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Ostwald ripening of three-dimensional clusters on a surface studied
with an ultrafast kinetic Monte Carlo algorithm
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We have studied the Ostwald ripening of three-dimensional islands on a homogeneous surface with an original
off-lattice kinetic Monte Carlo algorithm. In this algorithm, adatom trajectories are highly simplified, while still
ensuring that the adatom fluxes between islands are exactly described. From the simulations, we obtained the
evolution of the island size distribution over a large time range. The simulations obtained are compared with the
results of numerical integration of rate equations derived from a mean-field approximation. Both results indicate
that the equilibrium radius of the islands follows a power-law behavior in the limit of a very dilute phase, with an
exponent close to 1/4. A general, excellent agreement is obtained, showing the validity of our approach, whereas
the validity of the mean-field approximation is discussed for a very small mean island size, or for a large fraction
of the surface covered by the islands.
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I. INTRODUCTION

The dynamics of phase separation on a surface is a key
parameter for numerous technological processes such as thin-
film growth or aging of catalysts.1 For example, starting from
a continuous film deposited onto a substrate, annealing can
lead to dewetting, formation of particles of the deposited
species on top of the substrate surface, and coarsening of
the particle assembly. Two main processes can be involved
in the coarsening of a particle assembly: particle migration
followed by coalescence, and capillarity-driven interparticle
transport, known as Ostwald ripening. In this process, diffusing
species detach from the particles, diffuse onto the substrate,
and condense on other particles. Due to their higher chemical
potential, small clusters shrink at the expense of larger ones.
Since the seminal works of Lifshitz, Slyosov, and Wagner
(LSW)2,3 for three-dimensional clusters in bulk (3D/3D),
various studies have been devoted to Ostwald ripening of
particles, including also monolayer islands on a surface
(2D/2D) and three-dimensional islands on a surface (3D/2D).

Two regimes are usually distinguished: the diffusion-
limited2 and attachment-limited3 regimes. In the first case,
there is no extra barrier for attachment of atoms to the island
periphery (for simplicity, we will take atoms as an example
of diffusing species in the whole paper). Atoms attach to an
island as soon as they reach its perimeter. As a result, there is no
discontinuity of the chemical potential at the interface between
the island and the bare surface, and the chemical potential
of the atoms varies continuously between the particles. In
the second case, due to the extra barrier for attachment, the
chemical potential is not continuous at the interface between
the island and the surface, but is nearly constant between the
particles. Note that for both cases, the kinetics of coarsening
is first of all limited by the detachment of the atoms from the
particles.

In the past, two main predictions have been obtained from
the LSW 3D/3D analytical model: first, the critical radius,
i.e., the radius of a cluster in temporary equilibrium with the
concentration of adatoms, follows a power-law growth rate.
For the diffusion-limited coarsening, the rate exponent is equal
to 1/3, and for the attachment-limited coarsening, it is equal to

1/2. Secondly, the asymptotic cluster-size distribution n(R,t)
has a self-similar behavior.

The LSW model has also been extended to ripening of
islands on surfaces. Analytical solutions were first given
by Chakraverty for 3D/2D,4 with a growth exponent of
1/4 for diffusion-limited coarsening, and a rate exponent of
1/3 for attachment-limited coarsening. The theoretical results
obtained (size distribution and rate exponent) were often used
as a criterion for discriminating between attachment-limited
coarsening and diffusion-limited coarsening. For example,
for Sn/Si(111) (Ref. 5) and Sn/Si(100) (Ref. 6) coarsening
kinetics, a growth exponent of 1/4 was extracted from the
late stage of coarsening, whereas the evolution was slower for
the early stage of coarsening, leading to the conclusion that
Ostwald ripening was limited by diffusion. On the contrary, a
1/3 growth exponent has been found for Pd/alumina7 and a 1/2
growth exponent has been observed for coerced mechanical
coarsening induced by the tip of an atomic force microscope
on a particle assembly.8

More sophisticated descriptions have been developed in
order to take into account the effects of faceting,9,10 nonuni-
form interfacial energy,11 quantum size effects,12 interfacial
stress,13 or mixing.14 Few works have questioned the validity
of the LSW approach for islands on a surface. Contrary to the
3D/3D case, the mean-field approach of the LSW developed
is a priori not valid for two-dimensional (2D) diffusion due
to the absence of a steady-state solution of the diffusion
equation for an isolated circular source on an infinite surface.
In the model of Chakraverty, an arbitrary cut-off length is
introduced in order to suppress the logarithmic divergence of
the diffusion field. This cut-off length should be related to
the distance between islands and reflects the fact that islands
are not isolated. A more sophisticated model has been given
by Marqusee15 in order to correctly treat the influence of the
nearest neighbors on the growth rate of a given particle. Using
an “effective medium” approach, he self-consistently derived
a growth law and asymptotic distribution for the 2D/2D
diffusion-limited case. The rate exponent was found to be
1/3, with a prefactor depending on the area fraction, and the
distribution could be obtained numerically. This power law
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was confirmed by kinetic Monte Carlo simulations,16 whereas
the effects of faceting were shown to markedly modify the
growth exponent.17

The approach of Marqusee has also been extended to
3D/2D diffusion-limited systems by Shorlin et al.18 They
showed that in the limit of a very dilute phase, i.e., when
the islands cover a negligible area fraction, the growth law
for the critical radius could be approximated with a 1/4
power law modified with a logarithmic correction. However,
due to the very large experimental uncertainties and to the
lack of efficient simulation algorithms, the 3D/2D analytical
predictions could hardly be verified up to now.

Two methods have been used for simulating the kinetics
of 3D/2D Ostwald ripening: either by solving the diffusion
equations for an initial configuration of islands, or by per-
forming kinetic Monte Carlo (KMC) simulations. The direct
resolution of Fick equations19 has been mainly employed for
analyzing the evolutions of epitaxial quantum dots where stress
also plays a role.20,21 However, the simulations are generally
limited to a few particles. Full 3D on-lattice KMC algorithms
have been used for simulation of growth,22–26 in the frame of
the “solid on solid” model, with energy barriers usually derived
from the bond-counting scheme. The effects of annealing
have been studied on a flat film that undergoes dewetting
upon annealing,25 but only the initial stages were accessible.
In order to increase the computation speed, coarse-grained
KMC algorithms with 2D on-lattice diffusion have been
developed for the study of growth27 and coarsening.28 In these
algorithms, islands are described as hemispheres evolving only
by exchange of atoms through diffusion on the substrate lattice
and the detachment rate of atoms from the islands is treated in a
mean-field approximation. The gain in CPU is most important
at the beginning of the simulation when interisland spacing is
small. When the mean distance between islands increases, the
computation speed decreases. At the same time, multiscale29

or first-passage algorithms30 have been developed to speed up
the computation of diffusion processes. We have combined
these two approaches and developed a new KMC algorithm,
for studies of Ostwald ripening, which considerably increases
the computation speed.

In this paper, we present a comparison between the
analytical mean-field theory of Marqusee and Shorlin et al.
(MS) and the results of this ultrafast coarse-grained Monte
Carlo algorithm. The first part is devoted to the presentation of
the analytical model. The Monte Carlo algorithm is described
in detail in the second part, whereas the last part is devoted to
the presentation of the numerical results and their comparison
with the analytical results.

II. ANALYTICAL MEAN-FIELD MODEL

The derivation of a mean-field analytical solution for the
2D/2D and 3D/2D cases is well described in the works of
Marqusee15 and Shorlin et al.18 Briefly, let us recall the main
results. In this part, we consider a population of 3D islands on
a solid homogeneous flat surface. We assume that the island
surface free energy γ is isotropic.

Islands have, at thermal equilibrium, the shape of a
spherical cap, i.e., a portion of a sphere of radius RS . θ is
the corresponding contact angle with the substrate. In the

following, we will consider that θ is independent of RS , even if
for small islands, line tension effects can lead to a variation of
θ with RS .31,32 The footprint of the islands onto the substrate
is a disk of radius RD = RS sin(θ ). Of course, for crystalline
islands, γ depends on the surface orientation and the cluster
shape can more or less deviate from the sphere cap shape,
depending on the temperature.

Each island is considered to be in an effective medium at a
mean concentration c̄. The fluxJT (RD) into an island of radius
RD is proportional, within a so-defined factor k(RD), to the
difference between c̄ and the equilibrium concentration at the
island periphery ceq(RS).

JT (RD) = k(RD)[c̄ − ceq (RS)]. (1)

ceq(RS) is given by the Gibbs-Thomson relationship

ceq(RS) = ceq(RS = ∞) exp

(
2γ�

kT Rs

)
, (2)

where � is the atomic volume and ceq(RS = ∞) is the
equilibrium concentration for an island of infinite size. k(RD)
is a priori unknown and depends on the distribution of island
radius n(RD) at the surface.

The mean concentration c̄ evolves as

∂c̄(t)

∂t
=

∫ ∞

0
k(RD,t)n(RD,t)[ceq(RS) − c̄(t)] dRD. (3)

The equilibrium radius R̄D is defined as the radius of an
island at equilibrium in a homogeneous concentration field
c(�r) = c̄. R̄D is thus simply given by ceq [R̄D/ sin(θ )] = c̄.
The local concentration field c(�r) obeys a modified equation
of diffusion, given by

∂c(�r,t)
∂t

= D∇2c(�r,t) − Dξ−2c(�r,t) + S, (4)

where

Dξ−2 =
∫ ∞

0
k(RD,t)n(RD,t)dRD (5)

is the sink term for the concentration field and

S =
∫ ∞

0
k(RD,t)n(RD,t)ceq(RS)dRD (6)

is the source term. ξ plays the role of a screening length
and removes the divergence present in the single particle
case. During the coarsening, the adatom concentration rapidly
reaches an equilibrium state which slowly evolves conversely
with the evolution of n(RD).

At the time scale of adatom diffusion, ∂c(�r,t)/∂t = 0 and
the source and sink term balance for the mean concentration:
Dξ−2c̄ = S. Writing δc(�r) = c(�r) − c̄, Eq. (4) simplifies to

(∇2 − ξ−2)δc(�r) = 0. (7)

The solution of Eq. (7) is15

c(r) = c̄ + K0(r/ξ )

K0(RD/ξ )
[ceq(RS) − c̄], (8)

where K0 is the zeroth modified Bessel function of the second
kind.
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The local flux into the island is given by

JT = 2πRDD
∂c

∂r
(RD) = 2πRDD

ξ

K1(RD/ξ )

K0(RD/ξ )
[c̄ − ceq(RS)],

(9)

where K1 is the first modified Bessel function of the second
kind.

The number of atoms in an island is given by

N = 4

3

πα(θ )

�
R3

D, (10)

where α(θ ) = [2 − 3 cos(θ ) + cos3(θ )]/[4 sin3(θ )].
Since JT = dN/dt , the evolution of island radius becomes

∂RD

∂t
= �D

2RDξα(θ )

K1(RD/ξ )

K0(RD/ξ )
[c̄ − ceq(RS)]. (11)

Using Eqs. (2) and (9), a self-consistent equation for ξ can
then be obtained:

ξ−1 = 2π

∫ ∞

0
RDn(RD)

K1(RD/ξ )

K0(RD/ξ )
dRD. (12)

The evolution of the system is thus entirely given by
Eq. (11), Eq (12), and the mass conservation equation

4

3

πα(θ )

�

∂

∂t

∫ ∞

0
n(RD)R3

DdRD+∂c̄

∂t
= 0. (13)

The second term in Eq. (13) can be rapidly neglected since
practically all atoms are in the islands.

Due to the presence of Bessel functions in Eq. (11), the
system of equations (11)–(13) does not follow any power-law
evolution. However, in the limit of very low island density, i.e.,
for RD << ξ , it has been demonstrated18 that the equilibrium
radius should be proportional to t1/4.

For the comparison with KMC simulations, we have
performed a numerical integration of Eq. (11) using different
initial configurations and the value of ξ computed, at each
integration step, through the self-consistent equation (12). For
each island size, the growth rate is calculated with Eq. (11),
using a value of c̄ that ensures that the mass is conserved.
Islands disappear as soon as their size is below the atomic
radius. In that case, the sizes of the remaining islands are
recomputed in order to maintain a constant total mass.

III. KINETIC MONTE CARLO ALGORITHM

KMC is a very useful method for simulating the evolution
of systems out of equilibrium or for measuring the fluctuations
of systems at thermal equilibrium, providing that the relevant
activated processes are known. Accordingly, KMC simulations
have been successfully used to model a variety of dynamical
processes ranging from thin-film growth to catalysis.

Kinetic Monte Carlo simulations for growth and coarsening
of particles on surfaces are usually based on the Bortz, Kalos,
and Lebowitz (BKL) algorithm.33 In this algorithm, each
elemental move of the system is associated with a frequency
given by an Arrhenius law. For each step, a basic move is
selected according to its frequency and the time evolves as the
inverse of the sum of all frequencies of the possible moves.
Most of the KMC developed for growth and coarsening use
a lattice for the definition of the atomic positions, which

leads to a few basic moves. A basic change is usually the
motion of an atom from one site to a neighboring site, but
more complicated changes—including the concerted motion
of many atoms—can be added.16,34,35 It is, however, often
difficult to calculate all the possible atomic-scale events that
may be important in a simulation, and so KMC simulations
have a relatively limited rate catalog. The selection of the basic
move is made on the database of possible events which usually
correspond to a wide range of frequencies. These frequencies
can be determined by using the bond-counting scheme: the
difference between the number of bonds before and after
the atomic jump determines the energy barrier to overlap for
the motion, and the frequency follows a corresponding Arrhe-
nius law with an attempt frequency in the 1012 − 1013Hz range.
Ab initio simulations can also be used for the determination
of the energy barriers on systems with a restricted number of
atoms. In both cases, the energy barriers are much lower for
the diffusion of an atom on the substrate or at the surface of
the particle than for the detachment of an atom from a particle.
In a full 3D KMC in a solid-on-solid frame, most of the CPU
time is used for diffusion of atoms at the border of the particle.
If this can be interesting for the study of island motion and
reshaping, it is much too CPU consuming for the study of
coarsening.

In order to avoid these problems, coarse-grained KMC
algorithms have been recently developed for the study of
Ostwald ripening.28 In these algorithms, islands have an ideal
shape and interact only through their footprint on the substrate.
They evolve by exchange of atoms through diffusion on the
substrate lattice sites. The detachment rate of atoms from the
islands is treated in a mean-field approximation. For large
distances between islands, most of the CPU time is spent
in the computation of the atomic diffusion on the substrate.
Moreover, as soon as the interparticle distance becomes large
with respect to the particle in-plane radius, atoms that leave a
given particle have a probability close to unity to reattach to
the same particle. This is due to the fact that for a 2D random
walk, the probability of return to the origin is equal to unity.
The system is thus quenched in a quasistable state evolving
slowly due to the very rare events which are the diffusion of
atoms from one island to another. In the original off-lattice
KMC algorithm presented here, the atomic diffusion is treated
separately from the detachment of adatoms from the islands,
with a coarse-grained treatment of the atomic trajectory.

In the simulation, we consider 3D islands on an atomically
flat homogeneous surface with periodic boundary conditions
applied. Islands are considered to be isotropic, unstrained,
and locally at equilibrium, i.e., their shape is governed by the
free-surface energies of the islands γp and of the substrate
γs , and by the interface free energy γps . The effect of island
reshaping has been discussed by Shorlin et al.,18 for the case
where the detachment and attachment rates are high enough
to induce a shape variation of the particle with growth rate.
Only particles having their radius close to the equilibrium
radius adopt an equilibrium shape. In the following, we have
always assumed that island reshaping occurs at a much higher
frequency than detachment or attachment. Particles thus have
a truncated spherical shape, with a contact angle θ given by
γp cos(θ ) = γs − γps . In the surface plane, the footprint of
the particles is thus a disk of size RD = RS sin(θ ). We also
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neglect the variation of γp with RS .36 Atomistic simulations
using Lennard-Jones potentials have shown that γp behaves as
γp(R) = γp(∞)/[(1 + 2(lS/RS)2] with a characteristic length
lS close to the interatomic distance.37 This leads to a greater
than 10 % variation of the surface energy for particles of radius
less than 1 nm. Such effects have been observed for Pb/MgO.38

For islands of few atoms, magic size effects leading to
a nonmonotonic variation of surface energy with size can
dominate.39 We neglect all these effects, which are specific to
each situation, in order to focus on the first-order size effects
on the chemical potential.

In the simulation, atoms detach from particles, diffuse,
and attach to other particles. We use the BKL algorithm for
definition of the time scale: at each step, the probabilities
of all events are summed, which defines the time step. A
random number is then generated and used for choosing a
possible move according to its probability. The table of events
is organized in a binary tree. In a standard KMC algorithm,
the possible events listed are the detachment, the diffusion, or
the attachment of atoms. In order to increase the computation
speed, we have proceeded in a very different way than standard
KMC algorithms. In the present simulation, during a single
time step, an atom detaches from an island, diffuses onto
the substrate, and attaches to another island. Thus, atoms
diffuse one by one, and except for the island which loses an
atom, no other evolution of the island assembly is taken into
account during atomic diffusion. This reasoning relies on the
assumption that at each step, particles have their equilibrium
shape and that the evolution of the island assembly during
the diffusion of an adatom is negligible. In particular, we
neglect the fact that two adatoms could meet and form a new
island. This assumption is valid if the energy barrier for atomic
detachment from 3D islands is much higher than the energy
barrier for diffusion on the substrate. In the simulation, the time
scale is defined only by the detachment rates from the islands,
and the adatom diffusion trajectories are treated independently
of this time scale.

Since the time scale is defined by the detachment rate from
the islands, we do not need to compute true trajectories and
diffusion times for individual adatoms, but we can compute
simplified trajectories provided that the probability for an
adatom leaving an island A to reattach to an island B is the
same. This approach is a development, to the specific case
of Ostwald ripening, of the multiscale algorithms29,40 or first-
passage-time algorithms used for macromolecule diffusion,41

epitaxial growth,42–44 or diffusion-limited reaction.30

The simplified trajectories are drawn in Fig. 1. For each
particle (A) of radius RD , we first compute the distance L1

from the center of A up to the nearest particle (B) periphery.
The probability for an adatom detached from A to reach, at the
first passage, the distance L1 before reattaching to A is uniform.
It does not depend on the direction since the footprint of the
particle on the substrate is a disk, and since there is no other
island than A in the disk of radius L1 centered on A.

The flux F of adatoms leaving the island and reaching L1

at the first passage is directly proportional to this probability.
F can be computed by considering the similar situation of
a source at r = RD and a trap at r = L1. The steady-state
diffusion equation 
c = 0 for the boundary conditions c(r =

A

B

L1

L2

L3

C1

C2

FIG. 1. (Color online) Scheme of the computation of the sim-
plified trajectory for atomic diffusion (green arrows). An atom is
evaporated from island A at a distance L1 with a uniform probability
(dotted red circles), where L1 is the distance up to the nearest island
(B). The next positions of the diffusing atom are chosen uniformly on
similar circles of radius L2,L3,. . .,Lk corresponding to the distances
to the nearest islands (dotted red circles). If, at any time, the atom
position is within the capture area of an island (dotted black circles),
the atom condenses on the island.

RD) = ceq(RS) and c(r = L1) = 0 is then easily obtained
using the Fick equation in polar geometry. ceq(RS) is the
concentration of adatoms in equilibrium with a particle of
radius of curvature RS , given by Eq. (2).

The solution of the equation of diffusion is

c(r) = ceq(RS)
ln(r/L1)

ln(RD/L1)
. (14)

The adatom flux reaching L1 is thus

F (RD,L1) = 2πceq(RS)D/ ln(L1/RD), (15)

where D is the diffusion coefficient. Note that the boundary
condition c(r = L1) = 0 involved above is only used for
computing the value of F (L1) and does not reflect the adatom
concentration during the simulation. Eq. (15) applies for every
distance L that verifies RD + aS < L < L1, where aS is the
lattice spacing of the substrate. For L > L1, the other islands
act as real traps that have to be taken into account. For
L = RD + aS , we find that the flux of adatoms that detach
from the islands is F (RD,RD + aS) ≈ 2πceq (RS)DRD/aS .

The diffusion coefficient D can be written as D =
νda

2
S exp(−Ed/kT ), where Ed is the energy barrier for

diffusion and νd is the attempt frequency for diffusion.
Moreover, the equilibrium concentration of adatoms at the
vicinity of a particle of infinite radius is given by ceq(∞) =
(νe/νd )(1/aSaP ) exp[(Ec − Ea)/kT ], where Ec is the cohesive
energy of the particle, Ea is the adsorption energy of adatoms
on the substrate, aP is the interatomic distance for atoms at the
perimeter of the particle, and νe is the attempt frequency for
detachment.

In the present KMC algorithm, the probability of reaching
distance L1 is integrated in the rate of detachment, and
the event considered is the detachment from an island and
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diffusion up to distance L1, with a corresponding frequency

F (RD,L1) = 2πνe

as

ap

exp

(
Ec − Ea + 2γ�/Rs − Ed

kT

)

×
/

ln

(
L1

RD

)
. (16)

For L = RD + aS , writing Np = 2πRD/ap, the number of
atoms at the island periphery, we find that F (RD,RD + aS) =
νeNp exp[(Ec − Ea + 2γ�/Rs − Ed )/kT ] is the adatom
detachment rate from the island since νe

exp[(Ec − Ea + 2γ�/Rs − Ed )/kT ] is the probability
of detachment from an individual atomic site of the island
periphery. In the simulation, the time step is the inverse
of the sum of the frequencies of all possible events:

t = 1/

∑
particles F (RD,L1).

Once an event is selected, for example, detachment from
island A, the adatom simplified trajectory is computed. A first
adatom position C1 is randomly drawn on the circle of radius
L1. The following positions, C2,C3, . . .,Ck are successively
randomly drawn on the circles of radius L2,L3, . . .,Lk centered
on C1,C2, . . .,Ck−1. The radius Lk of the kth circle corresponds
to the distance from Ck−1 up to the nearest island. Since there
is no island in the disk of radius Lk centered on Ck−1, the
probability of adatom diffusion from Ck−1 up to a distance Lk

is equal to unity and uniformly distributed on the circle.
Thus, adatoms diffuse by long jumps in random directions.

As soon as the distance to an island is less than dcapt, the
atom attaches to the island (see Fig. 1). In the following, we
have chosen dcapt = aS . After each detachment/attachment, the
values of RS and L1 that could have varied are recomputed.
Moreover, as soon as the distance between two islands is less
than dcapt, i.e., when L1 − RD < dcapt, these islands coalesce
and form a new island located at the center of mass of the
two islands. This ensures that any logarithmic divergence of
Eq. (16) is avoided.

IV. SIMULATION RESULTS

We have performed numerical simulations of the Ost-
wald ripening of hemispherical particles on a flat surface.
We have chosen the case of an adsorbate/substrate couple
corresponding to a very low adatom diffusion barrier and
high activation energy for adatom detachment, in order to
be in a coarsening regime where the adatom concentration is
negligible. The parameters for the simulations have thus been
set to reproduce the coarsening of Co islands on graphite,
by using experimental values of the cohesive energy45 and
surface energy of cobalt,46 and the computed value of the
adsorption energy of Co on graphene.47 For diffusion, we
have used a usual attempt frequency and a low energy barrier
of the same order of magnitude as the one found for Au
on graphite.48 The corresponding set of parameters is νe =
5 × 1012 Hz, Ec = −4.386 eV, Ea = −1.3 eV, Ed = 0.1 eV,
γ = 2.5 J m−2, θ = π/2, as = 0.246 nm, and T = 1200 K.
Of course, using a scaling law for the time scale, the results
can be easily transposed to other adsorbate/substrate couples.

Series of simulations were performed on square cells,
with corresponding sizes ranging from 0.25 × 0.25 μm2 up
to 14.4 × 14.4 μm2. Different Co coverages were simulated,
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FIG. 2. (Color online) Annealing at T = 1200 K of 0.01 nm
Co on graphite. Number of islands on a 0.25 × 0.25 μm2 surface.
Comparison between the results of an on-lattice classical KMC
algorithm with atomic jumps between adjacent sites (blue crosses)
and the results of the present off-lattice coarse-grained KMC
algorithm (continuous line).

equivalent to a mean film thickness ranging from 0.01 up to
1 nm. No noticeable influence of the size of the simulation
cell was observed on the evolution of the island density with
time until the number of islands in the box remains higher
than around 20. The initial island configurations were obtained
using a classical on-lattice KMC algorithm49 adapted for 3D
island nucleation through a mean-field treatment of the island
morphology.

We have first compared the results of our algorithm with
the results of the classical on-lattice KMC algorithm. For
this purpose, the evolution of an initial configuration of 5 100
islands on a 0.25 × 0.25 μm2 cell, corresponding to a mean
thickness of 0.01 nm has been simulated by both algorithms.
The evolution with time of the number of islands is shown
in Fig. 2 for both algorithms. The results are very similar.
However, simulation speed is considerably increased with
our algorithm: the CPU time evolves as t0.2, whereas for the
classical KMC algorithm, the CPU time evolves as t0.4 at the
very beginning of the simulation, and as t0.8 at the later stage.
Performing a simulation is about 40 times more rapid with
our algorithm than with the classical on-lattice algorithm for a
simulation up to t = 1000 s, and about 1000 times more rapid
for a simulation up to t = 106 s. Using our algorithm, it is
possible to simulate the coarsening of an initially very large
number of islands—for example, more than 106—on a large
surface area, up to the final state, i.e., a unique island.

Island configurations at t = 102 s and t = 5.6 × 106 s for
coverage of 0.01 nm are presented in Figs. 3(a) and 3(b).
For the whole set of simulations, we have computed the
growth rate of individual particles ∂N/∂t and mean growth
rate 〈∂N/∂t〉(RD,t). Since islands are hemispherical, ∂N/∂t =
2πR2

DdRD/dt . For this purpose, the growth rates of individual
particles are first computed during very short time periods and
the distribution obtained is further integrated over a longer
time in order to reduce the data dispersion. This procedure
ensures that sufficient statistics is obtained for particles of
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FIG. 3. (Color online) Annealing at T = 1200 K of 0.01 nm Co on graphite. (a) KMC configuration obtained at t = 100 s. 0.2 × 0.2 μm2

detailed view (full size 1 × 1 μm2). (b) KMC configuration obtained at t = 5.6 × 106 s. 3 × 3 μm2 detailed view (full size 14.4 × 14.4 μm2).
(c) Evolution of the mean growth rate 〈∂N/∂t〉 at t = 100 s. (d) Evolution of the growth rate ∂N/∂t for each particle at t = 5.6 × 106 s. For
(c) and (d), black symbols correspond to KMC results, and the red curve corresponds to dN/dt = 2π�R2

DdRD/dt with dRD/dt given by
Eq. (11). The parameters for the fits are R̄D = 1.28 nm and ξ = 17 nm at t = 100 s and R̄D = 9.51 nm and ξ = 420 nm at t = 5.6 × 106 s.

large size, without too much uncertainty on the growth rate
of small islands, which highly depends on the particle size.
The values obtained are then fitted with Eq. (12), using a
least-squares-fitting procedure without taking into account the
growth rate of the smallest islands representing 10 % of the
size distribution.

Figure 3(d) shows the growth rate ∂N/∂t of each particle of
the simulation for t = 5.6 × 106 s [a corresponding detailed
view is shown in Fig. 3(a)]. The curve is a fit using Eq. (11).
Good agreement is obtained with R̄D = 9.51 nm and ξ =
423 nm, which shows that the mean-field analytical descrip-
tion works correctly: for this configuration, the determination
of ξ using Eq. (12) indicates that ξ = 359 nm. However, the
simulation shows a relatively large dispersion of the growth
rate for different islands of same radius: for a given island,
∂N/∂t depends on the size distribution of the few nearest
neighbors and not on the size distribution of the whole sample.

The root-mean-square (rms) deviation of the growth rates is
roughly equal to half the rms growth rate. The dispersion is
higher for large islands. Figure 3(c) shows the mean growth
rate 〈∂N/∂t〉 obtained from all configurations. Even for small
island sizes, 〈∂N/∂t〉 is very well approximated with Eq. (11),
which allows us to derive values of R̄D and ξ with good
precision. The comparison between the mean growth rate given
by Eq. (11) and the growth rate of each island shows that the
absolute value of the growth rate increases for small values of
L1/R̄D and decreases for large values of L1/R̄D . In the first
case, two islands that are close to each other rapidly exchange
atoms, and the larger one rapidly grows at the expense of
the smaller one. In the second case, islands are isolated and
evolve very slowly. In addition to R̄D and ξ , we have followed
the evolution of the island density nT = ∫ ∞

0 n(RD)dRD and
of the fraction of the surface covered by the islands, ϕ. We
find that, except at the very beginning of the simulation (for
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FIG. 4. (Color online) Annealing at T = 1200 K of 0.01 nm Co
on graphite. Evolution, as a function of the time, of the screening
length ξ , and of the equilibrium radius R̄D determined from the KMC
simulations, using a fit of the growth rate with Eq. (11). Green dotted
line: R̄D . Red continuous line: ξ . The blue dashed line corresponds to
the value of ξ determined from the KMC configurations and Eq. (12).

t < 10−3s), ϕ evolves as n
1/3
T and R̄D evolves as n

−1/3
T . Such

exponents are easily derived if the island size distribution
follows a uniform scaling behavior.

Figure 4 shows the evolution, with time, of the equilibrium
radius R̄D and the screening length ξ determined from the fit
of 〈∂N/∂t〉. R̄D increases slowly with time. In the limit of a
very large time, the rate exponent of R̄D(t), which is given
by ∂ ln(R̄D)/∂ ln(t), is of the order of 0.22. This is in relative
good agreement with the prediction of a 1/4 exponent for the
time dependence of R̄D . However, this 1/4 exponent is only
obtained at the end of the simulation, for t > 107s, in the limit
of a very small island density covering a fraction ϕ = 10−3

of the surface. For shorter simulation times, R̄D increases at
a much slower rate. Note that except at the very beginning
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FIG. 5. (Color online) Evolution, with equilibrium radius R̄D ,
of the coarsening exponent during annealing at T = 1200K of Co
islands on graphite. Red crosses: 0.001 nm equivalent thickness; blue
squares: 0.01 nm equivalent thickness; black dots: 0.1 nm equivalent
thickness.

of the simulation (for t < 10−3s), the island density is
exactly inversely proportional with the cube of the equilibrium
radius.

The values of the screening length determined through
Eq. (12) using the particle size distribution at each time
are also drawn in the figure. Very good agreement is found
in the whole range of points, indicating that the mean-field
description of the Ostwald ripening process works correctly.
From this self-consistent determination, we have found that ξ

behaves as R̄
5/3
D . Note that the mean distance between islands

varies as n
−1/2
T , and thus, as R̄

3/2
D . ξ increases more rapidly

than the distance between islands during coarsening. For low
RD/ξ ratios, at the end of the coarsening process, more islands
contribute to the screening of the diffusion from a given island,
and the mean-field model should be better adapted. It should
also be better adapted for low values of ϕ.

Figure 5 represents the evolution of the coarsening expo-
nent, ∂ ln(R̄D)/∂ ln(t), with equilibrium radius R̄D for three
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FIG. 6. (Color online) Annealing at T = 1200 K of an initial Co deposit on graphite. (a) Equivalent thickness: 0.01 nm. (b) Equivalent
thickness: 1 nm. Comparison between KMC simulations and MS calculations of the time evolution of the island density. Red diamonds: KMC
results. Green dotted line: mean-field results, starting from the KMC configuration obtained at t = 10−3s. Black line: mean-field results, starting
from the KMC configuration obtained at t = 100s.

045434-7
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FIG. 7. (Color online) Annealing at T = 1200 K of 0.01 nm Co on graphite. Comparison between PSD obtained by KMC (black squares)
and by numerical integration of the mean-field equations of the MS model (red curve). (a) PSD at t = 102s, starting from the KMC configuration
at t = 1 s. (b) PSD at t = 104 s, starting from the KMC configuration at t = 102s.

different coverages: 0.1, 0.01, and 0.001 nm. The figure shows
that the coarsening exponent depends mainly on the island size,
at least when the fraction of the surface covered by the islands is
small. Since the power-law evolution for the equilibrium radius
has been derived assuming, in Eq. (2), a linear development
of ceq(RS) with the inverse of RS , the 1/4 exponent shall only
be recovered when R̄D >> 2γ�/kT =3.3 nm. Of course,
the coarsening exponent also depends on the precise island
size distribution: if all islands have the same size, there is no
coarsening since all islands have the same chemical potential.

The time evolution of the island density nT is presented in
Fig. 6. A comparison between KMC values and the analytical
results of MS is presented in Figs. 6(a) and 5(b) for two cov-
erages, namely, 0.01 nm and 1 nm. The initial configurations
used for the KMC simulations are very different. For 0.01 nm,
the starting configuration consists of small islands containing
a few tens of atoms and covering a fraction ϕ = 0.05 of the
surface, whereas for 1 nm, islands contain a few thousand
atoms and cover half of the surface at the beginning of the
simulation.

For the comparison with the MS model, we have used the
KMC results at various times as input for Eqs. (11)–(13). For
0.01 nm coverage, the island density obtained by integration
of the MS equations, starting from the KMC configuration
obtained at t = 10−3 s [Fig. 6(a), green dotted line], is slightly
lower than the island density obtained by KMC. However,
starting from the KMC configuration obtained at t = 100 s
[Fig. 6(a), black line] gives the same density as the one
obtained by KMC [Fig. 6(a), red lozenges]. For 1 nm coverage,
the island density obtained by integration of the MS equations,
starting from the KMC configuration obtained at t = 100 s
[Fig. 6(b), black line], is slightly higher than the island density
obtained by KMC [Fig. 6(b), red lozenges], until t � 106 s,
for which both KMC and MS give similar results. For all
cases, the differences between KMC and MS results for the
island density do not exceed a factor of 1.25. This shows

that the mean-field description of an effective medium for the
diffusion is well adapted for predictions of Ostwald ripening.
Two limiting cases can be identified: the first one is the small
number of atoms in the islands. This is the case for 0.01 nm
coverage at t = 10−3 s, for which the mean number of atoms
in the islands is of the order of 16. For such a small number of
atoms, the variation of island sizes during coarsening is poorly
described with a continuous model. The second limiting case
is obtained when a large fraction of the surface is covered by
the islands. This is the case for 1 nm coverage at t = 100 s, for
which half of the surface is covered by the islands (ϕ ≈ 0.46).
In that case, the screening length is of the order of the island
size: R̄D/ξ ≈ 1. Good agreement between KMC and MS
calculations is, however, recovered at t = 106 s, for which
R̄D/ξ ≈ 0.5 and ϕ ≈ 0.15.

Thus, concerning the evolution of island density during
coarsening, very good agreement is obtained between KMC
simulations and MS integration, except for the extreme
case of large values of ϕ and a very small mean island
size.

Figure 7 presents the comparison between the particle size
distributions (PSD) obtained from the KMC simulations and
from the MS model. For the mean-field results, the PSD
obtained from the KMC at various times have been used
as input for the integration. Starting from PSD obtained at
t = 100 s, good agreement is obtained at t = 104 s, even
if the upper tail of the distribution obtained from the MS
model is slightly sharper than for KMC results. Moreover,
the PSD obtained is in good agreement with the theoretical
stationary PSD derived by Chakraverty, using a simplified
model for diffusion.4 However, for short time inputs (t = 1 s),
the MS model fails to correctly reproduce the PSD obtained
at later times. This reflects the fact that the discrete nature
of the size distribution, particularly relevant for small island
sizes, cannot be correctly described by the continuous mean-
field approximation. This result confirms the observations
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already made concerning the time evolution of the island
density.

V. CONCLUSION

The comparison between the KMC and MS results shows
that our Monte Carlo algorithm is well adapted for the study
of Oswald ripening, and that the mean-field description of the
MS model is already accurate, except when the mean size of
the islands is very small or for a large fraction of the surface,
covered by the islands. For studying the time dependence of
the island density, a KMC algorithm is not necessary and
integration of the equations of the MS model already give
correct results. Both models show that the equilibrium radius
follows a power-law evolution with an exponent close to 1/4,

in the limit of a very dilute system. At the beginning of
coarsening, the increase of RD is much slower.

Differences are observed for island size distribution. KMC
results display size distributions wider than MS integration
results. This is due to the fact that the mean-field description
does not account for local variations of the size distributions.

More information can also be extracted from the KMC
results, such as spatial configurations, growth rate dispersion,
and dependence of the growth rate on the local island size
distribution. The KMC simulations could also be used in the
case of Ostwald ripening of multicomponent systems, such as
metal alloys14, for Ostwald ripening with an extra barrier for
attachment. The ultrafast algorithm developed here thus opens
the way to studies of more complex situations for which no
analytical model of the kinetics has been developed, and for
which classical algorithms are much too slow.
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26G. Sitja, R. Omar Uñac, and C. R. Henry, Surf. Sci. 604, 404 (2010).
27Y. A. Kryukov and J. G. Amar, Phys. Rev. B 81, 165435 (2010).
28R. A. Bennett, D. M. Tarr, and P. A. Mulheran, J. Phys.: Condens.

Matter 15, S3139 (2003).
29M. A. Novotny, Phys. Rev. Lett. 74, 1 (1995).
30T. Opplestrup, V. V. Bulatov, G. H. Gilmer, M. H. Kalos, and

B. Sadigh, Phys. Rev. Lett. 97, 230602 (2006).
31R. D. Gretz, J. Chem. Phys. 45, 3160 (1966).
32B. J. Block, S. K. Das, M. Oettel, P. Virnau, and K. Binder, J. Chem.

Phys. 133, 154702 (2010).
33A. Bortz, M. Kalos, and J. Lebowitz, J. Comput. Phys. 17, 10 (1975).
34O. Trushin, A. Karim, A. Kara, and T. S. Rahman, Phys. Rev. B 72,

115401 (2005).
35A. Karim, A. N. Al-Rawi, A. Kara, T. S. Rahman, O. Trushin, and

T. Ala-Nissila, Phys. Rev. B 73, 165411 (2006).
36R. C. Tolman, J. Chem. Phys. 16, 758 (1948).
37B. J. Block, S. K. Das, M. Oettel, P. Virnau, and K. Binder, J. Chem.

Phys. 133, 154702 (2010).
38C. T. Campbell, S. C. Parker, and D. E. Starr, Science 298, 811.
39J. Goniakowski and C. Mottet, Phys. Rev. B 81, 155443 (2010).
40J. P. DeVita, L. M. Sander, and P. Smereka, Phys. Rev. B 72, 205421

(2005).
41J. A. Given, J. B. Hubbard, and J. F. Douglas, J. Chem. Phys. 106,

3761 (1997).
42C. C. Chou and M. L. Falk, J. Comput. Phys. 217, 519 (2006).
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44V. I. Tokar and H. Dreyssé, Phys. Rev. B 80, 161403(R) (2009).
45D. R. Lide, CRC Handbook of Chemistry and Physics, 79th ed.

(CRC, Boca Raton, FL, 1998), p. 5.13.
46W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977).
47Y. Mao, J. Yuan, and J. Zhong, J. Phys.: Condens. Matter 20, 115209

(2008).
48P. Jensen, X. Blase, and P. Ordejón, Surf. Sci. 564, 173 (2004).
49G. Prévot, H. Guesmi, and B. Croset, Surf. Sci. 601, 2017

(2007).

045434-9

http://dx.doi.org/10.1016/S0040-6090(98)01479-5
http://dx.doi.org/10.1016/0022-3697(61)90054-3
http://dx.doi.org/10.1016/0022-3697(61)90054-3
http://dx.doi.org/10.1016/0022-3697(67)90026-1
http://dx.doi.org/10.1016/0169-4332(91)90080-4
http://dx.doi.org/10.1016/0169-4332(91)90080-4
http://dx.doi.org/10.1016/0168-583X(92)95448-Z
http://dx.doi.org/10.1016/0168-583X(92)95448-Z
http://dx.doi.org/10.1021/jp048822w
http://dx.doi.org/10.1016/0001-6160(76)90034-1
http://dx.doi.org/10.1016/0001-6160(88)90175-7
http://dx.doi.org/10.1103/PhysRevB.82.165414
http://dx.doi.org/10.1103/PhysRevB.76.165319
http://dx.doi.org/10.1103/PhysRevLett.105.255901
http://dx.doi.org/10.1063/1.447698
http://dx.doi.org/10.1088/0953-8984/21/8/084214
http://dx.doi.org/10.1103/PhysRevB.76.075415
http://dx.doi.org/10.1103/PhysRevB.76.075415
http://dx.doi.org/10.1016/S0378-4371(98)00379-3
http://dx.doi.org/10.1016/S0378-4371(98)00379-3
http://dx.doi.org/10.1063/1.366751
http://dx.doi.org/10.1103/PhysRevB.75.205312
http://dx.doi.org/10.1103/PhysRevB.75.205312
http://dx.doi.org/10.1103/PhysRevLett.84.701
http://dx.doi.org/10.1103/PhysRevB.54.14742
http://dx.doi.org/10.1134/S1995078009030094
http://dx.doi.org/10.1063/1.3332479
http://dx.doi.org/10.1103/PhysRevLett.95.086102
http://dx.doi.org/10.1103/PhysRevLett.95.086102
http://dx.doi.org/10.1016/j.susc.2009.11.037
http://dx.doi.org/10.1103/PhysRevB.81.165435
http://dx.doi.org/10.1088/0953-8984/15/42/011
http://dx.doi.org/10.1088/0953-8984/15/42/011
http://dx.doi.org/10.1103/PhysRevLett.74.1
http://dx.doi.org/10.1103/PhysRevLett.97.230602
http://dx.doi.org/10.1063/1.1728081
http://dx.doi.org/10.1063/1.3493464
http://dx.doi.org/10.1063/1.3493464
http://dx.doi.org/10.1016/0021-9991(75)90060-1
http://dx.doi.org/10.1103/PhysRevB.72.115401
http://dx.doi.org/10.1103/PhysRevB.72.115401
http://dx.doi.org/10.1103/PhysRevB.73.165411
http://dx.doi.org/10.1063/1.1746994
http://dx.doi.org/10.1063/1.3493464
http://dx.doi.org/10.1063/1.3493464
http://dx.doi.org/10.1126/science.1075094
http://dx.doi.org/10.1103/PhysRevB.81.155443
http://dx.doi.org/10.1103/PhysRevB.72.205421
http://dx.doi.org/10.1103/PhysRevB.72.205421
http://dx.doi.org/10.1063/1.473428
http://dx.doi.org/10.1063/1.473428
http://dx.doi.org/10.1016/j.jcp.2006.01.012
http://dx.doi.org/10.1103/PhysRevE.77.066705
http://dx.doi.org/10.1103/PhysRevB.80.161403
http://dx.doi.org/10.1016/0039-6028(77)90442-3
http://dx.doi.org/10.1088/0953-8984/20/11/115209
http://dx.doi.org/10.1088/0953-8984/20/11/115209
http://dx.doi.org/10.1016/j.susc.2004.06.188
http://dx.doi.org/10.1016/j.susc.2007.02.033
http://dx.doi.org/10.1016/j.susc.2007.02.033

