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Nonexponential relaxation dynamics of localized carrier densities in oxide crystals without
structural or energetic disorder
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A microscopic model for the nonexponential relaxation of localized-charge carrier densities in oxide crystals
is derived by taking into account thermally activated diffusive hopping transport and the effect of trap saturation.
Thereby it is shown that the relaxation, commonly described by a stretched-exponential function, can be
successfully reconstructed without consideration of a structural or energetic disorder. Furthermore, the access to
particular microscopic measures such as the lifetime of single hopping events and localized-carrier densities is
enabled. The impact of the model approach valid for various complex relaxation processes is demonstrated with
the nonexponential relaxation dynamics of optically generated small bound polaron densities experimentally
determined in KNbO3 as an example.
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I. INTRODUCTION

Nonexponential relaxations are often encountered in solid-
state physics.1–3 Examples for this effect are temporal decays
of the densities of photoexcited electrons and holes, bound to
shallow defects (small polarons).4–9 In recent years these decay
shapes have often been deliberately described by stretched-
exponential functions according to the empirical dielectric
decay function by Kohlrausch, Williams, and Watts (KWW):10

fKWW(t) = f0 exp [− (t/τKWW)β], (1)

with the initial amplitude f0, mean lifetime τKWW, and
stretching exponent 0 < β � 1. Although Eq. (1) is at first a
macroscopic phenomenological description, it has nonetheless
been rather successful in fitting the decay shapes of the above-
named relaxations.5–9 However, in most cases a derivation of
Eq. (1) from basic microscopic theoretical models concerning
the specific problem under study remained unsatisfactory.
Among the most promising explanations are those employing
structural and/or energetic disorder of the crystal lattice, or
direct hopping transitions to spatially distant sites.2,5,6,11 A
severe drawback is that important microscopic parameters,
such as carrier and trap densities, and transition lifetimes, are
not inherent to these theories.

In this Brief Report we present a microscopic theory for
the thermally activated diffusive transport of excited charge
carriers via nearest-neighbor hopping transitions. For this type
of transport, a mathematical description is derived, based on
the theory of random walks according to Pólya.12,13 It will be
shown that even in a perfect crystal without further energetic
disorder, one will end up with a strongly nonexponential
relaxation, given that one physical effect is allowed: trap
saturation. This notion describes the simple fact that a trap
(e.g., an acceptor-type defect) is neutralized once a free-charge
carrier has recombined with it. This causes a depletion of
both immobile traps and free carriers with proceeding time.
This trap-saturation effect (TSE) is basically independent of
dimensionality and crystal symmetry; we will treat the problem

here exemplarily for a three-dimensional simple cubic lattice,
which resembles the above-mentioned physical systems. For
the important case where the number of free carriers equals that
of the traps, the temporal development can be well described by
a bimolecular reaction.4 Our mathematical approach is applied
to the results of numeric random-walk transport simulations,
as well as to the decay of light-induced absorption changes,
with the oxide KNbO3 as an example. In comparison to
earlier attempts,4,14 we highlight the possibility to determine
the values for the lifetime of a single hopping event and
the density of the excited carriers from the experimentally
obtained relaxation shape.

II. MICROSCOPIC MODEL

We will first derive the relevant formulas describing the
temporal development of the density of charge carriers (i.e.,
walkers in the random-walk formalism). We assume an initial
relative density q[0] of randomly placed point defects (traps).
Here q = Ntraps/Nsites < 1, that is, the number density of traps
divided by the number density of possible sites, making q

a dimensionless quantity. Excited charge carriers of density
ν[0] = q[0] are injected into the spatially infinite lattice
at randomly chosen nontrapping sites at time zero. From
there they diffuse solely by thermally activated hopping until
they encounter a trap, where recombination occurs, and both
carrier and trap are removed from the lattice. It is assumed
that the carriers are not influenced by external or internal
electromagnetic driving forces, e.g., space-charge fields or
electron-hole interactions. That means, the walk is unbiased,
fulfilling the conditions for a homogeneous lattice walk.13 The
distribution of lifetimes for a single step of the walk is assumed
to be monoexponential with mean lifetime τ0, according to the
probability density function

ψ[t] = τ−1
0 exp [−t/τ0]. (2)

Thus the mean lifetime for n successive steps is nτ0. Since
a random walker may only be trapped upon first passage of
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a given site, we introduce the probability �n to visit such a
“virgin” site on the nth step of the walk. Then the probability
to survive at least n steps is

pS[n] =
n∏

i=1

(1 − �iq[i]), (3)

where q[i] denotes the relative trap density at step number i.
Since by definition q[n] ≡ ν[n], the walker density is given as

ν[n] = ν[0]pS[n], (4)

which is equivalent to the recurrence equation

ν[n] = ν[n − 1]

1 + �nν[n − 1]
. (5)

The solution of Eq. (5) is

ν[n] = ν[0]

1 + ν[0]
∑n

i=1 �i

. (6)

The above-given formulas are independent of both lattice type
and dimensionality (they are in fact valid for homogeneous
random walks in general).13 As Montroll and Weiss have
found,15 for a homogeneous lattice walk the variable �n

depends on the first-passage probabilities Fn(s), accumulated
over all possible lattice sites s:

�n = −Fn(0) +
∑

s

Fn(s). (7)

Elimination of Fn(s) by the occupation probability Pn(s) leads
to the simplified relation13

�n = 1 − Pn(0) −
n−1∑
i=1

Pn−i(0)�i, (8)

where the vector 0 denotes the spatial origin of the walk. All
relevant information about the specific lattice is contained in
the value Pn(0). In the present case of a three-dimensional
simple cubic lattice, Pn(0) = 0, if n is odd, otherwise

Pn(0) = 16 �[n]2
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where (a)k is the Pochhammer symbol.13 The validity of
Eq. (9) was checked by direct enumeration of all possible walks
up to n = 11. The virgin-site probability and its cumulative
sum as a function of the step number, calculated from Eq. (8),
are shown in Fig. 1.

Having established a formula for the walker density in
terms of step numbers, we may now ask for its applicability
to a physical observable. Our example will be transient
absorption due to optically induced metastable small electron
and hole polarons in KNbO3 (light-induced absorption).
Here, the bound hole polarons represent traps and the free
electron polarons act as walkers.16 Thus, we have to relate
the step-number-dependent dimensionless walker density ν[n]
to the time-dependent light-induced absorption αli[t]. This
transformation is done by first approximating n by t/τ0 [see
Eq. (2)]. For the second simplification we note that for
sufficiently long walks,

∑n
i=1 �i grows almost linearly with

the number of steps taken, as can be seen from Fig. 1. We
can therefore replace the sum in Eq. (6) by the linear term
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FIG. 1. Virgin-site probability �n as a function of the number
of steps taken. The right-hand plot shows the sum of �i over n

according to Eq. (8). The dashed lines mark the asymptotic limits
1 − R ≈ 0.659 463 and (1 − R)n, respectively.

(1 − R)n, where R denotes the probability of eventual return
to the initial site.12,13,15 One finds that Eq. (6) takes the form

ν[t] =
(

1

ν[0]
+ 1 − R

τ0
t

)−1

, (10)

which is the solution to the bimolecular reaction equation

d

dt
ν[t] = −1 − R

τ0
ν[t]2. (11)

Light-induced absorption is connected to the number
density of absorption centers (i.e., the walker density) αli =
σNsitesν, where σ denotes the joint absorption cross section of
the electron and hole polarons.16,17 Combining these relations,
we find a formula for the decay of the light-induced absorption,
according to our model:

αli[t] =
(

1

αli[0]
+ 1 − R

σNsitesτ0
t

)−1

. (12)

Hence, we established a connection between the macroscopic
observable αli[t] and the microscopic quantities τ0, σ , and ν[t].

III. SIMULATIONAL AND EXPERIMENTAL DETAILS

The simulation proceeds on a 100 × 100 × 100 site simple
cubic supercell with periodic boundary conditions, containing
an initial density of randomly placed traps and excited
carriers. It is essential that all carriers perform their walks
simultaneously in order to properly mimic the situation in
real materials. In our case the trap and walker densities are
chosen to be q[0] ≈ ν[0] ≈ 10−3, so that each carrier’s history
is sufficiently long. The mean lifetime for single hopping
events τ0 is set to unity. It is obvious that the duration of
walks increases with decreasing trap (walker) density. To
achieve finite computation times, we choose a walker density
slightly less than the trap density: ν[0]/q[0] = 0.99. In order
to have sufficient statistics, the supercell is reinitialized after
all walkers have recombined, starting a new diffusive process.
In total, between 105 and 106 individual carrier histories are
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recorded and averaged. Simulations without the TSE result in
simple exponential decay shapes.

Measurements of the light-induced absorption were con-
ducted in undoped KNbO3 using a pump-probe setup described
in Refs. 8, 9, and 16. The data shown here are taken from
Torbrügge et al.16

IV. RESULTS AND DISCUSSION

Figure 2(a) shows the temporal development of the walker
density for a ratio of walkers and traps of ν[0]/q[0] = 0.99.
In Fig. 2(b) the experimental data for the decay of αli[t] in
KNbO3 are shown. Both data sets are analyzed using the
KWW function [Eq. (1)] and the functions derived from
our microscopic theory, taking TSE into account [Eqs. (10)
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FIG. 2. (a) Temporal development of the walker density (open
circles) for a walker and trap ratio of ν[0]/q[0] = 0.99. (b) Decay
of the light-induced absorption in undoped KNbO3 at λ = 785 nm
(gray line). The dashed and solid black lines are fits according to the
KWW [Eq. (1)] and the TSE model [Eqs. (10) and (12)], respectively.
The fit parameters are summarized in Table I. In order to illustrate the
fit quality, difference plots are given below the respective principal
data plots. In the case of KNbO3, these plots have been smoothed to
enhance the visibility.

TABLE I. Fit parameters as taken from fits of Eq. (1) (upper part)
and Eqs. (10) and (12) (lower part) to the data of Fig. 2. For details
concerning the calculation of ν[0] and τ0 in the TSE model, see the
text.

KWW αli[0] (m−1) τKWW (s) β

Simul. 0.0010 ± 0.0001 2800 ± 200 0.68 ± 0.08
KNbO3 166 ± 10 (2.0 ± 0.8) × 10−6 0.58 ± 0.05

TSE αli[0] (m−1) τ0 (s) ν[0] (10−5)

Simul. – 0.98 ± 0.04 99 ± 1
KNbO3 157 ± 2 (1.3 ± 0.8) × 10−11 1.7 ± 0.8

and (12)]. The respective fit parameters are summarized
in Table I. In the case of KNbO3, the following assump-
tions entered the TSE model approach: 1 − R = 0.659 463,13

σ = 6 × 10−22 m2,17 and Nsites = 1.55 × 1028 m−3.18 As can
be seen, in either case the TSE model fits the data in an
excellent way through at least five orders of magnitude of
process time. It resembles the decay shape even better than the
KWW model of our earlier analyses.8,9,16 This observation is
further emphasized by subtracting the fits from the experimen-
tal (simulational) data, as shown in the lower parts of Figs. 2(a)
and 2(b). In both cases, the overall difference between data and
fit is much smaller for the TSE model as compared to the KWW
fit. The latter shows characteristic positive deviations for short
and long times, and a dip in the region of τKWW.

In the following we want to discuss the applicability of our
theory as well as possible relations to the KWW model.

Probably the most remarkable feature of the TSE model is
its ability to yield the lifetime of one single hopping event. For
the thermally activated transport of small polarons one finds
the relation19

τ−1
0 ≈ m

J 2

h̄

√
π

4EakBT
exp

[
− Ea

kBT

]
. (13)

Taking into account the experimental values τ0 ≈ 1.3 ×
10−11 s and Ea = 0.14 eV,16,20 and assuming for the number
of nearest neighbors m = 6, one finds for the polaronic band-
width J ≈ 0.01 eV, which implies a nonadiabatic hopping
process.

Assumptions have to be made about the parameters R, σ ,
and Nsites, whose values are usually known with high accuracy.
The site density Nsites is easily obtained from crystallographic
and chemical data, and σ can be estimated—if not already
known—from similar systems, such as LiNbO3.17 For many
color centers σ ≈ (5–15) × 10−22 m2 is a reasonable value.
Finally, the structure parameter R does not vary significantly
for different three-dimensional lattices:13 0 < R < 0.5. Thus,
the relative error for the derived parameters τ0 and ν will be
of the order of unity.

Despite this high accuracy, there are certain limits to
the theory. Perhaps the most important one is that the
approximations used are only valid for large step numbers n,
as can be seen in Fig. 1. Therefore, since n ≈ q[0]−1, relatively
small trap and walker densities are a prerequisite: We estimate
q[0] � 0.01 as a reasonable value. Interestingly, a similar value
(q[0] < 0.001) has been stated as mandatory for stretched-
exponential relaxation to occur in a simple cubic system.14
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Figure 1 shows that this value is close to the asymptotic limit,
effectively used in our analytic approximation. However, in
most polar oxides, e.g., KNbO3, and more so for common
semiconductors, this requirement is fulfilled to a great extent.
We further note that even for short time values, representing
short walks, the TSE model still fits the data well, although
the above-mentioned requirements are not strictly fulfilled.

Concerning possible relations between the KWW and TSE
models, we note the following. Given the prerequisites of the
microscopic approach to the charge transport are fulfilled, the
TSE model will yield meaningful results for the microscopic
measures τ0 and ν. The KWW model in turn, while it may be
applied to a large class of decays, gives only vague hints about
the underlying mechanisms, e.g., activation energies.

From a rigorous point of view, a direct comparison between
the two models seems inadequate as they represent different
mathematical objects. This is probably best illustrated by
looking at the decay shapes of the two functions. The shape of
the KWW function is determined by the stretching exponent
β, which for the presented examples lies in the range of 0.6.
This coincides with the earlier theoretical result that for large
times and small trap densities, the decay is governed by a
KWW function with β = 3/5.14,21 In contrast, the shape of
the TSE function does not change for different parameter sets.
It can therefore stand as a characteristic fingerprint for this
special kind of relaxation process. Whether one or the other
function yields the best description for a given data set may be

estimated with the help of difference plots, as shown in Fig. 2.
This method may even be applied if original data are missing,
and only a KWW fit is available to which a TSE model can
then in turn be fitted.

Despite the apparent advantages of the presented TSE
description, in many practical cases relaxations occur which
are described by KWW decays with β �= 3/5.5–9,22 On the
microscopic scale, these may be caused by superpositions of
TSE decays with different parameter sets within the same
system, such as modulated defect densities.22,23 Here, specific
TSE decays in different spatial regions cannot be resolved by
macroscopic experimental techniques. More complex situa-
tions include multiple (intermediate) trapping and releasing
processes, possibly involving different defect levels within
one system, as well as optical excitations out of defect centers,
and site-correlation effects.5,8,24 Although these more complex
phenomena are not directly covered by the TSE model, the
microscopic approach outlined in this Brief Report appears to
be a promising tool for their description.
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