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Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles:
A Monte Carlo study
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We analyzed the size effect of spin-crossover transition nanoparticles in a two-dimensional core-shell model,
where the edge atoms are constrained to the high-spin (HS) state. Using Monte Carlo (MC) simulations, we
showed that this specific edge effect lowers the equilibrium temperature and enhances the HS residual at low
temperature; these results are in very good agreement with recent experimental data. Within a very simple working
assumption, we obtained an analytical expression for the size dependence of the equilibrium temperature that is
in excellent agreement with the MC results. The model leads to a nontrivial size dependence of the hysteresis
width, which is similar to a—size-dependent—negative pressure effect induced by the HS edges. To reach the
best agreement with experimental data, we accounted for the size distribution of the experimental samples.
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I. INTRODUCTION

In recent years, there has been growing interest in the field
of spin-crossover (SC) solids. Under various constraints, such
as temperature1 or pressure2–4 variations, irradiation by visible
light,5–9 or magnetic field,10 SC solids can be switched from a
low-spin (LS) state to a high-spin (HS) state and vice versa.11,12

For example, FeII SC compounds13 are diamagnetic (S = 0, LS)
and paramagnetic (S = 2, HS) in the low- and high-temperature
phases, respectively. The spin-crossover transition involves
both electronic transformation (spin and orbital) and structural
modifications. In the case of FeII compounds, the metal-ligand
bond lengths change by about 0.2 Å (∼10%), and the ligand-
metal-ligand bond angles change by 0.5◦–8◦.6,14 Optical
properties are also changed,5,15,16 with usually a colorless HS
state and a strongly colored LS state in the case of FeII systems.
Consequently, magnetic and optical measurements17–20 are the
major experimental techniques used for quantitative investiga-
tions of spin transitions. In many cases, elastic interactions
between the SC units are strong enough to induce hysteresis at
the thermal spin transition,21 which occurs as a first-order
phase transition. Such “switchable” molecular solids are
promising in terms of optical data storage.22

Recently, the synthesis and design of spin-crossover
nanoparticles have become possible, and several interesting
behaviors have been reported.23–33 The experimental results,
for most of these studies, have confirmed the expected
narrowing of hysteresis loop and, in some cases, the collapse
of the loop below some “critical size,” but very few of them
have provided a coherent set of data over the relevant size
range, that is, above and below the critical size. In addition,
the samples usually present a rather wide distribution of
sizes and various shapes, and particles are often aggregated
in various manners. All these features obviously impact
the switching behavior of the SC nanoparticles and make
investigation into the properties of a unique nanoparticle a
very challenging goal. From the theoretical point of view,
there have been a few studies of the thermal and photo-
switching properties of SC nanoparticles,34–37 that have aimed

at reproducing the collapse of the hysteresis effects at the
critical size of the particles. These theoretical studies were
based on Metropolis simulations on finite-size lattices with
free boundary conditions. Here, we introduce an additional
aspect, which is the specific electronic state of the atoms
located at the surface of the particle. This was suggested by
a recent experimental investigation25 on SC nanoparticles of
Fe(pyrazine){Pt(CN)4}, with well-controlled sizes above and
below the critical size. In addition to the expected narrowing of
the hysteresis loop upon decreasing size, this system displayed
a sizable lowering of the transition temperature and an increase
of the residual HS fraction. The latter features are explained
by the different coordination of the surface atoms, including
water molecules instead of the organic ligands. These surface
atoms experience a weaker ligand field capable of trapping
them in the HS state, and consequently lower the equilibrium
temperature of the particle through an effective negative
pressure effect. For practical reasons, the present investigation
was performed on two-dimensional (2-D) networks where this
specific effect was located at the edges. It will be consequently
referred to in terms of “edge effect.” Although the present
2-D model might be considered as a preliminary approach
to future three-dimensional (3-D) models, it is also relevant
due to the particular geometry of the nanocrystals, which
are in the shape of square platelets with a rather constant
thickness. The core of the square lattice is already submitted
to a quasi-uniform effect from both surfaces, irrespective of the
size of the network, and the size effect effectively reduces to a
2-D problem. This viewpoint will be supported by the present
simulations. We performed Monte Carlo (MC) simulations
using the well-known Ising-like model (interacting two-level
systems), which has been widely used in literature to describe
the equilibrium39,40 and nonequilibrium41 properties of SC
solids. This choice was dictated by the simplicity of this
description, despite its phenomenological character. The paper
is organized as follows: Sec. II is devoted to the model; Sec. III
provides the results and their discussion; Sec. IV presents a
detailed comparison to experimental data, including the impact
of size distributions; and Sec. V is the conclusion.
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II. MODEL

The total Hamiltonian of the system accounting for the edge
effect is written

H = −J
∑
(i,j )

∑
i ′ = ±1;
j ′ = ±1

S(i,j )S(i + i ′, j + j ′)

+
(

�

2
− kBT

2
ln g

)∑
(i,j )

S(i,j )

and S(i,N ) = S(N,j ) = S(i,1) = S(1,j ) = +1 (1)

In this Hamiltonian expression, the HS and LS states
are associated, respectively, with the eigenvalues +1 and
−1 of the fictitious spin operator, S, with their respective
different degeneracies g+ and g−, the ratio of which is g+

g−
= g.

These degeneracies account for both internal (spin, orbit,
and intermolecular vibrations) and external (lattice phonons)
degrees of freedom. Here, � is the energy difference E(HS)
− E(LS) between the spin states of isolated molecules, and J
is a phenomenological parameter accounting for ferroelastic
interactions, here limited to first-neighbor molecules. The
order parameter of the system is the HS fraction, defined as
nHS = (1 + 〈S〉)/2, where

〈S〉 = 4 (L − 1) + ∑(L−2)2

i=1 Si

L2
, (2)

where L2 is the system size.
The equilibrium temperature, Teq, is defined as the temper-

ature for which the spin fractions are equal (nHS = 1/2). In the
case of a first-order transition (for which the spin equilibrium
is unstable), it is approximately equal to the mean value of the
heating and warming transition temperatures, also defined by
equal spin fractions on the heating and cooling branches of the
hysteresis loop.

The present model involves various local situations, the
features of which are listed in Table I. The key point is that
the interaction terms associated with the presence of HS-fixed
neighbors around a considered atom introduce fixed contribu-
tions to the energy gap, precisely –J for each neighbor. These
fixed contributions effectively act as ligand-field contributions
and consequently have to be incorporated in the ligand-field
term of the considered atom. In other words, they locally act
as a negative pressure.

The Hamiltonian equation (1) was exactly solved in the
canonical approach using Monte Carlo (MC) simulations
based on the Metropolis algorithm.42 Parameter values were
chosen from typical data in spin-crossover literature, such as
the molar entropy change �S ≈ 50 J/K/mol, leading to ln

FIG. 1. (Color online) Lattice configuration in the case L = 6.
Blue filled circles are HS-fixed (edge) atoms. All inside atoms are
active: Filled red (black) circles stand for atoms having two (one)
inactive HS as nearest-neighbors, and open circles stand for atoms
surrounded by only active sites.

g = �S/R ≈ 6 (where R is the perfect gas constant) and energy
gap � = 1300 K, leading to a typical value of the equilibrium
temperature Teq = �

kB ln g
≈ 200 K. Comparison to experimental

values is possible through adequate energy rescaling, that is,
by considering relative temperature variations. Accordingly,
the interaction parameter value J = 160 K was selected so
as to result in a relative hysteresis width �Tc/Teq = (Tc,up –
Tc,down)/Teq, which compares to the experimental value of the
bulk system, ≈15/300.

Simulations were performed on square lattices of size
L × L (see Fig. 1), up to L = 200. Due to the fixed character
of the edges, the usual criterion of open/periodic boundary
conditions did not apply. To follow the thermal dependence
of the HS fraction, nHS(T), the system was warmed from
T = 50 K to 250 K and cooled down to the initial temperature
50 K by 1 K steps. At each temperature, the first 20,000 MC
steps were discarded, due to their transient regime character,
and the following 100,000 MC steps were used for calculating
the average physical quantities of the system at the quasi-
equilibrium state. For each size, the process was repeated
20 times with different random seed generators, and the results
were averaged.

TABLE I. The various situations and ligand-field contributions in an L × L lattice.

Total Edges Core Core, number of HS-fixed neighbors

0 1 2 4 for L = 3 only

Number of atoms L2 4(L − 1) (L − 2)2 (L − 4)2 4(L − 4) 4 1

Ligand field �

2 − kBT

2 ln g = A A − J A − 2J A − 4J
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FIG. 2. (Color online) (a) Calculated thermal dependence of the HS fraction for square-shaped nanoparticles of different sizes. From left
to right, L = 4, 7, 10, 40, 200 (quasi-infinity). (b) Experimental HS fraction (after Ref. 25) of the bulk and nanoparticle samples of the SC
compound Fe(pyrazine){Pt(CN)4}. Labels 1 and 2 stand for nanoparticle samples with mean size ∼7 nm and ∼12 nm, respectively.

III. RESULTS AND DISCUSSION

In Fig. 2, we show the thermal behavior of the HS fraction,
nHS(T), calculated for various particle sizes (Fig. 2(a)), and
the experimental data (Fig. 2(b)) that inspired the work.
The experimental behaviors are reproduced: Upon decreasing
particle size, the transition temperature is shifted down-
ward, the hysteresis loop progressively collapses, and the
low-temperature residual HS fraction is increased. Detailed
discussion of the results of the model follows.

A. Size dependence of the residual fraction
and of the equilibrium temperature

The low-temperature HS residual fraction exactly follows
the edges/core atom ratio, which is simply expressed as 4(L−1)

L2 ,
with asymptotic regime ∼4/L for large nanoparticles (see
Fig. 3(a)). The equilibrium temperature follows a power law
∼ (L − 2) (see Fig. 3(b)), which outlines that the effective size
of the system is (L − 2) × (L − 2), that is, the size of the
SC-active core.

We found that the size dependence of the transition
temperature could be described by analytical laws (easily
extended to 3-D models). For small sizes, exact solutions
are found, since all active atoms are described by identical
Hamiltonians:

For L = 2: There is no spin-crossover transition by
construction, since all 4 atoms are edge atoms.

For L = 3: The unique core atom results in a continu-
ous behavior according to the canonical expression nHS =
1+thβ(4J− �

2 + kB T

2 ln g)
2 , leading to Teq(L = 3) ≈ 3 K, with the

present set of parameters.
For L = 4: Each of the 4 core atoms has two HS nearest

neighbors. The effective ligand-field energy, �
2 − kBT

2 ln g −
2J , is positive at 0 K, and hence the LS state is the ground
state at 0 K. The canonical expression of the HS fraction is
given by

nHS = 1

8

{
7− shβ

(
�
2 − 2J − kBT

2 ln g
)

sh2β
(
2J − �

2 + kBT
2 ln g + exp

(− J
kBT

))
}

.

(3)

Equation (3) leads to a continuous behavior with an
equilibrium temperature Teq = �−4J

kB ln g
= 110 K, which is in

excellent agreement with that of MC simulations for L = 4,
reported in Fig. 2(a).

For larger sizes, the lattice contains spin-crossover active
spins with zero, one, or two HS-fixed neighbors. At the
present state-of-art of the mathematical techniques, there is
no analytical solution of this problem. We introduce here
a simple solution based on the working assumption that

FIG. 3. (Color online) (a) The calculated size dependence of the residual HS fraction at low temperature (full line) compared to experimental
data (+) derived from Fig. 2(b). (b) The calculated size dependence of the equilibrium temperature (full line), compared to experimental data
(+) derived from Fig. 2(b). Inset: the validity check of the analytical Eq. (5).
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the equilibrium temperature of the system results from the
average value of the ligand fields. Taking advantage of the

data listed on Table I, the transition temperature is expressed
as:

Teq(L) =
4 × �−4J

kB ln g
+ [4(L − 2) − 8] ×

(
�−2J
kB ln g

)
+ (L − 4)2 × �

kB ln g

(L − 2)2
. (4)

Equation (4) can be rewritten in a more adequate form as

Teq(L) = Teq(∞) − 8J

kB ln g
× 1

L − 2
, (5)

where Teq(∞) = �
kB ln g

≈ 216 K is the transition temperature

of the infinite system, and the second term, − 8J
kB ln g

× 1
L−2 , ex-

presses the size dependence introduced by the HS-fixed edges.
The relevance of Eq. (5) is supported by the comparison

to the results of the MC simulations, as shown in the inset
of Fig. 3(b), where Teq is plotted vs 1/(L − 2). The linear
regression of the MC data yields a slope value −210 ± 4 K,
which is in excellent agreement with the analytical prediction
− 8J

kB ln g
∼ −213 K.

It is worth mentioning that the latter method also holds for
a 3-D cubic system. A general formula for the evolution of the
equilibrium temperature with size is given by

Teq(L) = Teq(∞) − 4dJ

kB ln g
× 1

L − 2
, (6)

where d is the dimensionality of the system.
We should also mention that the present model involves

the assumption that the effective degeneracy g is constant.
Thus, g is not affected by the edge effect and does not
depend on the particle size. The first assumption is inherent
to the Ising-like model itself, which uses HS and LS g values
irrespective of the spin state of the neighbors. The second
assumption is worth being questioned: On one hand, the orbital
and spin degeneracies, which have discrete values, can easily
be assumed to be size independent; on the other hand, the
intramolecular vibration frequencies as well as the phonons
density of states—including surface and edge effects—might
be affected by the nanoparticle size. This problem cannot be
addressed at the present time, in absence of experimental data
by infrared (IR) and/or Raman spectroscopy, which so far are
missing in the case of SC nanoparticles. We just believe that
the dispersion curves of surface atoms and bulk atoms should
be different,43–45 due to the impact of surface relaxation and
to the existence of specific defects at the surface. Accounting
for these aspects would require using lattice dynamics models,
which were not in the scope of the present work.

B. On the size dependence of the hysteresis loop

According to Fig. 2, the hysteresis loop appears above a
threshold value, Lthresh. ∼7–8. This value certainly depends
on the MC kinetics used in the simulation, which will be
kept constant throughout the present work. It is worth noting
that the spatial scale of the model is easily determined from
the measured Fe-Fe distance, ∼ 0.72 nm in the dense planes

of the structure.46 On the contrary, the timescale of MC can
hardly be compared to the experimental switching times, which
usually are in the microsecond range for isolated atoms at
the considered temperatures, but which are very efficiently
increased at the vicinity of the transition.47 We merely assumed
that both experimental and thermal calculated data correspond
to a quasistatic hysteresis, that is, they belong to a regime that
does not sizably depend on the temperature sweep rate.

We reported in Fig. 4 the size dependence of the hysteresis
width. On increasing size, above some critical value (Lc ∼
7–8), �TC shows a monotonous increase up to a peak value at
L ∼ 24–25 and then slightly decreases towards an asymptotic
value, which sizably differs from that of the free-edge system.
This nonmonotonic behavior contrasts with the monotonic
behavior of free border nanoparticles, also reported in Fig. 4.

The variation of �TC (L) above the peak value can
be assigned to the variation of Teq, under the nontrivial
size-dependent “pressure effect”48 of HS-fixed edges, which
remains sizeable while the effective interactions in the system
have almost reached their asymptotic values. It is well known,
indeed, from the phase diagram of the Ising-like system, that
increasing Teq while keeping constant the interaction parame-
ter leads to a decrease in the hysteresis width.40 In other words,
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FIG. 4. (Color online) The calculated size dependence of the
width of thermal hysteresis, �TC , for fixed HS boundary condition
(curve 1) and free boundary condition (curve 2). Inset: the size-
dependence of the transition temperatures upon heating (Tup) and
cooling (Tdown) corresponding to curve (1).
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this nonmonotonous behavior results from the competition of
two parameters affected by the size effect: the equilibrium
temperature and the effective cooperativity of the system.

To find supporting evidence for this mechanism, we per-
formed MC simulations without specific surface effects (free
boundary conditions) and calculated the size dependence of the
hysteresis width for the same MC kinetics. The results, shown
in Fig. 4, together with those of fixed boundary conditions,
confirm the present analysis. To our best knowledge, this
nonmonotonic behavior is a new result in the field of SC
and makes desirable the achievement of detailed experiments
devoted to size effects.

In the present discussion, we did not address the kinetics
aspects involved in the observation of the hysteresis loop. We
previously investigated in detail, some years ago,44 the lifetime
of the metastable states of the Ising-like model. The results
showed that a decrease in the size of the systems resulted in
a decrease of the lifetime of the metastable states around the
first-order transition; in contrast, decreasing the ligand field
(as produced by the negative pressure) induced the opposite
effect. The possible balance between these opposite effects is
an open question, which will be investigated quantitatively in a
forthcoming paper making use of the absorbing Markov chain
method, following Lee et al.49

We briefly considered the possible impact of long-range
interactions at the intraparticle, which actually are of elastic
nature in spin-crossover systems. Calculations showed that
such intraparticle interactions may hinder the appearance
of the nonmonotonic behavior reported here. This tendency
can be easily understood by considering the case of pure
infinite long-range interactions for which the system loses
morphology (the location of the HS atoms at the surface or in
the bulk is pointless) and consequently surface effects vanish.
In contrast, introducing interactions at interparticle levels is an
open problem in the case of spin-crossover systems, for which
no equivalent to the magnetic dipolar interaction is known at
the present time.

In both situations (intra- or interparticles interactions), the
major consequence of long-range interactions is a decrease in
the critical size of bistability.

C. On the occurrence of the first-order transition

The case of infinite 2-D networks has been previously
described using the present Ising-like approach with first-

neighbor interactions.19 The occurrence condition of the
first-order transition is T ∞

C > Teq, where T ∞
C = 2,269J is the

order-disorder transition of the pure 2-D Ising model (without
field and degeneracy), and Teq = �

kB ln g
is the equilibrium

temperature of the Ising-like system, irrespective of the
interaction strength. At finite size, the equilibrium transition
temperature of the usual Ising-like system (that is, with free
boundary conditions) is size independent, while the order-
disorder transition TC(L) strongly depends on size as already
reported in literature.50 Indeed, for the finite 2-D Ising model
with periodic boundary conditions, algebraic analysis made by
Ferdinand and Fisher51 showed that for an L × L system, the
specific heat was rounded with a maximum at a temperature
Tm, the so-called “quasicritical temperature,” which is shifted
with respect to T ∞

C (the critical temperature of the infinite
lattice) so that,

∣∣Tm − T ∞
C

∣∣ /T ∞
C ∝ 1/L. (7)

Monte Carlo simulations realized on 2-D (pure) Ising
systems26 have shown Tm > T ∞

C . Thus, applying naively
the previously said occurrence condition necessarily yields
Tm > Teq as soon as T ∞

C > Teq. The latter condition apparently
disagrees with the fact that the first-order transition is lost under
some critical size. This can be explained by considering the
criticality of the transition of the (2-D) pure Ising model, which
strongly decreases upon decreasing size.52,53 In other words,
the order-disorder transition of the pure Ising model, needed
for the presence of the first-order transition of the Ising-like
model, vanishes at small sizes.

D. Size distribution effects

SC nanoparticle samples usually involve size distribu-
tions, which are easily accounted for in the frame of the
present model. Here, we use size distributions determined in
Ref. 25 from transmission electron microscopy (TEM) images
(see Fig. 5). The intermolecular distance, measured in the HS
state, ∼1 nm, defines the actual scale of the model. We consider
here two samples with sizably different average sizes, ∼7 and
12 nm.

Let’s denote P(L) the probability density of finding a
square-shaped nanoparticle with edge size L. Since the HS
fraction is a volume response, the average HS fraction over

FIG. 5. (Color online) Experimental size distributions of the nanoparticle samples, with best Gaussian fits (after Ref. 25).
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FIG. 6. (Color online) Calculated thermal variation of the HS
fraction resulting from the size distributions shown in Fig. 5. The
bulk curve (right curve) was calculated in the absence of distribution.

the different nanoparticles is given by

nHS(T ) =
∫ ∞

0 P (L) × dL × nHS(L,T ) × V∫ ∞
0 P (L) × dL × V

, (8)

where the volume V is taken proportional to L2, because
particles thickness is approximately constant.

Simulations were performed with MC kinetics already
used in the previous section, and with identical values of
thermodynamic parameters. The results are reported in Fig. 6,
and they qualitatively agree with the experimental data: The
7 nm centered distribution displays a gradual transition, while
the 12 nm one displays a first-order transition with a narrow
and bent hysteresis loop. In both cases, however, the average
equilibrium temperatures are larger than those of the individual
nanoparticles of same size. This can be explained by the
weighting factor V in Eq. (7), which enhances the response
of the larger particles. It is worth mentioning that the reverse
problem, that is, analyzing the experimental response of a set
of size-distributed particles, can be solved by using the FORC
technique (first-order reversal curves).33

It is interesting to mention that the residual HS fraction at
0 K, briefly discussed in the introduction of Sec. III, the size
dependence of which is given by 4(L−1)

L2 in the case of a single
square-shaped nanoparticle of size L, can be also derived for
an ensemble of size-distributed nanoparticles using Eq. (7).
This can be written

n0
HS = 4

∫ ∞
0 P (L) × dL × (L − 1)∫ ∞

0 P (L) × dL × L2
. (9)

To understand the impact of the size distribution on the
residual HS fraction, we use a Gaussian distribution for P(L),

so that P (L) = 1
σ
√

2π
e

(L−L̄)2

2σ2 . Simple calculus leads in such a
case to the following expression for the residual fraction:

n0
HS = 4(L̄ − 1)

(L2)
, where L2 = (L̄)2 + σ 2, (10)

in which the dispersion of the distribution appears clearly
in the resulting residual fraction. Although Eq. (9) depends
on the shape of the particles, it is interesting to note that a
deep inspection of the evolution of the residual HS fraction
(usually obtained from magnetic data) may lead to relevant
statistical information on the particle distribution and vice
versa.

IV. CONCLUSION

The impact of specific conditions at the edges of the 2-D
model has been investigated. The choice of HS-fixed edges
was based on the observation of an increasing residual HS
fraction at low temperature, upon particle size reduction.
This specific boundary condition basically acts as a negative
pressure, which shifts the equilibrium temperature downward
in a size-dependent way. The interplay between this equilib-
rium temperature variation and the expected variation of the
effective interactions in the system leads to a nonmonotonous
dependence of the width of the hysteresis loop upon the
particle size. The main experimental features of nanoparticle
samples of the compound Fe(pyrazine){Pt(CN)4} are rather
well reproduced by the present model. We also described the
way in which the usual occurrence condition of the first-order
transition has to be adapted to the nanoscale.

Further aspects related to the nanoparticle problem remain
to be explored: the introduction of more realistic surface effects
through core-shell models with explicit dependence of the
ligand field, for example, and the impact of nanoparticle mor-
phology. Our first simulations using circular-shaped nanopar-
ticles did not show significant differences with respect to the
square-shaped ones investigated here. This is presumably due
to the roughness of the boundary introduced by the discrete
nature of the lattice. The problem is under investigation.

ACKNOWLEDGMENTS

The present work has been supported by the University
of Versailles, Centre National de la Recherche Scientifique
(CNRS), Groupement de Recherche International (GDRI)
France-Japan, and Pôle de Recherche et d’enseignement
Supérieur (PRES-UniverSUd) Commutation aux petites
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A. Forment-Aliaga, M. Monrabal-Capilla, E. Pinilla-Cienfuegos,
and M. Ceolin, Inorg. Chem. 49, 5706 (2010).

30C. Thibault, G. Molnar, L. Salmon, A. Bousseksou, and C. Vieu,
Langmuir 26, 1557 (2010).

31V. Martı̂nez, I. Boldog, A. B. Gaspar, V. Ksenofontov,
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