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Topologically protected zero modes in twisted bilayer graphene
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We show that a twisted graphene bilayer can reveal unusual topological properties at low energies, as a
consequence of a Dirac-point splitting. These features rely on a symmetry analysis of the electron hopping
between the two layers of graphene and we derive a simplified effective low-energy Hamiltonian which captures
the essential topological properties of a twisted graphene bilayer. The corresponding Landau levels peculiarly
reveal a degenerate zero-energy mode which cannot be lifted by strong magnetic fields.
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I. INTRODUCTION

One of the most fascinating aspects of graphene is its band
structure, which can be fundamentally changed in several
different ways by modifying its lattice structure. This happens
because the honeycomb lattice of monolayer graphene has
two independent sublattices, and the electron, as it moves
through the lattice, has to change its sublattice and hence
the character of its wave function.1 Thus, even small local
changes in the lattice structure lead to the appearance of gauge
potentials which are associated with the phase of the electronic
wave function in each sublattice. As a consequence, there is a
one-to-one correspondence between graphene’s structure and
the topological features of the electronic states.

Another amazing property of graphene is its honeycomb
structure, which yields an electronic low-energy effective
theory which is Lorentz invariant in two dimensions, and thus
corresponds to two-dimensional (2D) Dirac fermions. This
Lorentz invariance is robust because the energy associated
with sublattice coupling, that is, the intersublattice hopping
energy t (≈3 eV) is the dominant energy scale in the system.
Lorentz invariance persists even when the lattice is modified
either by external forces (strain, shear, etc.),2 by external fields,
or by the addition of more layers.3 For instance, AB-stacked
bilayer graphene is described, at low energies, by two sets of
massive Lorentz invariant Dirac particles per valley and spin.
In the simplest models, where only nearest-neighbor hoppings
are taken into account, there is still an accidental degeneracy
that causes the particle-like band of one flavor to be degenerate
with the antiparticle-like (hole-like) band of the other flavor
at the K (K ′) point in each valley. This degeneracy can be
easily lifted by the application of a perpendicular electric field
that breaks the inversion symmetry in the system.1 Although
the Lorentz invariance is preserved, the wave function of the
electrons at low energies is modified, whereas in monolayer
graphene the Dirac fermions carry a Berry phase ±π , and the
Berry phase is ±2π in AB-stacked bilayer graphene.4 At low
energies, trigonal warping splits this “double” Dirac point into
three, with a Berry phase π and an additional one with −π ,4

a situation that persists for a translational mismatch between
the layers.5

Twisted bilayer graphene, in which the two layers have a
rotational mismatch described by an angle θ compared to the

perfect AB stacking, is another example where lattice structure
and wave-function topology are directly interconnected. In
fact, from the experimental point of view, twisted graphene
is more the rule than the exception. It naturally occurs at the
surface of graphite,6,7 in graphene grown in the surface of
SiC,8 and in graphene grown by chemical vapor deposition
on metal substrates.9 Compared to monolayer graphene, each
Dirac flavor is then split into two copies that are separated in
reciprocal space by a wave vector �K, as a function of θ .10

Interlayer hopping results in a renormalization of the Fermi
velocity10–13 as well as in a van Hove singularity at relatively
low energy compared to that in monolayer graphene.9,10 Once
again, Lorentz invariance is preserved at low energies but
the nature of the electronic wave functions is modified in a
profound way.

In this paper, we investigate the topological aspects of
the band structure of twisted graphene bilayers at low
energies in the continuum approximation, for small angle
mismatches compared to perfect AB stacking. We identify
possible topological classes that describe band inversion
symmetry. These topological classes determine the relative
Berry phase between the two copies of Dirac particles,
which have either the same or opposite Berry phase. If
the two Dirac cones are related by time-reversal symmetry,
such as the K and K ′ points in monolayer graphene, the
Berry phases are naturally opposite. In twisted graphene
bilayers, however, the two Dirac points emanating from
different layers are not time related, and the symmetry of
the interlayer hopping term ensures that the Berry phases are
identical. We show that this feature yields a topologically
protected zero-energy Landau level (LL), in contrast to the
former case. The scenario may be tested in quantum Hall
measurements.

The paper is organized as follows. In Sec. II, we discuss
the model of twisted bilayer graphene and the symmetry
properties of the bands (Sec. II A) that are fixed by the
form of the interlayer hopping. Furthermore, we present an
effective two-band model (Sec. II B) that displays the same
topological low-energy properties as the original four-band
model. Section III is devoted to discussion of the LL spectrum
in twisted bilayer graphene, in the perspective of possible
quantum Hall measurements.
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II. MODEL OF TWISTED BILAYER GRAPHENE

If we neglect, for the moment, hopping between atoms in
different layers, the electronic properties of twisted bilayer
graphene are described by two copies of the Hamiltonian for
monolayer graphene (we use units with h̄ = 1):

H0(k) ≡ vF

(
0 k∗
k 0

)
, (1)

where vF is the Fermi velocity and k = kx + iky is the 2D
wave vector relative to the K (K ′) points of the rotated layers
(see Fig. 1). For a twist (rotation) angle θ �= 0, each of the two
inequivalent Dirac points, which reside at the corners of the
first BZ K and K ′, are split into two, separated by a wave vector
�K = K − Kθ , where K(θ) is the position of the K point in
the lower (upper) layer and −K(θ) the position of points K ′
and K ′

θ , respectively. Throughout this paper, we work in the
continuum limit around a single pair (K ,Kθ ) and, therefore,
neglect commensuration effects between the two layers, which
could enlarge the unit cell in position space and thus fold it
back in reciprocal space. This procedure is mostly justified
because the coupling between the pairs of Dirac cones14,15 is
negligible.11

The Hamiltonian describing the electronic properties of
twisted bilayer graphene reads

H (k) =
(

H0(k + �K/2) H⊥
H

†
⊥ H0(k − �K/2)

)
, (2)

where H⊥ is the hopping matrix between the two layers.
Equation (2) refers to an expansion around the Q point in
Fig. 1. The analysis of the Moiré pattern formed by the twisted
bilayer shows that, for a small angle θ , the hopping matrix H⊥
may have three forms corresponding to the three main Fourier

Kθ

K’θ
K’

θ

K

Q’

Q

FIG. 1. The first Brillouin zone (1BZ) for twisted bilayer
graphene. The 1BZ of the upper layer (dashed hexagon) is rotated
by an angle θ with respect to that of the lower layer (solid hexagon).
The corners, where Dirac points occur, are labeled K

(′)
θ and K (′),

respectively.

components.10,15 This leads to three types of interlayer hopping
terms,

H 0
⊥ ≡ t̃⊥

(
1 1
1 1

)
, H±

⊥ ≡ t̃⊥

(
e∓iφ 1
e±iφ e∓iφ

)
, (3)

where φ = 2π/3 and t̃⊥ is a hopping parameter which
generally depends on θ .10,15,16

A. Symmetry of the bands and Berry phases

In contrast to a lattice Hamiltonian, which may be analyzed
with the help of global symmetries, such as time reversal or
lattice inversion, H (k) in Eq. (2) is a continuum model in
which the two Dirac points are no longer related by these
symmetries. However, H (k) and the interlayer hopping term
H⊥ may be investigated via symmetries that directly involve
the energy bands, such as rotation, mirror, and inversion
symmetry. Whereas for H⊥ = 0 the rotation and inversion
symmetries are respected, the latter are broken for nonzero
inter-layer hopping, and we therefore restrict the discussion
to the inversion symmetry I of the bands. We emphasize that
this inversion symmetry is defined with respect to the bands
in reciprocal space, in contrast to a previous analysis,17 in
which the more common definition of inversion symmetry
with respect to the lattice was used.

In the absence of any interlayer hopping, the Hamiltonian,
(2), would be ambiguous since one could work equally well
with H ∗

0 in the second layer. As a consequence, there remain
two possible representations of inversion (with different
spinorial expressions), I1 and I2:

I1 : H (−k) = −H (k) and I2 : H (−k) = −H (k)∗. (4)

The minus sign in both transformations maps positive to
negative energy states at opposite wave vectors, and vice
versa, E(k) → −E(−k), whereas the complex conjugation in
I2 changes the relative phase between the spinor components
and, hence, the Berry phase of a cone.

The phases of the two Dirac points are thus different for the
two representations. For the I1 case, the Berry phases at fixed
energy are opposite such that a merging transition of the two
Dirac points (at θ = 0) corresponds to a vanishing total Berry
phase and, consequently, to the possible opening of a band
gap. This situation arises, for example, in the framework of
the model discussed in Ref. 18, which describes monolayer
graphene under strong strain.2 In contrast to this rather
well-known topological universality class, the transformation
I2 yields Berry phases that are the same at fixed energy
E and opposite those at −E and, thus, represents a second
universality class for Hamiltonians describing pairs of Dirac
points. The transformation I2 may be represented in terms of
a tensor product of Pauli matrices, I2 = σE

y ⊗ σA
x , where σA

x/y

and σE
x/y describe the intralayer and the interlayer spinorial

spaces, respectively. The phases are eventually fixed by the
symmetry of the interlayer hopping H⊥, and the particular
forms, (3), happen to be invariant under I2.

Notice, however, that as a consequence of the interlayer
hopping terms, (3), the two Dirac points are no longer exactly at
the same energy, but we neglect this energy shift here because
it is associated with a very small energy scale ∼1 meV. As a
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second-order perturbation, this indeed scales like t̃2
⊥/(vF �K),

with t̃⊥ of the order of 100 meV and vF �K ∼ 1 eV.10

B. Effective two-band model

In the opposite limit, t̃⊥ � vF �K , model (2) may be
reduced to an effective two-band model, similarly to the case
of a perfectly AB-stacked (θ = 0) graphene bilayer.4 This is
done in two steps. First, one replaces H⊥ in Eq. (2) with a
simplified interlayer hopping term,

H eff
⊥ = t̃⊥

(
0 0
1 0

)
, (5)

in the limit where t̃⊥ � vF �K , that is, for small tilt angles.
The interlayer hopping term, (5), is reminiscent of the Bernal
bilayer case. Despite this simplification and the difference in
the energy scales, the resulting Hamiltonian may be viewed
as a representative of the topological universality class that
also includes the original four-band model. We consider the
eigenvectors of Eq. (5) in terms of the four-spinor basis
{ψA,ψB,ψA′ ,ψB ′ }, where (A,B) belongs to the two sublattices
of the first layer and (A′,B ′) to those of the second one. With the
particular form of Eq. (5), the zero-energy sector is spanned by
ψA and ψB ′ , whereas ψB and ψA′ are strongly hybridized by the
interlayer hopping term. Their symmetric and antisymmetric
combinations are the eigenstates at −t̃⊥ and t̃⊥, respectively.
To describe the electronic properties in the vicinity of E = 0,
one may therefore project the Hamiltonian onto the reduced
{ψA,ψB ′ } basis and neglect terms of the form EψB/A′ , which
are a product of the energy E ∼ 0 and the small components
ψB/A′ . The eigenvalue problem reads

vF (k + �K/2)∗ψB = EψA, (6)

vF (k + �K/2)ψA + t̃⊥ψA′ = EψB 
 0, (7)

t̃⊥ψB + vF (k − �K/2)∗ψB ′ = EψA′ 
 0, (8)

vF (k − �K/2)ψA′ = EψB ′ . (9)

By rewriting Eqs. (8) and (9),

−vF /t̃⊥(k + �K/2)ψA = ψA′ (10)

−vF /t̃⊥(k − �K/2)∗ψB ′ = ψB, (11)

and substituting them into Eqs. (6) and (9), one obtains the
Schrödinger equation

H eff(k)

(
ψA

ψB ′

)
= E

(
ψA

ψB ′

)
, (12)

in terms of the effective two-band Hamiltonian

H eff(k) = −v2
F

t̃⊥

(
0 (k∗)2 − (�K∗/2)2

k2 − (�K/2)2 0

)
,

(13)

which is similar to that for the nematic transition of the
interacting Bernal graphene bilayer.19

The generic form of the band structure obtained from the
effective two-band model (13) is depicted in the inset in
Fig. 2. One notices the two Dirac points originally situated
at K and Kθ , separated by a wave vector |�K| ∼ θ/a in the
first BZ, in terms of the intralayer distance a = 0.142 nm
between neighboring carbon atoms. To see the linearity of

Q

Energy (a.u.)

FIG. 2. (Color online) Generic band structure for the lowest four
bands of the twisted bilayer graphene, around the Q point, with only
H 0

⊥ considered. Inset: Effective bands of the model Hamiltonian,
(13). Both band structures are inversion invariant with respect to the
Q point.

the dispersion relation in the vicinity of these contact points,
one can further expand Hamiltonian (5) around ±�K/2, by
defining k = q ± �K/2, with |q| � |�K|/2. This expansion
yields two Dirac Hamiltonians,

±v2
F �K

t̃⊥

(
0 q∗
q 0

)
, (14)

with identical chirality for the two contact points.
Furthermore, the bands have saddle points at k = 0 between

the two Dirac points. The effective two-band Hamiltonian
therefore captures the logarithmic van Hove singularity
in agreement with previous theoretical10 and experimental
studies.20

The most salient features of Hamiltonian (13) are its chiral
properties. In agreement with the above-mentioned general
symmetry considerations, electrons at a fixed energy at the
K point have the same chirality as those at the Kθ point, such
that in both cases the electron experiences the same Berry
phase γ = π (and γ = −π at points K′ and K′

θ ) on a closed
orbit around one of the Dirac points. This is obvious in the
low-energy expansion, (14), around the two Dirac points. As
for AB-stacked bilayer graphene, the Berry phase acquired on
an orbit enclosing both Dirac points is then 2γ , as one may
also see from the limit of vanishing twist angle (θ = 0) which
reproduces the perfectly AB-stacked bilayer.4 Furthermore,
it becomes apparent from the form of Hamiltonian (13) that
the merging of the Dirac points is not accompanied by a gap
opening, in contrast to the Hamiltonian discussed in Ref. 18,
which describes the same band structure in the semimetallic
phase but which belongs to another topological class, described
by the symmetry I1.

III. LANDAU LEVELS OF TWISTED BILAYER GRAPHENE

One of the most prominent consequences of these topolog-
ical properties is the presence of a (doubly degenerate) zero
mode that emerges in the presence of a quantizing magnetic
field, in which case Hamiltonian (13) may be written in terms
of the usual ladder operators a and a†, with [a,a†] = 1:

HB = ωC

(
0 a2 − α∗2

a†2 − α2 0

)
, (15)
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where ωC = 2v2
F eB/t̃⊥ is the cyclotron frequency and α ≡

�KlB/2
√

2. Compared to the perfectly AB-stacked bilayer
(α = 0), where one readily obtains the LL spectrum,4 one
notices that the additional terms couple states only of the same
parity. One thus obtains two classes of eigenstates, ψ2n and
ψ2n+1, which may be written in the usual harmonic-oscillator
basis |m〉, with a†a|m〉 = m|m〉:

�2n(+1) =
∞∑

m=0

(
φ1

2m(+1)
φ2

2m(+1)

)
|2m(+1)〉, (16)

where the components φ1
m and φ2

m are to be determined
recursively.

A. Zero-energy levels

Before discussing the LL spectrum of Hamiltonian (15),
we investigate the zero-energy states, which may be obtained
analytically from the equation HB� = 0. As for the AB-
stacked bilayer, one obtains two distinct solutions, one with
even and one with odd parity, such that the zero-energy level is
orbitally twofold degenerate, in addition to its usual fourfold
spin-valley degeneracy and the orbital degeneracy described
by the flux density nB = eB/h. The two zero-energy states,
which are reminiscent of coherent states, are directly obtained
from the secular equation,

�0 = N0 cosh(α∗a†)

(
0

|n = 0〉
)

, (17)

�1 = N1
sinh(α∗a†)

α∗

(
0

|n = 0〉
)

, (18)

in terms of the normalization factors N0/1. These states are
generalizations of the zero-energy states (0,|0〉) and (0,|1〉)
of the AB-stacked bilayer.4 We also notice that we neglect
any other potential lifts due to the Zeeman effect and/or
interactions.21

The existence of those zero-mode states is independent of
the strength of the magnetic field. This is to be compared to
the other topological class of Dirac cones with opposite Berry
phases where the degeneracy of the zero mode is lifted.18 This
protection is determined solely by the topology of the model
Hamiltonian since the band structures are otherwise identical.
Notice, further, that the scaling of the LLs relative to �K is
different for the two topological classes.

B. Full Landau-level spectrum

The full LL spectrum, which was calculated numerically,
is depicted in Fig. 3. In the regime of small magnetic
fields, LLs with a small index n � nC , where nC denotes
roughly the LL which crosses the van Hove singularity,√

nCB ∼ vF |�K|2/4
√

2t̃⊥, display
√

Bn behavior, which is
the benchmark of massless Dirac fermions, as expected for the
linear dispersion below the van Hove singularity. Because of
the two Dirac points, these LLs, as well as the zero-energy level
discussed above, are twofold degenerate, in addition to the
fourfold spin-valley degeneracy. The twofold degeneracy due
to Dirac-point splitting in the twisted bilayer is lifted once the
LLs approach and eventually cross the van Hove singularity,

4
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B(T
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0.14

(eV )E

)

FIG. 3. (Color online) Landau levels of twisted bilayer graphene,
obtained from the numerical solution of Eq. (15). The characteristic
energy scale of the van Hove singularity has been chosen as |α|2ωC =
(�K)2/8m = 0.1 eV. The red line indicates the zero-energy level, and
the numbers correspond to the filling factors in the gaps.

n � nC , above which the LLs scale as ∼B(n + 1/2), as one
would expect from the parabolic dispersion relation revealed
by Hamiltonian (13) at high energies. Notice, however, that
as for AB-stacked bilayer graphene, the effective two-band
approximation is no longer valid at higher energies (far beyond
the van Hove singularity) because of the presence of the
remaining bands, which become visible there.

The LL spectrum in Fig. 3 allows one to understand the
main features of a quantum Hall effect (QHE) in twisted
bilayer graphene. The topologically protected zero-energy
LL, with its altogether eightfold degeneracy, yields a QHE at
filling factors ν = ±4 (taking into account spin degeneracy).
This feature is independent of the interlayer hopping strength
t⊥ and of the van Hove singularity, which is triggered by the
twist angle θ . For other LLs, the position of the van Hove
singularity determines their degeneracy. If the LLs remain well
below the singularity, n � nC , they maintain their eightfold
degeneracy, and one would therefore expect Hall plateaus
at filling factors ν = ±4(2n + 1) = ±4, ±12, ±20, . . . , but
one would expect additional plateaus at ν = ±8, ±16, . . . ,

for LLs with n � nC . The experiment22 indicates, even
at rather low magnetic fields of B ∼ 5 T, that only the
zero-energy LL is eightfold degenerate, whereas a plateau at
ν = ±8 has been observed. This stipulates that the energy of
the van Hove singularity is as low as the first excited LL.

IV. CONCLUSIONS

In conclusion, we have investigated the topological band
structure of twisted bilayer graphene, in the framework of
a symmetry analysis of interlayer hopping in the continuum
limit. For small and moderate twist angles θ , the two copies of
the Dirac point (that are not related by time-reversal symmetry)
are described by the same Berry phase, due to the symmetry
of the interlayer hopping term. Therefore, they belong to a
different topological class than the (usual) two Dirac points,
which are related by time-reversal symmetry. In the presence
of a quantizing magnetic field, these particular topological
properties yield a protected zero-energy LL with an eightfold
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degeneracy that may be evidenced in quantum Hall transport
measurements.
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G. Montambaux, F. Piéchon, J.-N. Fuchs, and M. O. Goerbig, Phys.
Rev. B 80, 153412 (2009); Eur. Phys. J. B 72, 509 (2009).

19O. Vafek and K. Yang, Phys. Rev. B 81, 041401(R) (2010).
20G. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro Neto,

A. Reina, J. Kong, and E. Y. Andrei, Nature Phys. 6, 109 (2010).
21M. O. Goerbig, e-print arXiv:1004.3396.
22D. S. Lee, C. Riedl, T. Beringer, K. von Klitzing, U. Stake, and

J. H. Smet (unpublished).

045436-5

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1126/science.1157996
http://dx.doi.org/10.1103/PhysRevB.78.045415
http://dx.doi.org/10.1103/PhysRevB.78.045415
http://dx.doi.org/10.1103/PhysRevB.80.045401
http://dx.doi.org/10.1103/PhysRevB.75.193402
http://dx.doi.org/10.1103/PhysRevB.76.085425
http://dx.doi.org/10.1103/PhysRevB.76.201402
http://dx.doi.org/10.1103/PhysRevB.78.045405
http://dx.doi.org/10.1103/PhysRevB.78.045405
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://arXiv.org/abs/arXiv:1012.0643
http://dx.doi.org/10.1103/PhysRevB.48.17427
http://dx.doi.org/10.1088/0022-3727/38/21/R01
http://dx.doi.org/10.1103/PhysRevLett.100.125504
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevB.81.165105
http://dx.doi.org/10.1103/PhysRevB.81.121403
http://dx.doi.org/10.1103/PhysRevB.81.121403
http://dx.doi.org/10.1016/j.ssc.2007.04.023
http://dx.doi.org/10.1103/PhysRevB.81.161405
http://dx.doi.org/10.1103/PhysRevB.81.245412
http://arXiv.org/abs/arXiv:1009.4203
http://arXiv.org/abs/arXiv:1101.2606
http://dx.doi.org/10.1103/PhysRevB.75.155424
http://dx.doi.org/10.1103/PhysRevB.75.155424
http://dx.doi.org/10.1103/PhysRevLett.100.236405
http://dx.doi.org/10.1103/PhysRevLett.100.236405
http://dx.doi.org/10.1088/1367-2630/10/10/103027
http://dx.doi.org/10.1103/PhysRevB.80.153412
http://dx.doi.org/10.1103/PhysRevB.80.153412
http://dx.doi.org/10.1140/epjb/e2009-00383-0
http://dx.doi.org/10.1103/PhysRevB.81.041401
http://dx.doi.org/10.1038/nphys1463
http://arXiv.org/abs/arXiv:1004.3396

