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Theory of the giant plasmon-enhanced second-harmonic generation in graphene
and semiconductor two-dimensional electron systems
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An analytical theory of the nonlinear electromagnetic response of a two-dimensional (2D) electron system in
the second order in the electric field amplitude is developed. The second-order polarizability and the intensity of
the second harmonic signal are calculated within the self-consistent-field approach both for semiconductor 2D
electron systems and for graphene. The second harmonic generation in graphene is shown to be about 2 orders of
magnitude stronger than in GaAs quantum wells at typical experimental parameters. Under the conditions of 2D
plasmon resonance the second harmonic radiation intensity is further increased by several orders of magnitude.
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I. INTRODUCTION

Graphene is a recently discovered1 purely two-dimensional
(2D) material consisting of a monolayer of sp2-bonded carbon
atoms arranged in a hexagonal lattice. Electrons and holes in
graphene are massless Dirac fermions and this leads to a variety
of interesting and unusual electrical and optical properties of
this material.2–7 It promises a lot of applications in electronics,
optics, and other areas.4–7

It has been predicted8 that the unusual linear energy
dispersion of charge carriers should lead to a strongly
nonlinear electromagnetic response of graphene: irradiation
with electromagnetic waves should stimulate the emission of
higher frequency harmonics from graphene. The theory of
the nonlinear electromagnetic response of graphene has been
further developed in Refs. 9–16. Experimentally the higher
harmonics generation and frequency mixing effects have been
observed in Refs. 17–21.

In theoretical papers,9–16 only the normal incidence of
radiation on a uniform graphene layer has been studied.
The experimental demonstration20 of third-order emission
of radiation at the frequency 2ω1 − ω2 at the bichromatic
irradiation by the frequencies ω1 and ω2 has confirmed that
graphene manifests nonlinear properties and that its third-order
effective nonlinear susceptibility is much higher than that in
a number of other materials.15,16,20 However, the intensity of
the emitted signal I2ω1±ω2 ∝ I 2

ω1
Iω2 is proportional to the third

power of the intensities of the incident waves;20 therefore,
to observe the third-order nonlinear effects one needs quite
powerful sources of radiation.

Substantially stronger nonlinear effects could be expected
in the second order in a radiation electric field. The second-
order effects, for example, the second harmonic generation, are
proportional to the second power of the incident wave intensity,
I2ω ∝ I 2

ω. However, graphene is a centrosymmetric material;
therefore, at the normal incidence of radiation, second-order
effects are forbidden by symmetry.

The symmetry arguments do not hinder the observation
of second-order effects at the oblique incidence of radiation
on the 2D electron layer. If the incident wave has a wave-
vector component q parallel to the plane of the 2D layer,
one could observe much stronger second-harmonic radiation
compared to the third-order effects.20 Moreover, at the oblique
incidence of radiation, one can resonantly excite the 2D plasma

waves22–29 in the system (e.g., in the attenuated total reflection
or grating coupling geometry), which would lead to resonant
enhancement of higher harmonics.30

In this paper we theoretically study the second-order
nonlinear electromagnetic response of 2D electron systems,
including both graphene and conventional 2D structures with
parabolic electron energy dispersion (for a recent work on
the second harmonic generation in bulk solids, see, e.g.,
Ref. 31). We calculate the second-order polarizability α(2) of
2D electrons (Sec. II) and show that in graphene it is at least
1 order of magnitude larger than in typical semiconductor
structures (e.g., in GaAs/AlGaAs quantum wells). Then we
calculate the self-consistent response of the system to external
radiation, taking into account 2D plasmon excitation (Sec. III),
and show that the intensity of the second harmonic signal can
be further increased by several orders of magnitude. In Sec. IV
we summarize our results.

II. RESPONSE EQUATIONS

A. General solution of the quantum kinetic equation

We consider a 2D electron system occupying the plane z =
0 and described by the Hamiltonian Ĥ0. The single-particle
Schrödinger equation has the form

Ĥ0|λ〉 = Eλ|λ〉, (1)

where λ is a set of quantum numbers, and Eλ and |λ〉 are the
eigenenergies and eigenfunctions of the system. Our goal is to
describe the system response at frequencies corresponding to
excitation of the 2D plasma waves. Since the phase velocity
of 2D plasmons is typically much lower than the velocity of
light, we apply the quasi-static approximation and describe the
electric field acting on the electrons by the scalar potential

φ(r,t) = φqω(z)ei(q·r−ωt) + c.c., (2)

where q = (qx,qy) and c.c. means the complex conjugate. The
response of the 2D gas to potential (2) is determined by the
Liouville equation,

ih̄
∂ρ̂

∂t
= [Ĥ ,ρ̂] = [Ĥ0 + Ĥ1,ρ̂], (3)

where ρ̂ is the density matrix and Ĥ1 = −eφ(r,t). Using
Eq. (3) we now have to calculate the charge density
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fluctuations,

ρ(r,t) = ρqωei(q·r−ωt) + ρ2q,2ωe2i(q·r−ωt) + c.c., (4)

in the first and second orders in the potential amplitudes φqω

and the corresponding first- and second-order polarizabilities
α

(1)
qω;qω and α

(2)
2q,2ω;qω,qω, defined as

ρqω = α(1)
qω;qωφqω, (5)

ρ2q,2ω = α
(2)
2q,2ω;qω,qωφqωφqω. (6)

In the absence of the perturbation Ĥ1 the density matrix ρ̂0

satisfies the equation

ρ̂0|λ〉 = fλ|λ〉, (7)

where fλ = f (Eλ) is the Fermi distribution function. Ex-
panding ρ̂ in powers of the electric potential, ρ̂ = ρ̂0 +
ρ̂1 + ρ̂2 + · · ·, and calculating the charge density fluctuations
−eSp[δ(r − r0)(ρ̂1 + ρ̂2 + · · ·)], we get

α(1)
qω;qω = e2

S

∑
λλ′

fλ′ − fλ

Eλ′ − Eλ+ h̄ω + i0
〈λ′|e−iq·r|λ〉〈λ|eiq·r|λ′〉,

(8)

α
(2)
2q2ω;qω,qω = −e3

S

∑
λλ′

〈λ′|e−i2q·r|λ〉
Eλ′ − Eλ + 2h̄ω + 2i0

×
∑
λ′′

〈λ|eiq·r|λ′′〉〈λ′′|eiq·r|λ′〉

×
(

fλ′ − fλ′′

Eλ′ − Eλ′′ + h̄ω + i0

− fλ′′ − fλ

Eλ′′ − Eλ + h̄ω + i0

)
, (9)

where S is the sample area. The first-order polarizability,
Eq. (8), is proportional to the polarization operator 	(q,ω)
(see Ref. 32), α

(1)
qω;qω = −e2	(q,ω). For a conventional 2D

electron gas (with a parabolic electron energy dispersion), the
linear polarizability, Eq. (8), has been calculated in Ref. 32;
for 2D electrons in graphene (with a linear energy dispersion)
this has been done in Refs. 22 and 23.

We apply the general formulas, (8) and (9), to conventional
2D electron systems in semiconductor heterostructures and to
graphene. In the former case the spectrum of 2D electrons
is parabolic; in the latter case it is linear. In both cases
the set of quantum numbers |λ〉 = |lkσ 〉 consists of the
sub-band index l, the wave vector k, and the spin σ . To
specify the general expressions (8) and (9), we consider the
long-wavelength limit, which is quantitatively described by
the conditions

q � max{kF ,kT }, q � ω/ max{vF ,vT }, (10)

in semiconductor 2D electron systems and the conditions

q � max{kF ,kT }, q � ω/vF , (11)

in graphene. Here kF and vF are the Fermi wave vector
and Fermi velocity, respectively, and kT and vT are the
thermal wave vector and velocity, respectively. In a gas with
a parabolic dispersion, kF = √

2mEF /h̄, kT = √
2mT /h̄, and

vF,T = h̄kF,T /m, where m is the effective electron mass, T is
the temperature, and the Fermi energy EF is counted from the
bottom of the parabolic band. In a 2D gas with a linear energy
dispersion (in graphene), kF = |μ|/h̄vF and kT = T/h̄vF ,
where μ is the chemical potential counted from the Dirac point
(μ can be positive and negative) and vF is the Fermi velocity.
With typical experimental parameters, conditions (10) and (11)
restrict the wave vector q by values of ∼106 cm−1, which is
sufficient for the description of most experiments.

Under conditions (10) and (11), the general expressions (8)
and (9) can be substantially simplified and we get the first- and
second-order polarizabilities of a 2D electron gas in the form

α(1)
qω;qω ≈ e2qαqβ

(h̄ω)2

gs

S

∑
lk

(
−∂flk

∂kα

)
∂Elk

∂kβ

, (12)

α
(2)
2q2ω;qω,qω ≈ 3e3qαqβqγ qδ

2(h̄ω)4

gs

S

∑
lk

∂flk

∂kα

∂Elk

∂kβ

∂2Elk

∂kγ ∂kδ

, (13)

where gs = 2 is the spin degeneracy.

B. 2D electron gas with a parabolic energy dispersion

Let us now apply the obtained formulas, (12) and (13),
to a conventional 2D electron gas with a parabolic energy
dispersion. In this case there is only one energy sub-band
(l = 1),

Elk ≡ Ek = h̄2k2

2m
, (14)

and the wave functions are plane waves. Substituting Eq. (14)
into Eqs. (12) and (13) we get

α(1)
qω;qω ≈ nse

2q2

mω2
(15)

and

α
(2)
2q2ω;qω,qω ≈ −3nse

3q4

2m2ω4
. (16)

In semiconductor 2D electron systems both α(1) and α(2)

are proportional to the 2D electron gas density ns . The
formula (15) was obtained in Ref. 32.

C. 2D electron gas with a linear energy dispersion (graphene)

In graphene the spectrum of electrons can be found in a
tight-binding approximation.33 It consists of two energy bands,
the wave functions are described by Bloch functions and the
energy of the electrons is

Elk = (−1)l t |Sk|, l = 1,2, (17)

where t is the transfer integral, Sk is a complex function
defined as

Sk = 1 + eik·a1 + eik·a2 = 1 + 2 cos(kxa/2)ei
√

3kya/2, (18)

a1 = a(1/2,
√

3/2) and a2 = a(−1/2,
√

3/2) are the basis
vectors of the graphene hexagonal lattice, and a = |a1| = |a2|
is the lattice constant. In graphene t ≈ 3 eV and a = 2.46 Å.

Formulas (8) and (9) and formulas (12) and (13) are valid
for the full graphene energy dispersion; that is, the integration
in these formulas is performed over the whole Brillouin zone.
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Under the real experimental conditions, when |μ| � t , the
main contribution to integrals (12) and (13) is given by
the vicinity of two Dirac points, K1 = (2π/a)(1/3,1/

√
3)

and K2 = (2π/a)(2/3,0). Near these points the function Sk
vanishes, SK1 = SK2 = 0, and the energy, Eq. (17), can be
approximated by linear functions,

Elk = (−1)lh̄vF |k̃| = (−1)lh̄vF |k − Kv|, v = 1,2, (19)

where v is the valley index and k̃ = k − Kv is the electron
wave vector counted from the corresponding Dirac points.
Here the velocity parameter vF (the Fermi velocity) is related
to the transfer integral and the lattice constant vF = √

3ta/2h̄;
in graphene vF ≈ 108 cm/s. Omitting below the tilde over the
wave vector k and calculating the derivatives,

∂Elk

∂kα

= (−1)lh̄vF

kα

k
,

∂2Elk

∂kα∂kβ

= (−1)lh̄vF

k2δαβ − kαkβ

k3
,

(20)

we get the first-order polarizability in the form

α(1)
qω;qω = e2gsgvq

2T

2πh̄2ω2
ln

(
2 cosh

μ

2T

)
, (21)

where gv = 2 is the valley degeneracy. If the temperature is
low compared to the chemical potential, T � |μ|, we get,
from (21), the result obtained in Refs. 22 and 23:

α(1)
qω;qω = e2gsgvq

2|μ|
4πh̄2ω2

, T � |μ|. (22)

In the opposite case, |μ| � T , one has

α(1)
qω;qω = e2gsgvq

2T

4πh̄2ω2

(
2 ln 2 +

(
μ

2T

)2)
, |μ| � T . (23)

Now consider the second-order polarizability of graphene.
Using Eqs. (13) and (20) we get

α
(2)
2q2ω;qω,qω ≈ −3e3gsgvq

4v2
F

32πh̄2ω4
tanh

μ

2T

≡ −3e

8

(
qvF

ω

)2
∂α

(1)
qω;qω

∂μ
. (24)

The second-order graphene polarizability α
(2)
2q2ω;qω,qω is an

odd function of the chemical potential and does not depend
on the electron or hole density at |μ| � T . This is a direct
consequence of the linear energy dispersion, Eq. (19), and
essentially differs from the case of a conventional 2D electron
gas, Eq. (16), for which α(2) ∝ ns . The q and ω dependencies
of α(2) in the linear- and parabolic-spectrum cases are the same:
α(2) ∝ q4/ω4.

In the graphene formulas (12) and (13), and (21) and (24),
interband transitions are neglected. In the case most relevant
for the experiments, |μ| � T , interband transitions can be
ignored at h̄ω � 2|μ|, which agrees with the long-wavelength
conditions, Eq. (11), and embraces the broad frequency range
from microwave up to near-infrared frequencies. At h̄ω � 2|μ|
as well as at |μ| � T the interband terms in Eqs. (8) and (9)
lead to a weak interband absorption,34 which also does not
substantially influence our results.

Comparing the second-order polarizability of graphene,
Eq. (24), with that of a conventional (semiconductor) 2D

electron gas, Eq. (16), we get

α
(2)
graphene

α
(2)
semicond

= (v2
F )graphene

2(v2
F )semicond

. (25)

Since the Fermi velocity in graphene (�108 cm/s) is sub-
stantially higher than in typical semiconductor (e.g., GaAs)
structures, the nonlinear polarizability of graphene is 1–2 or-
ders of magnitude larger than in semiconductors. For example,
in GaAs/AlGaAs quantum wells with an electron density of
ns � 3 × 1011 cm−2, the Fermi velocity is vGaAs

F � 2.25 ×
107 cm/s, and we get

α
(2)
graphene

α
(2)
GaAs

≈ 10. (26)

III. SELF-CONSISTENT FIELD

Equations (5) and (6) determine the first- and second-order
response of a 2D electron gas to an electric field really acting
on the electrons. Consider now the experimentally relevant
formulation of the problem when the system responds to an
external field φext

qω . Using a self-consistent field concept, we
solve, first, the linear response and, then, the second-order
response problem.

A. Linear response

Consider a 2D electron system under the action of an
external electric potential φext(r,z,t) = φext

qω(z)eiq·r−iωt . In the
first order in the external field amplitude the resulting 2D
charge density will also contain the qω harmonic ρ(r,t) =
ρqωeiq·r−iωt . The density fluctuation creates, in its turn, an
induced potential φind(r,z,t) = φind

qω eiq·r−iωt determined by the
Poisson equation,

�φind(r,z,t) = −4πρ(r,t)δ(z), (27)

and given by

φind
qω (z = 0) ≡ φind

qω = 2π

q
ρqω. (28)

The density ρqω is determined here by the response equa-
tion (5), in which the potential really acting on electrons should
stay in the right-hand side. This is not the external field but
the total electric field φtot

qω = φext
qω + φind

qω produced both by the
external charges and by the 2D electrons themselves. Then we
get

φind
qω ≡ φtot

qω − φext
qω = 2π

q
ρqω ≡ 2π

q
α(1)

qω;qωφtot
qω (29)

and the known linear-response formula

φtot
qω = φext

qω

ε(q,ω)
, (30)

with the dielectric function

ε(q,ω) = 1 − 2π

q
α(1)

qω;qω. (31)

If the wave vector q and the frequency ω of the external wave
satisfy the condition

ε(q,ω) = 0, (32)
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one gets a resonance in Eq. (30). This resonance corresponds
to the excitation of the eigen–collective modes of the system:
the 2D plasmons.

Consider a 2D electron gas with a parabolic energy
dispersion. Substituting the linear polarizability, Eq. (15), into
Eq. (31), we get, from (32), the known spectrum of the 2D
plasmon,

ω2 = ω2
p(q) = 2πnse

2

m
q, (33)

first obtained in Ref. 32 (we ignore the dielectric constant
of the surrounding medium; if the 2D gas is immersed in an
insulator with the dielectric constant κ , e2 should be replaced
here with e2/κ).

In the case of graphene, the spectrum of 2D plasmons
follows from Eqs. (21), (31), and (32):

ω2 = ω2
p(q) = e2gsgvT q

h̄2 ln

(
2 cosh

|μ|
2T

)
. (34)

In the limit |μ| � T this gives the result

ω2
p(q) = e2gsgv|μ|

2h̄2 q (35)

obtained in Refs. 22 and 23. In the opposite case, |μ| � T ,
we get

ω2
p(q) = e2gsgvT ln 2

h̄2 q. (36)

The 2D plasmon problem in the regime μ = 0 has been
considered in Ref. 35. The result reported in Ref. 35 differs
from the correct formula, Eq. (36), by a factor of 4π .

B. Second-order self-consistent response

Let us now consider the second-order response to the
external potential φext

qωeiq·r−iωt + c.c. The induced and total
potential will now contain the frequency harmonics ±(qω)
and ±2(qω). The self-consistent charge density then reads

ρ(r,t) = α(1)
qω;qωφtot

qωeiq·r−iωt + α
(1)
2q2ω;2q2ωφtot

2q2ωei2q·r−i2ωt

+α
(2)
2q2ω;qω,qωφtot

qωφtot
qωei2q·r−i2ωt + c.c., (37)

where the first two terms correspond to the linear response
to the first and second harmonics, and the third term, to the
second-order response to the first (qω) harmonic of the total
potential. The complex conjugate terms describe the negative
(qω) harmonics. The second-order response to φtot

qωφtot
−(qω)

vanishes.
The Fourier harmonics of the induced potential follow from

Eq. (37) and the Poisson equation (27):

φind(r,t) = 2π

q
α(1)

qω;qωφtot
qωeiq·r−iωt

+2π

2q
α

(1)
2q2ω;2q2ωφtot

2q2ωei2q·r−i2ωt

+ 2π

2q
α

(2)
2q2ω;qω,qωφtot

qωφtot
qωei2q·r−i2ωt + c.c.

≡ φind
qω eiq·r−iωt + φind

2q2ωei2q·r−i2ωt + c.c. (38)

Now equating the amplitudes of the first-order harmonic (qω),
we get from here Eqs. (29) and (30). Equating the coefficients

at the (2q,2ω) harmonic and taking into account that the second
harmonic component is absent in the external potential φext

2q2ω =
0, we get

φind
2q2ω ≡ φtot

2q2ω = 2π

2q
α

(1)
2q2ω;2q2ωφtot

2q2ω + π

q
α

(2)
2q2ω;qω,qωφtot

qωφtot
qω

(39)

and, finally,

φtot
2q2ω = π

q

α
(2)
2q2ω;qω,qω

ε(2q,2ω)
φtot

qωφtot
qω

= π

q

α
(2)
2q2ω;qω,qω

ε(2q,2ω) [ε(q,ω)]2 φext
qωφext

qω (40)

(compare with Ref. 36).
Formula (40), together with (16) and (24), represents

the main result of this work. One sees that the amplitude
of the second harmonic potential is resonantly enhanced at
frequency ω = ωp(q) [the second-order pole corresponding to
the vanishing dielectric function ε(q,ω)] and at frequency ω =
ωp(q)/

√
2 [the first-order pole corresponding to the vanishing

dielectric function ε(2q,2ω)]. These resonances lead to a huge
enhancement of the second harmonic radiation intensity.

C. Estimates of the second harmonic radiation intensity

Let us estimate the intensity of the second harmonic signal.
Assume that the external potential is

φext(r,t) = φ0 cos(q · r − ωt), (41)

so that φext
qω = φ0/2. Then the total potential at frequency 2ω

obtained from Eq. (40) reads

φtot
2q2ω(r,t)= πφ2

0

2q
α

(2)
2q2ω;qω,qω

× ω6 cos(2(q · r − ωt))√(
ω2− ω2

p(2q)
4

)2
+ ω2γ 2

4

[(
ω2−ω2

p(q)
)2+ω2γ 2

],
(42)

where we have introduced the momentum scattering rate γ in
the dielectric function,

ε(q,ω) = 1 − ω2
p(q)

ω(ω + iγ )
, (43)

to remove unphysical divergencies of the plasma resonances.
Now introducing the intensity of the incident I ext

qω ∼ cE2
0/8π

and of the second harmonic wave I tot
2q2ω ∼ cE2

tot/8π , where E0

and Etot are the fields corresponding to potentials (41) and (42),
respectively, we get the following results.

(1) In a 2D electron gas with a parabolic electron energy
dispersion (conventional semiconductor structures),

I semic
tot = 18π3n2

s e
6q4

m4c

× ω4[(
ω2− ω2

p(q)
2

)2+ ω2γ 2

4

][(
ω2− ω2

p(q)
)2+ ω2γ 2

]2
I 2

ext.

(44)
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FIG. 1. (Color online) Intensity of the second harmonic radiation
in semiconductor structures and in graphene as a function of the
frequency ω/ωp(q). The parameter of the curves is γ /ωp(q).

(2) In a 2D electron gas with a linear energy dispersion
(graphene),

I
graphene
tot = 9πe6v4

F q4

8h̄4c
tanh2

(
μ

2T

)

× ω4[(
ω2− ω2

p(q)
2

)2
+ ω2γ 2

4

][(
ω2−ω2

p(q)
)2+ω2γ 2

]2
I 2

ext.

(45)

The ratio of intensities (45) and (44) is proportional to
the squared ratio of the polarizabilities α(2). For the same
parameters that were used in Eq. (26), one gets

I
graphene
tot

IGaAs
tot

�
(

α
(2)
graphene

α
(2)
GaAs

)2

� 100. (46)

The frequency dependence is the same in both the graphene
and the semiconductor cases and is shown in Fig. 1. The
intensity-versus-frequency curve has a huge resonance at the
frequency ω � ωp(q) and a weaker one at the frequency
ω � ωp(q)/

√
2. The chemical potential and temperature

dependence of I
graphene
tot is shown in Fig. 2.

If ω = ωp(q) (the main resonance maximum), the ratio
I

graphene
tot /Iext can be presented as (at |μ| � T )

I
graphene
tot

Iext
� 9πe6v4

F q4Iext

2h̄4cω8
p(q)

× ω4
p(q)

γ 4

�
(

3E0

16ek2
F

)2 (
ωp(q)

γ

)4

. (47)

In this formula E0 is the electric field of the external incident
electromagnetic wave and ek2

F is the internal electric field in
the 2D system (the field produced by an electron at the average
interelectron distance k−1

F ). The ratio E0/ek
2
F in the first set of

parentheses is therefore typically very low, E0/ek
2
F � 1. The
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FIG. 2. Intensity of the second harmonic radiation in graphene as
a function of the chemical potential and temperature μ/2T .

second factor, ωp(q)/γ , is the quality factor of the 2D plasmon
resonance, which can be very large in high-quality samples.
This may, at least partly, compensate the smallness of the first
factor and substantially facilitate the observation of the second
harmonic generation.

IV. SUMMARY

We have presented a self-consistent analytical theory of
the second harmonic generation in two-dimensional electron
systems. The theory is applicable to semiconductor structures,
with a parabolic, and graphene, with a linear, electron
energy dispersion. We have shown that the intensity of the
second harmonic is about 2 orders of magnitude higher in
graphene than in typical semiconductor structures. Under
conditions of 2D plasmon resonance the intensity of the
second harmonic can be enhanced by several orders of
magnitude.

The second harmonic generation in graphene was recently
considered in Ref. 37. The theoretical approach admitted in
Ref. 37 differs from the one used in this paper. In Ref. 37
scattering of electrons was taken into account (while we
assume that ω � γ ) but plasma frequency effects leading to
enhancement of the nonlinear response were not considered.
Under the conditions ωp � ω and ω � γ our results coincide
with those in Ref. 37, as it should be.

The frequency of 2D plasmons in graphene lies in the ter-
ahertz range.38–40 The phenomena discussed in this paper can
be used for creation of novel devices (frequency multipliers,
mixers, lasers) operating in this technologically important part
of the electromagnetic wave spectrum.
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