
PHYSICAL REVIEW B 84, 054103 (2011)

Diffusive molecular dynamics and its application to nanoindentation and sintering

Ju Li,1,4,* Sanket Sarkar,2 William T. Cox,2,4 Thomas J. Lenosky,1 Erik Bitzek,1,3 and Yunzhi Wang2,4,†
1Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

2Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210, USA
3Department Werkstoffwissenschaften, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany

4State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, China

(Received 12 April 2011; published 4 August 2011)

The interplay between diffusional and displacive atomic movements is a key to understanding deformation
mechanisms and microstructure evolution in solids. The ability to handle the diffusional time scale and the
structural complexity in these problems poses a general challenge to atomistic modeling. We present here
an approach called diffusive molecular dynamics (DMD), which can capture the diffusional time scale while
maintaining atomic resolution, by coarse-graining over atomic vibrations and evolving a smooth site-probability
representation. The model is applied to nanoindentation and sintering, where intimate coupling between
diffusional creep, displacive dislocation nucleation, and grain rotation are observed.
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I. INTRODUCTION

Materials’ behavior depends on processes that take place
on a variety of time scales. These range from atomic vibrations
or dislocation-mediated slip processes, which have typical
time scales of hundreds of femtoseconds (fs) to hundreds
of picoseconds (ps), to diffusion, which may take place on
the order of seconds or longer. This disparity in time scales
leads to difficulties when trying to model slower processes
where individual atomic motions may be important, such
as diffusion controlled boundary migration and dislocation
climb. A straightforward molecular dynamics (MD) approach,
with a typical time step of 1fs, would require an enormous
computation time to adequately capture these processes. This
has lead to the development of a variety of techniques to
overcome the time scale limitations of MD. Phase-field crystal
methods1 coarse-grain over atomic vibrations to achieve longer
time scale, but the use of a plane-wave basis restricts its appli-
cations. Transition state theory (TST) based approaches such
as hyper-MD2,3 suffer from the problem of low barriers. Also,
representing long-ranged diffusion by instantiating billions
of vacancy random walks individually at TST level is often
neither practical nor necessary. Kinetic Monte Carlo (KMC)
methods use a catalog of possible events, but a complete
catalog may be difficult to create for complex systems.
On-the-fly KMC,4 in principle, circumvents this problem by
building a state-specific catalog on the fly, but programming
and computational overheads are very demanding. In this paper
we present a chemical and kinetic extension of the variational
Gaussian (VG) method,5,6 called diffusive molecular dynamics
(DMD), to model coupled diffusional-displacive processes.7

II. METHODOLOGY

A. Theory

In traditional MD, 6N variables, the atomic positions and
momenta {xi ,pi},i = 1 . . . N , where N is the number of atoms,
are numerically integrated. However, most atomic motions
in solids are spent in thermal vibrations about some mean
position Xi ≡ 〈xi〉. When viewed on time scales much longer

than the vibrational, an atom appears as a density cloud. In
most solids, the extent of these vibrations is narrow enough
and nearly isotropic such that one atomic density cloud can be
approximated by a normalized Gaussian

G(xi |Xi ,αi) = (αi/π )d/2 exp[−αi |xi − Xi |2], (1)

where αi is related to the Debye-Waller factor, αi =
miω

2
i /2kBT if in the Einstein model solid, mi is the atomic

mass, ωi is the Einstein frequency and d is the dimensionality
of the system, kB is the Boltzmann constant, and T is the
absolute temperature.

In real systems, atomic vibrations are correlated with
those of nearby atoms. If the correlation effect is small, the
Gibbs-Bogoliubov inequality to a reference system of Einstein
oscillators may yield a variational upper bound FVG that
well approximates the real Helmholtz free energy.5 For an
embedded atom method (EAM) potential, this gives6

FVG = 1

2

N∑
i=1

∑
j �=i

w(Xij ,αij ) +
N∑

i=1

E(ψi,VG)

+ d

2
kBT

N∑
i=1

{
ln

[
αi�

2
T

π

]
− 1

}
, (2)

where ψi,VG = ∑
j �=i ψ(Xij ,αij ), �T = h̄

√
2π/mikBT is the

de Broglie thermal wavelength, Xij = |Xi − Xj |, αij ≡
(α−1

i + α−1
j )−1, E is the EAM embedding function, w is the

Gaussian-averaged pair potential u, and ψ is the Gaussian-
averaged density function ρ of the EAM potential (discussed
in detail later). Here, the ensemble average of the embedding
function (〈E〉0) has been approximated by averaging the Taylor
expansion of the embedding energy and dropping second- and
higher-order moments. Though the second moment is small
and positive (0.001 eV/atom in Cu6), the final free energy
is no longer guaranteed to be an absolute upper bound. In
the VG method, FVG is minimized with respect to {Xi ,αi} to
estimate the real Helmholtz free energy. This method has 4N

degrees of freedom (Gaussian width and mean position) in
contrast to the 6N variables of traditional MD, and requires
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only static minimization. LeSar et al.6 have tested the accuracy
of VG method by comparing it with an exact free-energy
calculation of Foiles and Adams using EAM over a wide range
of temperatures.8

To extend this model to handle diffusive mass transport by
vacancy exchange, for instance, one could consider a Monte
Carlo VG (MCVG) simulation in which one would swap empty
sites with adjacent occupied sites, relax {Xi ,αi}, and then
accept or reject the swap. But there is a considerable compu-
tational cost from many such random swaps with relaxation.
A much faster method is to consider the ensemble average
where each site, instead of being either vacant or occupied,
has a continuous occupation probability ci ∈ (0,1), where
ci = 0 resembles a site vacancy with complete certainty, and
ci = 1 resembles an atom (say Cu) with complete certainty.
In multicomponent alloys, ci is generalized from a scalar to a
vector to represent site chemical composition, and using such
site “color” and density cloud is philosophically akin to the
Kohn-Sham density functional theory (DFT) for electrons.9 A
variational Helmholtz free energy that incorporates these site
“colors” can be derived by applying the Gibbs-Bogoliubov
inequality to a reference system of harmonic oscillators in the
grand canonical ensemble, which yields

FDMD = 1

2

N∑
i=1

∑
j �=i

cicjw(Xij ,αij ) +
N∑

i=1

ciE(ψi)

+ d

2
kBT

N∑
i=1

ci

{
ln

[
αi�

2
T

π

]
− 1

}

+ kBT

N∑
i=1

{ci ln ci + (1 − ci) ln(1 − ci)}, (3)

where

ψi =
∑
j �=i

cjψ(Xij ,αij ). (4)

We may define an exchange chemical potential between an
atom and a vacancy for site i by differentiating Eq. (3),

μi ≡ ∂FDMD({Xi ,αi,ci})
∂ci

, (5)

and identify an exchange formation energy

fi ≡ μi − kBT ln

[
ci

1 − ci

]
(6)

which excludes the configurational entropy contribution.

Following the master equation, the rate of change of the site
probability is given by

dci

dt
=

∑
j

′
ν exp

[
− Qm

kBT

] {
cj (1 − ci) exp

[
− fij

2kBT

]

− ci(1 − cj ) exp

[
fij

2kBT

]}
, (7)

where the primed summation is over diffusing neighbors,
currently taken to be the first nearest neighbors. The steric
factors cj (1 − ci), ci(1 − cj ) reflect the observation that
diffusional jumps can only happen if one site is occupied while
the other site is empty: If both sites are fully empty or fully
occupied, then mass exchange cannot happen kinematically.
ν is the jump attempt frequency, and Qm = F ∗

ij − (fi + fj )/2
is the activation energy for vacancy migration, where F ∗

ij is
the saddle height energy between site i and j . fij ≡ fi − fj is
the difference in formation energies between the two sites.
For simplicity, in the current implementation the vacancy
migration attempt frequency ν and activation energy Qm

are assumed to be independent of a site’s local structural
and chemical environment, i.e., the spatial arrangements of
nearby sites. But in principle, one could develop and then
use environment-dependent ν and Qm functions in DMD
simulations, which have been previously parametrized against
experimentally measured or DFT-computed diffusivities. For
example, one may develop a local diffusivity expression that
varies with the coordination number and that is fitted to a
database of bulk, surface, dislocation core, and grain boundary
diffusivities. In the current implementation, by linearizing
Eq. (7), one can estimate the vacancy diffusivity DV as

DV = Z

2d
νb2 exp

[
− Qm

kBT

]
, (8)

where b is the nearest-neighbor distance, and Z is the
coordination number. Because displacive relaxation of {Xi ,αi}
is “instantaneous” in DMD, the fundamental “clock” of DMD
is controlled by the value of chemical diffusivity, not by atomic
vibration. We thus define

t̃ ≡ 4πDVt

b2
≡ t

τ
(9)

to be the dimensionless (reduced) time.
Equation (7) satisfies mass conservation since the

pair mass-exchange rate cj (1 − ci) exp[−fij /2kBT ] − ci(1 −
cj ) exp[fij /2kBT ] is antisymmetric with respect to i ↔ j

permutation. One can also prove that FDMD will decay
monotonically with time, since

(μi − μj )

{
cj (1 − ci) exp

[
− fij

2kBT

]
− ci(1 − cj ) exp

[
fij

2kBT

]}

=
(

fij + kBT ln
ci(1 − cj )

(1 − ci)cj

) {
cj (1 − ci) exp

[
− fij

2kBT

]
− ci(1 − cj ) exp

[
fij

2kBT

]}
(10)

is nonpositive, contributing to chemical dissipation in the system.
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B. Implementation

DMD has 5N degrees of freedom {Xi ,αi,ci}, which are the
mean position, Gaussian width, and the occupation probability
of site density clouds, in contrast to the 6N variables of
traditional MD. During a DMD simulation, each time step is
realized in two parts. First, the variables {Xi ,αi} are statically
minimized as in the VG method, while holding {ci} constant.
This process can be assumed to take place instantaneously
because {Xi} and {αi} change on the inertial (ps) and
thermalization (100 ps) time scales, respectively, both of
which are much smaller than τ . Then in the second part, the {ci}
are integrated numerically according to Eq. (7) while holding
{Xi ,αi} constant. This is equivalent to assuming that the system
is always in vibrational and mechanical equilibrium, but not
chemical equilibrium, at each time step. It is therefore not
possible to model dynamical effects where inertia plays a role.

In the simulations below for pure Cu, we use the Mishin
EAM potential.10 The Gaussian averaged pair potential
w(Xij ,αi,αj ) and the Gaussian averaged electron density
function ψ(Xij ,αi,αj ) are originally given as6

w(Xij ,αi,αj ) =
(

αi

π

)d/2(
αj

π

)d/2 ∫
· · ·

∫
dxidxj

× e−αi (xi−Xi )2
e−αj (xj −Xj )2

u(xij ),
(11)

ψ(Xij ,αi,αj ) =
(

αi

π

)d/2(
αj

π

)d/2 ∫
· · ·

∫
dxidxj

× e−αi (xi−Xi )2
e−αj (xj −Xj )2

ρ(xij ),

where xij = xi − xj , xij = |xij |, and u(x) and ρ(x) are the
pair potential and the electron density function of the EAM
potential, respectively. In the VG method, LeSar et al.6 fitted
the functions w and ψ to a sum of Gaussian functions of the
interatomic distance. For the present study, w and ψ were
numerically integrated to create a 2-dimensional lookup table
which was then used with bicubic interpolation to achieve a
better accuracy. The procedure is described below.

It can be proven using Fourier transform that if two particles
are independently Gaussian, then their separation vector xij is
also a Gaussian cloud with parameter

αij = (
α−1

i + α−1
j

)−1
. (12)

If there is an offset Xij in the centers of the two clouds, then
the above Gaussian is also shifted by Xij . Therefore Eq. (11)
can be rewritten in the form of

w(Xij ,αij ) =
(

αij

π

)d/2 ∫
· · ·

∫
dxij e

−αij (xij −Xij )2
u(|xij |),

(13)

ψ(Xij ,αij ) =
(

αij

π

)d/2 ∫
· · ·

∫
dxij e

−αij (xij −Xij )2
ρ(|xij |).

Furthermore, for integration, one can choose a coordinate
system in which the origin is identical to the origin of
the effective Gaussian. Then, in 3D, the Gaussian averaged
potential and density function become

w(X,α) = 2π

(
α

π

)3/2 ∫ rc

0

∫ π

0
r2drdθ sin θ

× u(
√

r2 + X2 + 2rX cos θ ) exp[−αr2],
(14)

ψ(X,α) = 2π

(
α

π

)3/2 ∫ rc

0

∫ π

0
r2drdθ sin θ

× ρ(
√

r2 + X2 + 2rX cos θ ) exp[−αr2],

where rc is the cutoff on the Gaussian. Since the integrand
in both cases is the product of a Gaussian and u or ρ, the
cutoff in X for w and ψ is the sum of rc and the cutoff of
the respective functions. For Cu EAM potential10 the cutoff is
after 5.5 Å in both the pair potential and density function.
The choice of rc is a compromise between accuracy and
efficiency since longer cutoffs will better match the integrals
in Eq. (13) but include more atoms in the calculations during
simulations. The 2-dimensional lookup tables used in the
current implementation of the DMD method cut the Gaussian
off after 1 Å. Experience has shown that producing a table
for α from 10 Å

−2
to 210 Å

−2
is adequate for simulations

run at temperatures of 500 K or higher using either the Morse
potential used in the original VG work5 or Cu EAM potential.10

For rc = 1 Å, this integration includes 4 standard deviations
of the widest Gaussian of the table α = 10 Å

−2
while adding

2 neighbor shells to calculations.
For the calculation of mechanical stress tensor, with {αi}

instantaneously minimized for arbitrary {Xi ,ci} configuration,
it can be shown that the virial stress formula can be applied
to just the first two terms of Eq. (3) to calculate the stress
tensor in DMD, as if it were the normal interatomic potential
in MD with Xi replaced by xi , and pretending {αi,ci} are frozen
parameters.

The displacive relaxation step in DMD was implemented
with L-BFGS,11 a limited memory quasi-Newton optimization
algorithm, and the chemical integration step with CVODE, a
solver for stiff and nonstiff initial value problems for systems
of ordinary differential equation from SUNDIALS.12 Otherwise,
the programmatic structure of DMD is identical to that of MD,
which means lightweight code patches can be easily applied
onto a MD code base. We have accomplished this successfully
on LAMMPS,13,30 taking advantage of its efficient parallelism
for short-range interactions. It should be obvious from the
formulation above that as T → 0 and diffusion kinetics are
frozen, DMD/VG will give identical results as T → 0 classical
MD. This is shown in Table I, where the DMD free energy,

TABLE I. Comparison of lattice parameter a0, (free) energy per atom FDMD/atom, bulk modulus K , and vacancy formation (free) energy Ef
V

of the Gaussian averaged potential at 1K with Mishin EAM potential (Ref. 10) for Cu at 0K. Calculations were performed with (1 − c) = 10−20

on occupied sites and c = 10−20 on vacant sites.

a0 (Å) FDMD (eV/atom) K (GPa) Ef
V (eV)

Original EAM (0K) 3.615 −3.54 138.3 1.272
Gaussian averaged potential (1K) 3.621 −3.53 136 1.277
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FIG. 1. (Color online) Benchmarking VG/DMD with Mishin EAM potential (Ref. 10) for Cu. Calculations were performed with (1 − c) =
10−20 on occupied sites of a perfect crystal. (a) Helmholtz free energy per atom FDMD/atom (red solid line), in comparison with analytical
free energy e0 + N−1

∑3N

k=1 kBT ln(h̄ωk/kBT ) based on harmonic phonon theory (blue dash-dotted line), with phonon frequencies {ωk}
extracted from T ≈ 0 MD simulations. (b) Lattice parameter a0 from DMD calculation (red solid line), in comparison with direct MD
simulations (black dashed line). (c) Root mean square displacement (〈|xi − Xi |2〉)1/2 per atom, based on DMD calculation (=[3(2α)−1]1/2, red
solid line), full-spectrum harmonic phonon theory (=[N−1

∑3N

k=1 kBT (mω2
k)−1]1/2, blue dash-dotted line), and direct MD simulations (black

dashed line).

elastic properties, lattice parameter, and vacancy formation
energy as T → 0 are seen to be all in excellent agreement
with direct MD, using the same EAM potential10 for Cu.

Next we check some finite-temperature properties against
MD, in Fig. 1. We see that the thermal expansion and
zero-pressure free energy are in excellent agreement with
direct MD calculation and full-spectrum harmonic phonon
theory, respectively, giving us confidence that VG can provide
reasonable finite-temperature properties up to 90% of the
melting point. However, the root mean squared displacements
in the VG representation is about 30% lower than the actual
value from direct MD. Philosophically, the reason for the
simultaneously good agreements in Figs. 1(a) and 1(b) but
not-so-good agreement in Fig. 1(c) has more to do with the
VG representation, and less to do with the VG formulation.
Just as in Kohn-Sham DFT for electrons where one maps an
actual interacting-electrons system to a hypothetical system
of noninteracting electrons,9 VG maps an interacting-atoms
system onto a noninteracting-atoms Einstein solid. When the
motions of nearby atoms are uncorrelated as in an Einstein
solid, the vibrational amplitude has to be smaller to prevent
two neighboring atoms from getting too close to each other. On
the other hand, in an interacting-atoms solid the oscillations
are correlated, so both atoms could oscillate in the same
direction, increasing the root mean squared displacement for
a single atom without incurring a huge energy penalty for
getting too close to each other, e.g., forming a “correlation
hole” in the 2-particle distance distribution. This deficiency
in geometrical representation does not seem to prevent VG
from giving reasonable vibrational free energy and thermal
expansion, though.

Presently, the site density clouds stay spherical even
when the crystal is sheared, or near low-symmetry defects
like surfaces. A straightforward improvement is to introduce
anisotropic or even non-ellipsoidal density clouds, by vari-
ationally tuning the model potential shapes in the Einstein
reference solid. This, however, will introduce additional
complexities in the Eqs. (11)–(14) effective potentials.

(a)

(b)

FIG. 2. (Color online) (a) Vacancy concentration of the ini-
tially vacant site over time at several temperatures. Lines show
the analytic solution and mean vacancy jump period b2/DV.
(b) Vacancy concentration along the [111] direction for dif-
ferent reduced times at 900 K. Solid lines show the analytic
solutions.
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FIG. 3. (Color online) (a) Indenter accommodation by pure diffusional creep in the form of a surface vacancy disk at t̃ = 1000 for the
slower indentation rate. The black to white color scale represents the value of c with black signifying fully occupied sites. Atomic sites having
c � 0.01 are not shown. (b) Dislocation structures viewed by centrosymmetry parameter (Ref. 21) along [112̄] direction. Dislocation nucleation
occurs at t̃ = 1010. In the inset, shown is a typical dislocation loop grown after homogeneous nucleation. (c) Load-displacement curve for
slower and faster rate indentation showing reduced dislocation nucleation load, due to surface vacancy disk/terrace created by prior diffusion.

For ease of checking, the source code of DMD and input
files for all examples in this paper will be placed at a publicly
available website.30

C. Validation

Before performing DMD simulations, the model is vali-
dated against the analytical random-walker solution of vacancy
diffusion by examining diffusion of a single vacancy under
periodic boundary conditions (PBC). Imagine one instantiates
a vacancy in an otherwise perfect crystal, and then allows
diffusive jumps to happen, by for instance performing Monte
Carlo VG (MCVG) simulations. After many jump periods,
the vacancy concentrations on various sites are expected to
follow the analytical solution of the diffusion equation for a
point source,14 also known as the random-walker solution. In
particular, the vacancy concentration for a site at a distance
�X from the initial vacancy at time t is given by

cV(�X,t̃) ≈ (t̃b2)−d/2 exp[−π�X2/(t̃b2)], (15)

where  is the average atomic volume, and t̃ = 4πDVt/b2 is
the dimensionless reduced time, b being the nearest neighbor
distance. A simulation cell spanned by the fcc lattice vectors

30 × [100],30 × [010], and 30 × [001] (consisting of 108000
sites) was chosen with one site being vacant (c = 10−20).
All the occupied sites were initially assigned the equilibrium
vacancy concentration of c

Eq
V = exp(−Ef

V/kBT ) with Ef
V =

1.25 eV and a value of α corresponding to that of an atom
in a bulk crystal at the temperature of interest. We chose
Qm = 0.7 eV and ν = 1 × 1013 s−1 to match the experimental
bulk vacancy diffusivity Dbulk

V of Cu. Figure 2 shows the
simulation results, which match the analytical solution well
with d = 3 and significant deviation occurring only at times
shorter than the mean jump period and at long times when
the system begins interacting with its images under PBC.
This deviation at short times is expected as the Gaussian
point-source solution14 is the result of solving a continuum
partial differential equation, valid in the limit when an infinite
number of random walks have been executed, whereas DMD
gives solution to the master equation when only a finite number
of random walks has been executed on a discrete lattice.

III. RESULTS

We chose examples of nanoindentation and hot isostatic
pressing of pure copper to demonstrate the capabilities of
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(c)

FIG. 4. (Color online) (a) Initial configuration with c = 0.9999 for black sites, c = 0.0001 for white sites. (b) Final configuration after
compressing to theoretical density over a reduced time of t̃ = 13.30. Atomic sites with c � 0.01 are not shown. A movie of this simulation is
included in the supplementary online material (Ref. 25). (c) Time evolution of FDMD per site referenced to the bulk free energy F bulk

DMD per site
for a perfect crystal. In the inset, distribution of site-wise chemical potential is shown for the initial and final configurations.

DMD in resolving coupled diffusive and displacive atomic
movements.7 At 900 K, though our model predicts an equi-
librium vacancy concentration of 10−7, a higher background
vacancy concentration of 10−4 was used by assigning c =
0.9999, unless otherwise specified. The reason for this is
that with (1 − c) ≈ 10−7 (the entire system has less than one
vacancy typically), one needs to choose a stricter tolerance in
solution vector {ci}, preventing the solver from reaching the
time scale necessary for transporting required vacancies from
far field in reasonable computation time. Such nonequilibrium
vacancy concentration can actually be found in many physical
situations, such as irradiation damage, Kirkendall effect, and
severe plastic deformation during cold rolling and fatigue.15,16

In the bulk, the diffusivity was set to Dbulk
V as in the

random-walker validation. Due to the importance of surface
diffusion in nanoindentation and sintering, higher diffusivity
was attributed to the surface sites using a simple scheme
where the diffusivity was increased to DS

V = χDbulk
V ,χ � 1,

if the weighted coordination (
∑′

j cj ) of diffusing sites is less
than Z − 1. We chose χ to be 1000 since grain boundary
and surface diffusivity values are typically three orders of
magnitude higher than that of the bulk. The definition of
reduced time t̃ , however, was not modified.

A. Nanoindentation

In nanoindentation, different mechanisms can contribute
to the total plastic strain. At low indentation rates or high
temperatures, diffusional creep may occur due to the chemical
potential gradient produced by stress field beneath the indenter.

This accommodates the indenter by diffusing surface layers of
atoms away from the contact area, forming recessed terraces.17

Further building-up of strain, however, leads to nucleation of
gliding dislocations. To study these mechanisms, a frictionless
spherical indenter with a radius of 40 Å was pressed onto
a Cu(111) surface at 900 K at two different rates of 4.89 ×
10−3 Å/τ , henceforth referred to as the “slower rate case,”
and 4.89 × 101 Å/τ , referred to as the “faster rate case.” The
interaction between the sample and the indenter tip is modeled
through a repulsive potential given by18

Uind(Xi,ind) = ciE0 exp

(
λ

Hind
− Hind

λ

)
, Xi,ind < Rind,

(16)

where Xi,ind is the distance of site i to the center of the indenter,
Rind is the radius of the indenter, λ = Rind − Xi,ind, E0 = 1 eV,
and Hind = 1 Å. A slab of dimension 10.38 nm × 5.08 nm ×
10.78 nm containing 46080 sites was used to represent the
surface. Periodic boundary conditions were prescribed on four
sides parallel to the indentation direction, while the top and the
bottom surfaces were kept free.19 Additionally, a thick layer of
sites were held at fixed concentration c = 0.9999 around the
cell in the direction perpendicular to the indentation direction
to serve as vacancy source or sink that correspond to, in reality,
climbing dislocations or grain boundaries in the bulk.

During the nanoindentation simulations, several different
mechanisms were observed. In the slower rate indentation,
surface diffusional creep is evident from the terraced structure
shown in Fig. 3(a) that formed spontaneously under the
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Residual stress

(a)

(d)

(c)(b)

(e)(f)(g)

FIG. 5. (Color online) Time evolution of the microstructure at (a) t̃ = 0, (b) t̃ = 1.33, (c) t̃ = 4.00, (d) t̃ = 6.64, (e) t̃ = 9.30, (f) t̃ = 12.72,
and (g) t̃ = 13.30. Atomic sites with c � 0.01 are not shown. The significance of the arrows is discussed in the text.

indenter before nucleation of any dislocations. No such
surface vacancy disk or terrace formed during the faster
rate indentation, since diffusion is “frozen” outside of a
temperature-strain rate envelope, resulting in a purely Hertzian
elastic behavior prior to the onset of displacive plasticity.
Figure 3(b) shows the dislocation structure produced after the
first large load drop for the slower rate indentation where
the surface step provides preferential sites for heterogeneous
nucleation of dislocations adjacent to surface defects.20 This
is significantly different from the one observed in the faster
rate case, shown in the inset of Fig. 3(b), where dislocation
loops were nucleated homogeneously inside the bulk.21,22 The
load-displacement curve [Fig. 3(c)] does show a decrease of
the load23 in the presence of surface diffusion due to diffusional
creep accommodation, but the decrease only became large after
the mass-deficient defect, i.e., surface vacancy disk, attained
a certain size, triggering dislocation nucleation (from surface,
not bulk) and subsequent dislocation plasticity, which gave the
characteristic serrated flows. These features are qualitatively
similar to that of a surface with an initial step observed
in experiment23 and simulation.20 Our DMD simulations
above demonstrate that displacive plasticity can be sensitively
controlled by the remnant debris of prior diffusional plasticity.

B. Sintering

To apply DMD to hot isostatic pressing,24 a simulation
cell of dimension 8.80 nm × 8.80 nm × 8.80 nm containing
24 randomly oriented grains with normally distributed radii
[Fig. 4(a)] was chosen with PBC. Empty “ghost” sites with
c = 10−4, equal to the background vacancy concentration,
were added surrounding the grains to allow diffusion into the
pore structure for neck formation. The edges of the cell were

compressed down to the theoretical density at a constant rate
of 2.25 Å/τ at 900 K.

This system represents, to a large extent, the complexity of
a realistic situation of many-particle sintering. A movie of this
simulation is included in the supplement.25 In the process of
densification, along with surface and grain boundary diffusion,
DMD captured mechanical reorientation of particles, plastic
deformation, rapid neck formation, consumption of small
grains by bigger ones, and breaking of long thin pore structure
into pore droplets, in a highly realistic manner. In Figs. 5(a)–
5(g), snapshots of the system at different (reduced) times are
shown to elucidate some of the above mechanisms. The process
of grain rotation and rapid neck formation can be seen in
Figs. 5(a) and 5(b) for the particles marked by the green
arrows (it happens for many other grains also). The evidence
of consumption of smaller grains by bigger ones is shown in
Fig. 5(c), indicated by the red arrow. Similarly, by comparing
Fig. 5(f) with Fig. 5(e), breaking of the pore into smaller
pore structures is evident (cyan arrow). The time evolution
of FDMD, as shown in Fig. 4(c) for this closed system,
shows a gradual decrease largely due to diffusional processes,
occasionally interrupted by sharp reductions as large structural
rearrangements are accommodated. These rearrangements
occured less frequently at the later stages as it becomes
energetically unfavorable for a large grain to rotate. The final
configuration [Fig. 4(b)] shows a high degree of homogeneity
in structure as well as in chemical potential.

IV. CONCLUSION

In summary, DMD free energy is an atomistic realization
of the regular-solution model, with gradient thermodynam-
ics, long-range elastic interactions, and short-range atomic
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coordination interactions all included. DMD reveals a mi-
croscopic mass-action pathway, which emerges out of the
computer simulation automatically while decreasing the free
energy, relieving chemical nonequilibrium by short-ranged
and long-ranged mass transfer. One view of DMD is that it
automatically guides “atom creation” and “atom annihilation”
operators in a traditional MD or VG simulation; another
equally valid view, coming from the continuum modeling side,
is to think of DMD as solving the Cahn-Hilliard equation,7 but
on a moving-atoms grid. Because of the static minimization
of {Xi ,αi}, the fundamental “clock” of DMD is controlled by
the value of diffusivity, not by atomic vibration. Therefore
DMD can be seamlessly coupled to continuum diffusion-
elasticity field solvers such as finite-element or phase-field
method, with adaptive grids down to the atomic scale as in
the quasicontinuum method,26 but now with compositional
degrees of freedom as well as the displacive ones.7

The present implementations of DMD thermodynamics and
kinetics both have errors, though. A more accurate free-energy
“density functional” in terms of the site occupations that
effectively include pair, triplet, quartet, etc., correlations27

could be adopted. The simplistic way of modeling the dif-
fusivity used here does not realistically represent the effect of
local environment,28 deformation, and local stress on kinetics.
DMD kinetics is presently just a “downhill ski” on the DMD
free-energy landscape, and cannot capture uphill phenomena
in mass-action reaction coordinate space due to omission of the
noise term. One can, however, easily envision implementing
a variety of accelerated dynamics2,3 and nudged elastic band
type calculations29 with DMD free energy in the extended
{Xi ,αi,ci} space. A future work will address these issues.

For ease of checking, the source code of DMD and input
files for all examples in this paper will be placed at a publicly
available website.30
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