b) and another
(labeled a) belongs to the sample 3 at different temperatures
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FIG. 6. (Color online) (a) Variation of conductivity vs field in a doped PPy film (sample 3) at different temperatures as indicated. The dotted
line schematically indicates the movement of the onset field with increasing temperature. The solid lines are fits to the GM expression Eq. (12)
with parameters given in Table II. (b) Similar data as on the left panel taken at the same temperature 20 K in three different samples as indicated
with different quenched disorder. The dotted line schematically indicates the movement of the onset bias with increasing conductivity. The
solid lines are fits using the GM model. See text for details. Note that the data represented by solid diamonds in both panels are the same.

in panel (a). Data collapse has been achieved by following
the same procedure as adopted in previous cases including the
criterion for fixing the onset field Fo, namely, σ (Fo) = 2σo.
Excellent data collapses are seen to have been achieved in
both cases, with curve a covering nine orders of magnitude
in conductivity and five orders in field. The data of curve
b have been shifted upward for clarity. Moreover, lines,
instead of symbols, are used in this case to highlight the
quality of data collapse. In case of curve a, extrapolated
σo’s were used for scaling particularly at low temperatures.
The solid lines in the figure are excellent fits to σ/σo =
1 + c2q

4/3 + c4q
18/5 + c6q

40/7. The coefficients c2, c4, and c6

are 0.98, 0.0024, and 6.5 × 10−8 for curve a and 0.97, 0.0013,
and 0 for curve b. In both cases, c2 + c4 + c6 ≈ 1, as expected
from Eq. (16). c2’s are same as the average of c2’s in Table II
(with data at T = 2.1 K ignored), whereas c4’s are consistent
with the values of limited number of available c4’s. As with
PEDOT, the values of c2’s are much greater than those of other
coefficients although the latter’s contributions are significant,
as indicated by the dashed and dotted lines. The latter are plots
with up to n = 2 (dashed) and 4 (dotted) terms only. This is,
of course, partly due to the criterion adopted for Fo. Note that
(σ/σo)max is about 109 (curve a) compared to 100 and 4 in
the previous cases. The inset shows log-log plots of Fo thus
obtained from scaling as function of both temperature T (solid
symbols, curve a) and the corresponding σo (open symbols,
curve a; crosses, curve b). The solid line verifies the power law
Eq. (5) with the exponent xT = 0.228 ± 0.008. No reasonable
straight line could be drawn through the plot of Fo vs T (solid
symbols). In case of scaling with disorder, there are only three

points that yield a tentative value of the exponent xD ∼ −0.30
(the subscript stands for disorder). As expected from Fig. 6,
xD compared to xT has a negative sign.

D. Other systems in literatures

Nonlinearity exponents xT in the three systems discussed
above are shown in Table III. The latter also contains, for
the sake of comparison, results from digitized data of three
other CP systems available in literatures. All these systems
invariably exhibit the property of scaling Eq. (4). The sys-
tems include a p-toluensulfonate (PTS)-doped PPy (PPy(R))
film,23 PTS-doped polydiacetylene (PDA) single crystal24 and
iodine-doped PA nanofiber.31 The PPy(R) film (0.1–0.15 mm
thickness) was obtained by electrodeposition at the current
density of 0.2 mA/cm−2. The scaled curve of conductivities
at four temperatures (16 K–31 K) in this film looked very
similar to that in Fig. 3. It also yielded a negative exponent,
−0.16 compared to −0.33 obtained in PPy (powder). The
temperature-variation of the Ohmic conductivity of this system
has been mentioned in the Introduction.

PTS-doped PDA crystals are quasi-one-dimensional in
nature, consisting of weakly coupled linear parallel chains
of covalently bonded carbon atoms. It follows a VRH-type
conduction (m = 0.65–0.70, To = 2570 K) at low tempera-
tures with a crossover at about 50 K to activated conduction at
higher temperatures. Five temperatures between 50 K and 14 K
were used such that corresponding data could be digitized
with some reasonable accuracy from linear current-field plots
(viz. Fig. 7 of Ref. 24) which, particularly at low bias,
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FIG. 7. (Color online) Scaled conductivity σ/σo vs scaled field
F/Fo of doped PPy films in the two panels of Fig. 6. The scaled
data b (lines) belonging to different samples are shifted upward for
clarity. The solid line is a fit to Eq. (15) with only two even (n = 2,
4) nonlinear terms: σ/σo = 1 + 0.97q4/3 + 0.0013q18/5 (q = F/Fo).
The scaled data a with symbols belong to different temperatures.
The solid line through it is a fit to the GM expression Eq. (15)
with three even (n = 2, 4, 6) nonlinear terms: σ/σo = 1 + 0.97q4/3 +
0.0024q18/5 + 6.5 × 10−8q40/7. The dashed line is a plot of the same
expression but with terms up to n = 2 only. Similarly, the dotted line
is a plot with terms up to n = 4 only. The inset shows three log-log
plots of Fo vs σo (open symbols and crosses) and T (solid symbols).
The crossed symbols, belonging to three different samples, have been
appropriately shifted (×10−5, ×0.2) to be within the scales as shown.
The solid lines are linear fits to the data with slopes xT (open symbols)
and xD (crosses) as shown.

are more prone to digitizing errors than conductivity-field
ones. Nonetheless, Fig. 8 shows clear evidence of scaling in
conductivities at different temperatures covering nearly six
decades in conductivity and four decades in field. The solid
line in the figure is an excellent fit over the whole range to
σ/σo = 1 + c2q

4/3 + c4q
18/5. The coefficients c2 and c4 were

0.98 and 1.23 × 10−4, respectively, and add up to nearly 1, as
expected. These values were consistent with the coefficients
obtained from fittings of data at each temperature to the
GM expression Eq. (12). The dashed curve is a plot with
up to n = 2 term only. It was found that the fitted values
of σo’s (also used in scaling) were progressively less than
those given in the paper with decreasing temperature, by as
much as an order of magnitude at 20 K. (σ/σo)max is about
105 compared to 109 in PPy film (this work). The nonlinearity

FIG. 8. (Color online) Scaling of the data in a PDA single crystal
from Ref. 24 to achieve data collapse as shown. The solid line is a
fit to Eq. (15) with only even (n = 2, 4) nonlinear terms: σ/σo =
1 + 0.98q4/3 + 0.000 123q18/5 (q = F/Fo). The dashed line is a plot
of the same expression without the n = 4 term. The inset shows two
log-log plots of the scaling field, Fo vs σo (open symbols) and T (solid
symbols). The solid line is a linear fit to the data (open symbols) with
slope, as shown.

exponent was xT = 0.51 ± 0.02. It is seen in Fig. 8 that curves
particularly at lower temperatures tend to rise less rapidly
at higher fields than at lower ones. This is because those
portions of the curves follow F−1/2 dependence Eq. (11) and
are outside of the scaling domain.40 In fact, the collapsed curve
really represents an envelope of all scaled curves at different
temperatures. Such F−1/2 dependence in PPy film of this work
was insignificant (see Fig. 7), although both these systems had
the VRH exponent m equal to 1/2.

Individual iodine-doped PA nanofibers of diameters
10-40 nm were different from other systems discussed so
far in that the Ohmic conductance exhibited an activated-type
rather than VRH conduction. At low temperatures below 30 K,
the I-V characteristics were reported to follow the Zener-type
tunneling, � = �o exp(−Fu/F ), where Fu in the argument
depends on the magnitude of the energy gap and the effective
mass of tunneling electrons.29 The I-V curves were non-Ohmic
and temperature independent up to 30 K, above which I-V
curves were temperature dependent. Upon comparing with
Eq. (11) it becomes evident that the above equation really
characterizes the high-field regime that becomes apparent
particularly at low temperatures (see also Fig. 6) and is
not compatible with the scaling Eq. (4). In fact, I-V curves
again exhibit the same scaling behavior shown in Fig. 9
as in other cases discussed here. I-V data were obtained in
a single iodine-doped PA nanofiber of diameter 20 nm at
various temperatures (Fig. 1 of Ref. 31). Of those, data at
five temperatures (234 K–103 K) were found suitable for
digitization and presented in the scaled form in Fig. 9. In
spite of inherent noise in the data, high quality of data collapse
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FIG. 9. (Color online) Scaling of the data in a PA nanofiber from
Ref. 31 to achieve data collapse as shown. The solid line is a fit to the
GM expression Eq. (15): σ/σo = 1 + (V/VO )4/3. The dashed line is a
plot of the expression Eq. (22) with h = 0.21. Inset shows two log-log
plots of the scaling bias Vo vs �o. One set of data (open symbols)
is obtained from fittings to Eq. (22) and another set (solid symbols)
from scaling. The solid line is a linear fit to the data (solid symbols)
with slope as shown.

is quite evident. The solid line in the figure represents an
excellent fit to σ/σo = 1 + q4/3, thus requiring only a n = 2
term in the GM expression. Authors31 fitted the I-V curves to
the following expression:

σ = σ0 exp(V/Vo)

1 + h [exp(V/Vo) − 1]
, (22)

where σo is the Ohmic conductivity and the parameter h =
σo/σ∞ (h � 1), σ∞ being the value of σ at large voltages V.
Vo is a voltage scale factor. The dashed curve in Fig. 9 is a
plot according to Eq. (22) with h = 0.21. The particular value
of h was chosen to satisfy the criterion for the bias scale,
�(Vo) = 2�o. The fit runs above the data for V/Vo < 1, and
runs below the data for V/Vo > 1. Moreover, the variation
in h with temperature and the saturation at large bias clearly
reveals inadequacies of the above expression in describing
the field-dependent conductance. Discrepancies at low bias
between experiments and Eq. (22) were already noted.33 The
inset shows two plots of Vo vs �o with one set of Vo’s (solid
symbols) obtained from scaling and another set of Vo’s (open
symbols) obtained from fittings to Eq. (22). Comparison of the
two sets shows further limitations of the above expression. The
nonlinearity exponent was determined to be xT = 0.33 ± 0.02.

V. DISCUSSIONS

The last section dealt with four different CP systems,
namely, PPy, PEDOT, PDA, and PA in as many forms, namely
powder, film, crystal, and nanofiber. Even under such diverse
conditions, the scaling phenomena as embodied in Eq. (4)
and demonstrated in Figs. 3, 5, 7, 8, and 9 stand validated

in a clear and unambiguous manner. Furthermore, the figures
also confirm the remarkable fact that there exists a single field
scale in any given sample at least within the experimental
ranges of field and conductivity spanning more than five and
nine orders of magnitude, respectively. This is contrary to the
predictions in the field-dependent VRH theories discussed in
Sec. II. Thus, an important objective of this paper, as stated
in the introductory section, is fulfilled. We believe that the
scaling phenomena observed in CPs here, and in amorphous-
and doped-semiconductors40 earlier, thus indicate a general
and fundamental property of the class of disordered systems
with localized states. The scaling analysis here follows that
of critical phenomena in thermodynamic phase transitions43

and, hence, the method of analysis described in Sec. III
naturally differs from that hitherto adopted, for example, in
Refs. 24,25, and 46. The method, in absence of a proper
theory, is primarily phenomenological but yields a concrete
number—the nonlinearity exponent—as a characterization
of the underlying conduction mechanism. The fact that the
nonlinearity exponent can have both positive and negative
values illustrates subtle features hitherto unnoticed in non-
Ohmic conduction in disordered systems. Let us now consider
details of scaling, namely, the scaling variables (which Fo

depends on) and scaling function, �, and their possible
connections to the microscopic picture.

A. Field scale Fo and scaling variable

To start with, let us note that at low fields CP systems
exhibit some sort of thermally activated conduction as de-
scribed by Eq. (1), with m ranging from 1/4 to 1. VRH is
actually a phonon-activated hopping between localized states
irrespective of the presence or absence of polarons. Discussed
in Sec. II, traditional theories incorporating field effects in
VRH conduction have a number of predictions or implications
which are at variance with experimental results.

First, two field scales Fo and Fu (corresponding to the
two length scales, the hopping length Rh and localization
radius a, respectively) are predicted, whereas only one scale
is experimentally observed. Second, the scale Fo is basically
set by temperature and supposed to vary as Fo ∼ T α Eq. (10),
where α = 1 + mμ is a positive number and always greater
than 1. However, log-log plots of Fo vs T (insets in Figs. 3, 5,
7, and 8) generally deviate from linearity to varying degrees.
They seem to be better described by two power laws with
two exponents: α1 at low temperatures and α2 at higher
temperatures with α1 � α2. Nonetheless, if the data in the
insets are still subjected to linear fits, slopes (i.e., α’s) turned
out to be 0.98, 2.24, and 4.153 in PEDOT, PPy (film), and
PDA, respectively, compared to predicted values of 1.5(2),
1.5(2), and 1.68(2.36) for μ = 1(2), respectively. Third, the
problem of temperature directly determining the field scale
is rather dramatically highlighted by the measurements in
three samples of PPy film [Fig. 6(b)] at a temperature of
20 K, each one having a different quenched microscopic
disorder and characterized by the Ohmic conductivity σo. If
Fo is indeed set by temperature alone, it should have been
basically same for each sample in the figure as measurements
were performed at the same temperature. However, the inset
in Fig. 7 clearly shows that Fo varies with σo and, within
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TABLE III. Comparison of nonlinearity exponents xM obtained using scaling and extended GM analysis Eq. (20) in various CP systems.
M stands for the variable used to vary σo: T, temperature; D, disorder; and B, magnetic field. yn is given by σn ∼ σ0

yn with values of σn’s of
some samples displayed in Table II. Note that quoted errors do not include the errors in data collapse processes, which could be up to 10%.

xM xM xM

System M scaling GM (n = 2/3) y2 y3 GM (n = 4/5) y4 y5 y6

PPy (powder) T −0.329 ± 0.014 −0.31 ± 0.03 1.78 ± 0.08 −0.36 ± 0.03 2.67 ± 0.13
PPy (film)23 T −0.155 ± 0.012 −0.13 ± 0.02 1.32 ± 0.04
PPy (film) T 0.228 ± 0.008 0.230 ± 0.003 0.693 ± 0.004 0.21 ± 0.01 0.25 ± 0.01 ∼0
PPy (film) D ∼ −0.3
PPy (film) B 0 0 1 0 1 1

PEDOT (powder) T 0.158 ± 0.003 0.170 ± 0.005 0.774 ± 0.007 ∼0.12 ∼0.57

PDA (crystal)24 T 0.51 ± 0.02 0.49 ± 0.02 0.34 ± 0.02

PA (nanofiber)31 T 0.33 ± 0.02 0.29 ± 0.06 0.62 ± 0.08

the limited range, is compatible with Eq. (5), albeit with a
different nonlinearity exponent. It proves that a field scale
is an intrinsic property of a disordered sample but could be
modified by various other parameters such as temperature,
etc. Significance of the role of disorder becomes further
apparent when compared with the results obtained by Bufon
et al.25 from measurements at different magnetic fields.
Figure 11 displays σ -V curves (dashed) at three magnetic
fields B, as indicated. The conductivity generally decreases
with increasing magnetic field. It is found that the three
curves could be made to collapse into a single curve (solid)
by simply scaling the conductivity at each magnetic field
by a factor λ (arbitrary up to a constant factor), as shown.
The bias did not need any scaling. This means that the field
scale was independent of B unlike disorder, and consequently,
the corresponding nonlinearity exponent xB is 0. Fourth,
in some systems such as PPy (powder) (inset of Fig. 3)
and PPy(R) film (Table III), α (as well as the nonlinearity
exponent xT ) is negative. This is a serious disagreement as it
is irreconcilable with the theories.

FIG. 10. (Color online) Field scale vs linear conductivity in
various systems. The plot for a-Ge is from Ref. 40. The data of
PPy(R) film have been shifted to the left by a factor of 104.

In contrast, log-log plots of Fo vs σo are consistently linear,
as seen in Figs. 9 and 10, the latter displaying data from
different CP systems (Figs. 3, 5, 7, and 8), including PPy(R) in
the same scales (PA nanofiber is excluded because of variables
with different units). Linearities in the plots give credence to
the empirical power law Fo ∼ σo

xT Eq. (5), which is radically
different from Eq. (9) in that the variable in the power law is not
the temperature itself but the linear conductivity σo, which is,
of course, a function of temperature. All these considerations
suggest that σo should be considered as the appropriate scaling
variable in Eq. (4), which then reads as

σ (M,F )/σo = �(Fσo
−xM ), (23)

where M stands for the variable(s) used to vary σo = σ (M,F =
0). Equation (23) allows description of the scaling of the
field-dependent conduction along various paths in the variable
space in a natural fashion without any obvious contradiction.
In analogy with the scaling formulation of thermodynamic
critical phenomena,43 σo = 0 defines a “critical” point. The
Ohmic conductivity σo plays the traditional role of temperature
T in that it sets the field scale, which, in turn, is expected to
correspond to some physical length scale. The latter is yet to
be explained but must be distinct from either a or Rh.

While allowing a view of data in six samples at a glance,
Fig. 10 also provides a basis for quantitative comparison of the
field scales across those systems and amorphous germanium
(a-Ge)40 included for reference. The comparison, of course,
is not straightforward as the slopes xT have different values.
However, it is seen that CP systems are generally electrically
“soft” compared to a-Ge since the onset field in a CP
system is smaller than that in a-Ge in the displayed range
of conductivity. For a quantitative comparison, let us consider
a-Ge and PEDOT since both systems have nearly same slope
(nonlinearity exponent) of 0.16. The prefactor AT in Eq. (5)
which represents the strength of a field scale is 331 and
0.2 (kV/cm)(S/cm)−0.16, respectively, that is, the onset field
in a-Ge is roughly 1600 times that in PEDOT. Now, simple
dimensional considerations lead to an expanded expression for
Fo:

Fo ∝ kBTo

ea

(
ahσo

e2

)xT

, (24)
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where e2/h is the quantum of conductance and kBTo is
a characteristic energy scale. From Eqs. (5) and (24) we
have AT ∼ To/a. Taking localization lengths in the two
systems to be of same order of magnitudes (∼1 nm) and
with To ≈ 108 and 1800 in a-Ge and PEDOT, respectively,
the ratio Fo(a-Ge)/Fo(PEDOT) is about ∼5 × 104, one order
of magnitude greater than 1600. VRH theories fare even
worse. According to Eq. (10), Fo ∼ 1/aTo

α−1 so that the
ratio Fo(a-Ge)/Fo(PEDOT) is about 18001/2/108/4 ∼ 1, three
orders of magnitude less than the experimental value.

B. Scaling function �

The field-dependent VRH theories34,36,37 predict a simple
exponential Eq. (9) at low and intermediate fields, to which the
scaled data of PEDOT (powder) have been fitted for illustration
purpose (dash-dotted line in Fig. 5). The fitted curve appears
to match data well in the low-field region (F/Fo ∼ 1) but
gradually deviates from it by rising faster in the high-field
region. Moreover, as shown in the inset of Fig. 5, Fo fails to
follow the temperature-dependence as given by Eq. (10). Such
inconsistent behavior of the VRH theory is quite typical. Inade-
quacies of Eq. (22) in case of PA nanofiber have been discussed
earlier in detail (see Fig. 9). Let us now discuss how the GM
expression Eq. (12) describes the CP data in various systems.

Fits to the I-V data at different temperatures as well as
disorder are shown in Figs. 2, 4, and 6(b), and to the scaled
curves in Figs. 3, 5, 7, 8, and 9. The near perfect agreement
between the experimental data and the theoretical fits is quite
remarkable in view of the range of data covered: more than
nine orders of magnitude in conductance and nearly five
orders of magnitude in field. Furthermore, fits to the scaled
curves using the scaled version of the GM expression Eq. (15)
provide absolute justification of the assumption Eq. (14) and
underline the relations that exist among the coefficients in the
GM expression applied to macroscopic samples but were not
foreseen in the theory.39 The fact that coefficients cn’s used in

FIG. 11. (Color online) Conductivity vs bias voltage (dashed
curves) in the PPy film (sample 3) at three magnetic fields (after
Ref. 25). Only conductivity of each curve need to be scaled with a
factor λ to collapse onto the solid curve. The nonlinearity exponent
xB is zero.

FIG. 12. (Color online) Log-log plots of GM coefficients vs linear
conductances. Solid lines are linear fits to the data with slopes as
indicated.

the fits to the scaled curves correspond closely (within errors)
to cn’s (Table II) obtained from fittings of individual curves
also demonstrates those relations in a self-consistent manner.
It may be recalled that two assumptions about the coefficients,
namely, Eqs. (14) and (18), led to the important expression
Eq. (20) for the nonlinearity exponents xT in the GM model,
which allowed a number of conclusions to be drawn on the
properties of xT itself. Fitted values of the coefficients σn’s
Eq. (12) for different values of n given in Table II are plotted
against σo using log-log scales in Fig. 12. The linearity of
the plots amply validate the assumption Eq. (18). While such
power-law relations are also predicted in mesoscopic systems
Eq. (19), the experimental values seen in Fig. 12 could be
significantly different from the predicted ones. Experimental
values include numbers larger than the maximum predicted
value of 0.67 as in PPy (powder) and PEDOT. However,
experimental yn’s (see Table III) do satisfy inequalities in
Eq. (21). Furthermore, there is a spectrum of values rather
than a single value for a given channel.

A close look at Table II reveals yet another intriguing feature
of channel selection: Only the “even” channels (i.e., channels
with even number of localized states) appear in the fittings
of systems such as PEDOT, PPy film, etc., having positive
nonlinearity exponents (xT > 0), whereas only the “odd”
channels appear in the fittings of other systems such as PPY
(powder) having negative nonlinearity exponent (xT < 0).
As a result, the lowest channel contributing to non-Ohmic
conduction is a two-impurity channel (no = 2) in the former,
and a three-impurity channel (no = 3) in the latter. There was
no instance of mixing of terms of the two series (i.e., even and
odd) in any of the samples investigated here. However, no such
selection of channels was detected in a mesoscopic system
of metal-amorphous silicon-metal tunnel junctions where all
channels from n = 2 to 5 were found to be present in some �-V
curves.49 In general, the theory does not provide any clue to this
phenomena of selection, and in particular, to the properties of
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CP systems responsible for this. Similar selection has been also
noticed in other hopping systems such as amorphous/doped
semiconductors.40 We also note an opposite trend for PPy films
with different quenched disorder [Fig. 6(b)] having a negative
nonlinearity exponent where the best fits are obtained with
even channels in the GM expression. This is not surprising
as one of the curves was earlier part of the data collapse
of field-dependent conductances at various temperatures. The
nonlinearity exponent was found positive [inset, Fig. 6(a)] and
fits to the GM expression consisted of even channels only.
Differences between the systems described by even and odd
channels can be seen in the values of cn’s in Table II. In case
of even channels, c2’s are close to 1 and rest of cn’s are very
small. However, in case of odd channels, cn’s are comparable
as in PPy (powder).

It is seen from Figs. 5, 7, and 8 that the CPs such as
PEDOT, PPy, and PDA were described by the GM expression
with only even non-Ohmic channels: σ/σo = 1 + c2q

4/3 +
c4q

18/5 + c6q
40/7, where q = F/Fo. The data ranges were

sufficiently large that each system needed at least two non-
Ohmic terms for fitting. While the coefficient c2 was close
to 1 in all the systems, c4 was 0.011, 0.0024, and 0.000 123,
respectively. Such decreasing values of c4 means decreasing
rate of rise of conductivity with field. Another indicator of
this trend could be q4, the value of q in a system above
which the fitting (the dashed curve in the corresponding
figure) with only the lowest channel (n = 2) deviates from
the scaling curve. The increasing value of q4, roughly 2, 10,
and 20, respectively, in the three systems does correlate with
decreasing c4. More significantly, the decreasing c4 correlates
well with the increasing nonlinearity exponent, which are 0.16,
0.23, and 0.51, respectively (Table III): The smaller the value
of a nonlinearity exponent is, the steeper is the conductivity
curve (or larger the value of c4). This correlation is, in fact, a
result of the relation Eq. (6). The higher-order coefficients
such as c6 are expected to exhibit similar correlation in
values. Incidentally, q4 is given by σ/σo = 1 + c2q4

p2 from
Eq. (15). q4 may be interpreted to be the onset field for
the fourth channel. It may be pertinent to ask whether
each distinct value of the nonlinearity exponent constitutes
a different universality class with a distinct scaling function.
The answer is rather ambiguous at present. Consider two
systems with roughly the same nonlinearity exponents: PPy
(powder) with xT = −0.33 and PPy (film) with xD ≈ −0.3.
However, the former is described by a combination of odd
channels whereas the latter is described by a combination of
even channels. On the other hand, systems such as PPy (film),
PEDOT, PDA, and PA (nanofiber) possess distinct nonlinearity
exponents but are all described by a combination of even
channels. Each combination is, in fact, identified by a unique
set of cn’s.

It is quite remarkable that only three nonlinear terms were
required to describe data in PPy (film) over nine decades. The
finite number of terms is consistent with the requirement that
the GM series must terminate at some finite n [item (iv) in
Sec. II]. The highest term corresponding to n = 6 (p6 = 5.7)
was necessary to fit the data at high field (F/Fo � 1), i.e.,
data at T ∼ 2.1 K, which is nearly given by a power law
[Fig. 6(a)]. Actually, a log-log plot of the data yielded a slope
of zT = 5.57 close to 5.7. However, this value of zT is higher

than 1/xT = 1/0.23 ≈ 4.39, in apparent disagreement with
Eq. (6) for xT > 0. The same happens also in PDA, where
zT (∼ 3.6) > 1/xT = 2. The relation Eq. (6) has been routinely
observed to hold in amorphous semiconductors.40 It is to be
noted that in both PPy (film) and PDA, Fo at low temperatures
lie above the linear fits (Fig. 10). Whether this is indicative of
existence of two slopes merits further careful measurements
at low temperatures to resolve this issue.

C. Nonlinearity exponent xM

Nonlinearity exponents are the concrete outcome of the
adopted scaling procedure and are displayed in Table III for
various CP systems under different conditions. An exponent
can be obtained in two ways. One method has been already
illustrated in Figs. 3, 5, 7, 8, and 9. This involves collapsing
I-V curves gathered at different values of some parameter M
(e.g., temperature) on a curve by suitable choices of Fo and
σo. The exponent is then obtained using Eq. (5). This method
is solely based upon the scaling property of the I-V curves and
does not require any knowledge of the scaling function. The
latter, if available, can be utilized to obtain the exponent in the
second method. It has been shown above that GM expressions
Eqs. (12) and (15) describe the relevant data in an excellent
manner. Therefore, we can use the expression Eq. (20) for
obtaining xM in terms of model parameters, both direct and
derived. yn’s are derived from plots such as those shown in
Fig. 12. There are as many yn’s as the number of inelastic
tunneling channels. According to Eq. (20), each one of them
should yield the same xT as yet another test of consistency in
applicability of the GM model to CPs. This seems to be well
borne out within errors (Table III) when the contribution from
the second channel is large enough to yield reliable values as in
PPy (powder) and PPy (film) (this work). Considering the fact
that digitization errors are not accounted in the values quoted in
case of samples of other works, agreement between values of
the exponents obtained using two methods is quite reasonable.
In case of measurements at different magnetic fields, since
conductivities are related by some constant factors, we have
yn = 1 for all n. Equation (20) leads to xB = 0, in agreement
with the value from scaling consideration as discussed earlier.
Note that xM ’s shown in Table III lie between the bounds −1/2
and 3/4 (see the point i).

There are some striking features in the values of the
exponent. It can be both positive and negative. The negative
values, particularly one of xD ∼ −0.3 in PPy (film) are coun-
terintuitive as evident from the following simple argument.
The onset field Fo in a sample without any disorder is basically
very large. As disorder is introduced, conductance decreases.
At the same time, the electrons become increasingly incoherent
as well as number of possible paths multiply. This gives rise
to non-Ohmic conduction at a finite Fo. In other words, Fo

decreases with �o, indicating xD > 0. Clearly, there is no
universal exponent for CPs. There is no characteristic exponent
even for a given CP. As seen in Table III, the same PPy
sample exhibits two different values of the exponent, 0.23 and
0 depending upon the variable M. Three different PPy samples
exhibit as many values of the exponent xT (−0.33, 0.23, and
−0.17), both positive and negative. Furthermore, in PPy (film)
xT and xD are 0.23 and ∼−0.3, respectively in contrast to
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FIG. 13. (Color online) Measurement paths along with associ-
ated nonlinearity exponents in various doped PPy samples in the
temperature-disorder plane. Disorder here is parametrized by the
Ohmic resistivity at 20 K. The data marked with star are from
Ref. 23. Note that data from a sample simultaneously belongs to
two intersecting lines.

xT = xD ∼ 0.45 in the composite system of carbon-wax.45,54

This plethora of values could simply indicate that xM depends
upon the path of measurement in the variable space that
also includes quenched disorder. Figure 13 illustrates four
such paths of measurements in PPy samples along with the
corresponding exponents in the temperature-disorder plane.
Obviously, unraveling of the details of such dependency in the
variable space has to await theoretical understanding of xM

that is lacking at present. In fact, different values of xM in the
same system prove that the hopping network is in both physical
as well as energy space, in contrast to the conduction network
in composites at room temperature,55 which is supposed to be
purely geometrical in real space. The field scale in CPs cannot
be simply determined by geometrical topology of disorder
alone. Otherwise, temperature that only provides an energy
scale could not have an effect on the scale. This is consistent
with result, xB = 0 since magnetic fields do not change either
energy levels of charge carriers or disorder and therefore do
not warrant a change in the field scale.

D. Final picture and issues with the GM model

Let us consider the broad picture of transport in lightly
doped CPs that emerges from the results presented so far and its
analysis particularly within the context of the GM model.39 All
the systems considered in this work exhibit an activated-type
diffusive transport (including VRH) at low bias, as shown
schematically in the top panel of Fig. 14. Such exponential
temperature dependence of conductivity is markedly different
from power laws, ∼T pn predicted by the model in the limit
eV � kT . As the applied field is increased beyond the onset
value, on one hand the field-dependent conductivities in CPs
are described in an excellent fashion by a GM-type expression
Eq. (12). This indicates that the transport paths are now in the

F < FO

F  FO

FIG. 14. (Color online) Schematic diagram of possible hopping
paths in real space between electrodes for fields (F) less (upper)
and more (lower), than an onset field (Fo). The solid circles represent
localized states. The lower path corresponds to two-step tunneling, the
lowest non-Ohmic channel according to Glatzman-Matveev (Ref. 39).
See text for further details.

form of linear chains consisting of multiple localized states,
as shown in the bottom panel of Fig. 14. Conduction takes
place through inelastic tunneling among those localized states,
starting from the lowest two-step tunneling. On the other hand,
the fitted parameters (i.e., coefficients σn in Table II) are found
to possess properties that violate (e.g., temperature dependence
in the limit eV � kBT ) or exceed (e.g., scaling) the originally
predicted ones. The justification for application of the GM
model to CPs must lie in reconciling these conflicting trends.

Perhaps it is not surprising that there are disagreements
between the experimental results in the macroscopic samples
used in this work and the predictions of the GM model.
The GM -expression Eq. (12) describes transport across a
mesoscopic sample of width w of the order of average hopping
length; that is, a � w ∼ Rh. A question arises: How do
the model predictions change as the bulk limit w � Rh is
taken? Initially, only a small number of localized states are
involved in the dominant hopping process.49 As the sample
dimension or temperature or bias is increased, the optimal n
(nopt) also increases. Hopping in the limit of large nopt has
been discussed by several authors56,57 and crosses over to
VRH in the bulk in agreement with observations in the present
samples. However, power laws in bias that are characteristic
of mesoscopic samples seem to survive even in bulk samples.
A clue to such behavior may possibly lie in the heterogeneous
structure of a CP which may be viewed to consist of multitudes
of thin filmlike structure embedded inside the bulk.12,13 The
conductance corresponding to two-step tunneling is propor-
tional to exp(−w/3a). Obviously, w cannot be a macroscopic
sample size (10−6 to 0.1 cm); rather, it must be of the order of
width of the disordered region along a polymer fibril, which
may be order of 5 nm.13 Then it is not clear why power
laws in temperature do not survive in the bulk. Furthermore,
since Ohmic–non-Ohmic transition is a continuous process,
the transformation of a percolative58 trajectory of a charge
carrier in VRH (Ohmic) regime (top panel of Fig. 14) to a
linear trajectory in the non-Ohmic regime (bottom panel of
Fig. 14) must be pretty abrupt. Apparently, such an abrupt
behavior has been reported when w ∼ Rh in three dimensions,
although a precise theory is lacking.49 Finally, it is a sort of
role reversal for temperature at two limits of sample dimension.
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When the latter is of the order of a few hopping lengths, the
optimal number of localized states50 is roughly given by nopt =
w/Rh − 1, where Rh is given by Eq. (8). Since Rh increases
with decreasing temperature, nopt decreases. However, as
seen in Fig. 6, I-V curves become increasingly non-Ohmic,
and hence nopt increases, with decreasing temperature. To
summarize, the scaling function Eq. (15) derived from the
GM expression Eq. (12) under certain assumptions provides
an excellent description of the experimental data, satisfies
general requirements of scaling Eqs. (4) and (6), and yields an
expression Eq. (20) for the nonlinearity exponent. However,
theoretical efforts are necessary to validate the assumptions
and to remove contradictions.

Apart from the conceptual problems outlined above, we
list here the interesting features involving particularly the
coefficients σn that were observed and need to be explained
theoretically. First is the incidence of channel selection in
macroscopic samples. It is necessary to understand the exact
conditions in the GM model that allow such a selection
phenomenon and then how those conditions may be satisfied
in CPs. Second is the assumption Eq. (14) that makes
scaling analysis possible within the GM model. Third is
Eq. (18), which relates each channel coefficient to the linear
conductivity. Simple arguments yield only yn < 1 for n > 1
Eq. (19). However, yn > 1 is necessary to have negative
nonlinearity exponents. Fourth is the physical process that
limits the number of channels to a finite value in a given system.

VI. CONCLUSION

In this paper, we have reported field-dependent conductiv-
ities in various lightly doped CP systems as a function of

temperature and quenched disorder. We demonstrated that
each of the various CP systems possesses a single field
scale and exhibits the associated scaling. A phenomenological
scaling equation that led to the extraction of nonlinear
exponents was used to analyze the nonlinear transport data.
It was argued that experimental evidence points to the linear
conductivity as a natural scaling variable. Surprisingly, the GM
expression for multistep tunneling proves to be an excellent
fit to the I-V curves as well as the scaled curves. A couple
of assumptions are made to make the GM model compatible
with scaling. Experimental values of the exponents fall within
the predicted limits of −1/2 and 3/4. A theory capable
of explaining the nonlinear exponents, particularly negative
ones, is lacking. The value of the exponent depends upon
the path of measurement in the variable space. Some issues
concerning applicability of the GM model to CPs have been
discussed.

The scaling that has been observed in CPs has been also
found in many other disordered systems including composites.
It is believed that such scaling may be truly a universal feature
of disordered systems, particularly with localized states. All
the samples considered here are three dimensional. It will
be interesting to know how such scaling fares in lower
dimensions. It is hoped that the results presented here will
lead to increased theoretical efforts to understand scaling
phenomena in field-dependent transport in disordered systems.
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