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Curvature-induced geometric potential in strain-driven nanostructures
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We derive the effective dimensionally reduced Schrödinger equation for electrons in strain-driven curved
nanostructures by adiabatic separation of fast and slow quantum degrees of freedom. The emergent strain-induced
geometric potential strongly renormalizes the purely quantum curvature-induced potential and enhances the
effects of curvature by several orders of magnitude. Applying this analysis to nanocorrugated thin films shows
that this curvature-induced potential leads to strongly enhanced electron localization and the opening of substantial
band gaps.
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I. INTRODUCTION

The experimental progress in synthesizing low-dimensional
nanostructures with curved geometries—the next generation
nanodevices1–4—has triggered the interest in the theory of
quantum physics on bent two-dimensional manifolds. The
theoretical description of the quantum motion of a particle con-
strained to a curved space has been a matter of controversy for
a long time.5–8 The problem arises because Dirac quantization
on a curved manifold leads to operator-ordering ambiguities.5

However, the thin-wall quantization procedure, introduced in
the 1970s by Jensen and Koppe,6 and generalized by da Costa
(JKC),7 circumvents this pitfall. It treats the quantum motion
on a curved two-dimensional (2D) surface as the limiting case
of a particle in three-dimensional (3D) space subject to lateral
quantum confinement. Within the JKC method the surface
curvature is eliminated from the Schrödinger equation at the
expense of adding a potential term to it. This simplifies the
problem substantially, as the quantum carriers now effectively
live in a 2D space, in presence of a curvature-induced quantum
geometric potential (QGP).

The quantum origin of the QGP—it is in magnitude pro-
portional to h̄—causes its physical consequences in condensed
matter systems to be observable only on the nanoscale. In
this realm the QGP can cause intriguing phenomena.9–16

For instance, a quantum particle constrained to a period-
ically curved surface senses a periodic QGP acting as a
topological crystal.10 Likewise the QGP in spirally rolled-up
nanostructures leads to winding-generated bound states.17,18

However, the experimental realization and exploitation of such
phenomena is hindered by the fact that in actual systems with
curvature radii on the order of a few hundred nanometers, the
QGP is still very weak and typically only comes into play on
the sub-Kelvin energy scale.

In this work, we mitigate this problem by developing a
thin-wall quantization procedure which explicitly accounts for
the effect of the deformation potentials of the model-solid
theory.19,20 By employing a method of adiabatic separation of
fast and slow quantum degrees of freedom, we show that the lo-
cal variation of the strain induced by the curvature gives rise to
a strain-induced geometric potential (SGP) that is of the same
functional form as the QGP, but strongly (often gigantically)
boosting it. This implies that on a phenomenological level one
cannot distinguish between curvature-induced quantum effects
and curvature-induced strain effects in nanosystems, in prac-

tice both are always present, contributing in different amount to
the same geometric potential. The theoretical framework that
we develop is immediately relevant for electronic nanodevices
as the present-day nanostructuring method1,2 is based on
the tendency of thin films detached from their substrates to
assume a shape yielding the lowest possible elastic energy.
As a result, thin films can either roll up into tubes21,22 or
undergo wrinkling to form nanocorrugated structures.3,23,24

A key property of such bent nanostructures is the nanoscale
variation of the strain. This for instance leads to considerable
band-edge shifts25 with regions under tensile and compressive
strain shifting in opposite direction. Strain is thus widely used
and applied in nanosystems and here we put its coupling to the
electronic structure of 2D curved manifolds on a formal basis.
To do so one obviously needs to go beyond the JKC thin-wall
quantization framework since strain variations intrinsically
couple the transversal quantum degrees of freedom to the
tangential quantum motion along the curved surface. The
ensuing theoretical framework we apply to nanocorrugated
thin films, analyzing the effect of the SGP on its electronic
states and we establish a continuous crossover upon increasing
strain from extended-like electronic states to states localized
precisely at the points of maximum and minimum curvature.

II. ADIABATIC APPROXIMATION

In the thin-wall approach the lateral confinement raises
quantum excitation energies in the normal direction far beyond
those in the tangential direction. Hence one can safely neglect
the quantum motion in the normal direction and derive an
effective, dimensionally reduced, Schrödinger equation. As
opposed to a classical particle, a quantum particle constrained
to a curved surface retains some knowledge of the surrounding
3D space. In spite of the absence of interactions, it indeed
experiences the well-known attractive QGP.7 It has been
shown that the JKC thin-wall quantization procedure to
derive the effective Schrödinger equation is well founded,
also in presence of externally applied electric and magnetic
fields.26,27 Empirical evidence for the validity of this approach
is provided by the experimental realization of an optical
analog of the curvature-induced geometric potential.28 To
develop a theoretical framework for SGPs we therefore use
the conceptual framework of JKC. We start the mathematical
description by defining a 3D curvilinear coordinate system (see
Fig. 1) for a generic bent nanostructure. The stress-free surface

045438-11098-0121/2011/84(4)/045438(5) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.045438


ORTIX, KIRAVITTAYA, SCHMIDT, AND VAN DEN BRINK PHYSICAL REVIEW B 84, 045438 (2011)

FIG. 1. Schematics of the three-dimensional coordinate system
for a strain-driven bent nanostructure with positive radius of curvature
R and total thickness δ. The q3 = 0 surface S corresponds to
the stress-free surface. Regions with q3 > 0 (q3 < 0) are under
compressive (tensile) strain.

S is parametrized as r = r(s,y), where y is the coordinate
along the translational invariant direction of the thin film and
s is the arc length along the curved direction of the surface S
measured from an arbitrary reference point. Nothing prevents
the thin film to be also deflected along the y direction, but in the
remainder we will neglect this effect for simplicity. The 3D
portion of space of the thin film can be then parametrized
as R(s,y,q3) = r(s,y) + q3N̂ (s) with N̂ (s) the unit vector
normal to S. We can evaluate the strain distribution in the
thin film by assuming the plane strain condition29 εy ≡ 0.
This assumption is well justified whenever the dimension of
the structure in the y coordinate is very large as compared
to the structural dimension in the other coordinates. It is well
known30 that the strain in the direction along the surface varies
linearly across the thin film as εs = −q3κ(s), where κ(s) is
the principal curvature of the surface S. The strain in the
normal direction can be related to εs by means of the Poisson
relation εq3 = − [ν/ (1 − ν)] εs with ν the Poisson ratio. From
the linear deformation potential theory19 we know there is
a strain-induced shift of the conduction band corresponding
to a local potential for the conducting electrons Vε(s,q3) =
γ q3κ(s) with γ > 0, yielding an attraction toward regions
under tensile strain (cf. Fig. 1). The characteristic energy scale
γ which can be explicitly computed in the different conduction
valleys of the nanostructure is proportional to the shear and
the hydrostatic deformation potentials and typically lies in
the electron volt scale for conventional semiconductors.19

By adopting Einstein summation convention, the Schrödinger
equation for the quantum carriers in the effective mass
approximation then takes the following compact form26,27:

− h̄2

2m�
Gij Di Dj ψ + Vε(s,q3) ψ = E ψ. (1)

Gij corresponds to the 3D metric tensor of our coordinate
system, the covariant derivative Di is defined as Di = ∂ivj −

k

ij vk with vj the covariant components of a generic 3D vector
field, and the 
k

ij are the Christoffel symbols. By expanding
Eq. (1) by covariant calculus26,27 we get

E ψ =
[
− h̄2

2m� HS

∂s

(
1

HS

∂s

)
− h̄2

2m� HS

∂q3

(
HS ∂q3

)
− h̄2

2m�
∂2
y + Vε(s,q3) + Vλ(q3)

]
ψ, (2)

where we defined HS = 1 − κ(s) q3, and we introduced a
squeezing potential in the normal direction Vλ(q3). In the
following it will be considered as given by two infinite step
potential barriers at ±δ/2, where δ is the total thickness of
the thin film. However, our results can be straightforwardly
generalized to other types of squeezing potential, for example,
harmonic traps.

In the same spirit of the thin-wall quantization procedure7

we next introduce a new wave function χ for which the surface
density probability is defined as

∫ |χ (s,y,q3)|2dq3. Conser-
vation of the norm requires χ = ψ × H

1/2
S . The resulting

Schrödinger equation is then determined by the Hamiltonian

H = − h̄2

2m�
∂2
y − h̄2

2m�

∂2
s

H 2
S

+ h̄2

m�

∂sHS ∂s

H 3
S

− h̄2

2m�
∂2
q3

− h̄2

2m�

[
5

4

(∂sHS)2

H 4
S

− ∂2
s HS

2 H 3
S

]
− h̄2

2m�

(
∂q3HS

)2

4 H 2
S

+Vλ(q3) + Vε(s,q3). (3)

Assuming the thickness of the thin film δ to be small
compared to the local radius of curvature R(s) = κ(s)−1, the
Hamiltonian Eq. (3) can be expanded as H = ∑

k qk
3 Hk . At

the zeroth order in q3 we recover precisely the effective JKC
Hamiltonian6,7 which disregards the strain-induced shifts of
the conduction band and guarantees the separability of the
tangential motion from the transverse one. Thus in this case the
effect of the curvature results in the well-known QGP, Vg(s) =
−h̄2κ(s)2/(8 m�). Strain effects can be explicitly monitored
by retaining terms linear in q3 in which case we obtain the
effective Hamiltonian

H̃ = − h̄2

2m�

(
∂2
y + ∂2

s + ∂2
q3

) + Vg(s) + Vλ(q3) + Vε(s,q3)

− h̄2

4m�

[
∂2
s κ(s) + κ(s)3

]
q3 − h̄2

m�
q3 ∂s[κ(s)∂s]. (4)

The strong size quantization along the normal direction allows
us to employ the adiabatic approximation and solve the
Schrödinger equation for the effective Hamiltonian Eq. (4)
considering the ansatz for the wave function χ (s,y,q3) =
χN (s,q3) × χT (s,y), where the normal wave function χN

solves at fixed s the one-dimensional Schrödinger equation
for the “fast” normal quantum degrees of freedom

[
− h̄2

2m�
∂2
q3

+ γ̃ (s)κ(s)q3 + Vλ(q3)

]
χN

i = EN
i (s)χN

i . (5)

Here i indicates the transversal subband index and γ̃ (s) =
γ − h̄2[κ(s)2 + ∂2

s κ(s)/κ(s)]/(4m�) corresponds to the typical
energy scale of the deformation potential locally renormalized
by curvature effects. The latter term yields an attraction toward
regions under compressive strain (where the local curvature is
higher) competing with the dominant strain-induced attraction
toward the tensile regions of the nanostructure [cf. Fig. 2(a)].
The Hamiltonian for the slow tangential quantum motion can
be found by first integrating out the q3 quantum degree of free-
dom and then performing the additional rescaling of the tan-
gential wave function χT → χT ×

√
1 + 2κ(s)〈χN |q3|χN 〉.
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FIG. 2. (Color online) (a) Schematics of the electron density
probability in the lowest normal eigenstate as a function of the
coordinate q3 measured in units of the thin film thickness δ for
a positive value of the local curvature in a strain-free (γ = 0)
and a strained (γ �= 0) curved nanostructure. The vertical dashed
line indicates the stress-free surface q3 = 0. (b) Deviation of the
locally renormalized effective mass 
m�

R(s) = [m�
R(s) − m�]/m� as

a function of the typical energy scale γ̃ (s) for different values of the
expansion parameter κ(s)δ. (c) Behavior of the adiabatic potentials
EN (s) for the first two transversal subband measured from the
quantum well levels h̄2π 2i2/(2m�δ2) for κ(s)δ = 10−2 as a function
of γ̃ (s). The continuous lines indicate the exact behavior, whereas the
points are the results of the perturbation theory approximation.

The final form of the dimensionally reduced tangential
Hamiltonian is as follows:

HT = − h̄2

2m�
R(s)

∂2
s − h̄2

2m�
∂2
y − h̄2

8m�
κ(s)2 + EN (s) + · · · ,

(6)

where the · · · indicate the diagonal adiabatic corrections
and we introduced the locally renormalized effective mass
m�

R(s) = m�/[1 + 2κ(s)〈χN |q3|χN 〉]. Figure 2(b) shows the
deviation of the locally renormalized effective mass from its
bare value for different values of the expansion parameter
κ(s)δ. The strain-induced localization of the normal wave
function in the tensile regions of the nanostructure leads to
an heavier effective local mass in the curved direction which
is enhanced at the points of maximum curvature. This is
contrary to the lighter local effective mass one would find
in the absence of strain effects. Even for values of the local
energy scale γ̃ (s) much larger than the characteristic energy
of the normal quantum well energy h̄2/(2m�δ2), this local
renormalization of the effective mass is so small that for all
practical purposes the use of the isotropic bare effective mass in
Eq. (6) is justified. More rigorously one can show the reliability
of this approximation in the regime γ̃ (s) κ(s) δ � h̄2/(2m�δ2)
where the strain-induced linear potential appearing in the fast
Schrödinger Eq. (5) can be treated perturbatively. Since such a
condition is typically satisfied in conventional semiconducting
nanostructures with a total thickness in the nanometer scale,
we will limit ourselves to this regime from here onwards.

In Fig. 2(c) we show the behavior of the adiabatic potentials
in the first two transversal subband measured from the
normal quantum well levels E0 N

i . The characteristic quadratic
dependence on the local energy scale γ̃ (s) is well reproduced
by the analytical formula EN

i (s) = E0 N
i + 2 m� δ4 γ̃ (s)2/h̄2 ×

fi κ(s)2 with the numerical constants that can be calculated
using second-order perturbation theory as f1 ∼ −10−3, f2 ∼
3 × 10−4, etc. From this it also follows that the distance among
the potential energy surfaces EN

2 (s) − EN
1 (s) > E0 N

2 − E0 N
1

thereby guaranteeing the reliability of the adiabatic approx-
imation in the regime κ(s)δ � 1. As a result, we then find
the effective Hamiltonian for the electronic motion along the
curved nanostructure which in the first transversal subband
reads

HT = − h̄2

2m�

(
∂2
y + ∂2

s

) − h̄2κ(s)2

8m�
vR

+ |f1| γ δ4 κ(s)
[
κ(s)3 + ∂2

s κ(s)
]

− h̄2δ4|f1|
8m�

[
κ(s)3 + ∂2

s κ(s)
]2

, (7)

where we left out the constant energy term h̄2π2/(2m�δ2) and
we neglected the diagonal adiabatic corrections. The second
term in Eq. (7) corresponds to the QGP whose strength is
renormalized by the SGP as vR = 1 + 4|f1|(2m�δ2γ /h̄2)2.
Remarkably we find this renormalization to become ex-
tremely large in case of the natural hierarchy of energy
scales

γ 	 h̄2

2m�δ2
	 h̄2

2m�R(s)2
. (8)

Considering for instance a value of γ ∼ 10 eV, a characteristic
quantum well energy h̄2/(2m�δ2) ∼ 5 meV and the typical
tangential kinetic energy h̄2/[2m�R(s)2] ∼ 1 μeV, we find an
enhancement of the curvature-induced potential by ∼104. As
we show below, this gigantic renormalization of the geometric
potential has profound consequences on the electronic proper-
ties of low-dimensional nanostructures with curved geometry.
It is worth noting that in absence of strain effects (γ → 0),
Eq. (7) corresponds to the effective JKC tangential Hamil-
tonian augmented with an higher order curvature-induced
geometric potential ∝ κ(s)6 arising as a consequence of the
finite thickness of the thin-film nanostructure.

III. NANOCORRUGATED THIN FILMS

We now use this theoretical framework to analyze the
influence of the SGP on the electronic states of a nanocor-
rugated thin film with period 2π/q and total thickness δ

[cf. Fig. 3(a)]. The stress-free surface can be parametrized
in the Monge gauge as q3(x) = A cos q x where A is the
amplitude of the corrugation. In the shallow deformation
limit Aq � 1, we can express the arc length of the layer
s � x, whereas the local curvature of the stress free surface
κ(s) � ∂2

s q3(s) � −Aq2 cos (q s). Thus the problem reduces
to the “flat” motion of free electrons embedded in a curvature-
induced periodic potential. It is straightforward to obtain
the energy spectrum of the “slow” tangential motion of
Hamiltonian Eq. (7) in the first transversal subband for a thin
film thickness much smaller than the corrugation wavelength
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FIG. 3. (Color online) (a) Sketch of the stress-free surface of a
nanocorrugated thin film. (b) Band structure of a nanocorrugated
film with Aq ≡ 0.2 and different values of the geometric potential
renormalization factor vR . We show only the first two bands close to
the bottom of the conduction band. (c) Behavior of the topological
band gap as a function of the dimensionless parameter Aq for
different values of vR . (d) Tangential ground state density probability
for Aq ≡ 0.2 and different values of the renormalization strength of
the geometric potential.

as in this case the last two terms in Eq. (7) can be neglected.
Figure 3(b) shows the behavior of the first two bands for
different values of vR . The zero of the energy has been chosen
as the bottom of the conduction band. The qualitative behavior
of the band structure is maintained when curvature effects are
taken into account, but now with a curvature-induced gap31


E at momenta k = ±q. These gaps increase quadratically

in magnitude with the deformation potential γ , as 
E ∼
vR h̄2A2 q4/(16m�), in agreement with the numerical analysis
[cf. Fig. 3(c)]. In Fig. 3(d) we show the ground state electron
density for different values of vR . By increasing strain effects,
one finds a continuous crossover from extended-like states to
electronic states localized precisely at the points of maximum
and minimum curvature, which is in accordance with the
results of a purely numerical approach.32

IV. CONCLUSIONS

We have derived, in conclusion, a dimensionally reduced
Schrödinger equation in electronically two-dimensional,
strain-driven nanostructures by employing a method of adia-
batic separation of fast and slow quantum degrees of freedom.
The strain effects render an often gigantic renormalization
of the curvature-induced quantum geometric potential which
has very significant consequences for the electronic properties
of these materials. Applying our theoretical framework to
the case of nanocorrugated thin films we find an enhanced
electron localization and the opening of substantial band gaps
on an experimentally relevant energy scale. It can also be
applied to, for instance, 2D nanotubes rolled up in the shape
of an Archimedean spiral, where the effect of the geometric
quantum potential leads to shallow bound states whose number
coincides with the winding number.18 The inclusion of strain
effects should lead to a very substantial deepening of such
bound states, which will strongly affect the electronic and
transport properties of such rolled-up nanostructures.
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